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Using the exact diagonalization technique, we determine the energy spectrum and wave functions
for finite chains described by the two-spin (Kugel–Khomskii) model with different types of intersub-
system exchange terms. The found solutions provide a possibility to address the problem of quantum
entanglement inherent to this class of models. We put the main emphasis on the calculations of
the concurrence treated as an adequate numerical measure of the entanglement. We also analyze
the behavior of two-site correlation functions considered as a local indicator of entanglement. We
construct the phase diagrams of the models involving the regions of nonzero entanglement. The
pronounced effect of external fields, conjugated to both spin variables on the regions with entan-
glement, could both enhance and weaken the entanglement depending on the parameters of the
models.

I. INTRODUCTION

Entanglement is one of the main manifestations of the
quantum nature of the matter being intensively studied
in connection with the development of quantum comput-
ers [1–13] The problem of entanglement has been stud-
ied in detail for nanosystems, especially for quantum
dots [14]. Such systems are used for the design of quan-
tum information processing systems.

In the solids, traditional for condensed matter physics,
things are not so clear. Many standard solid-state sys-
tems are entangled. There can be no doubt, that elec-
trons in a metal are entangled [15], but how is to verify
this directly experimentally, using the accepted criteria.
The conventional method for determining entanglement
(we do not mention here Bell inequalities [16, 17], very ef-
ficient in optics, but not in solids, and other exotic meth-
ods) involves the determination of the density matrix,
which is quite computationally problematic, even for a
relatively small cluster. The most promising would be
to extract information about entanglement from corre-
lation functions related directly to the system in hand.
There are many efficient methods for calculating corre-
lation functions, both numerically and analytically for
strongly correlated systems with a large number of de-
grees of freedom, in particular, in the thermodynamic
limit. Moreover, many correlators are experimentally de-
termined. Another important issue is how one can man-
age the degree of entanglement. The influence of external
fields on entanglement is crucial here, since it provides a
possibility to control an entangled system in quantum
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information processing. We note, that these fields may
have a completely different nature, from the magnetic
field to elastic stresses.

The most vivid example of the entanglement in con-
densed matter is represented by the models involving
two kinds of interacting spin variables. Two-spin models
themselves usually appear in the description of specific
features of transition metal compounds with the coupled
spin and orbital degrees of freedom; that is why such
models are often referred to as spin–orbital ones (some-
times, the term Kugel–Khomskii model is used) [18–20].
Unusual effects related to the spin–orbital correlations
and the corresponding quantum entanglement are widely
discussed in the current literature. In particular, the
possibility of extraordinary spin–orbital quantum states
and transitions between them was pointed out [21–25].
[26, 27].

The simplest version of the Kugel-Khomskii model —
the SU(2) × SU(2) model with SU(2) symmetries for

both spin-1/2 and pseudospin-1/2 operators (Ŝ and T̂)
and a positive factor at spin-pseudospin interaction was
used in an early attempt in the context of the entangle-
ment [28].

Later on, the entanglement was sought in various
other related models: of SU(2) × XY [29], SU(2) ×
XXZ [30], and SU(2)×SU(2) with additional spin-orbit
anisotropy [25]. Briefly, the results of this analysis come
to detection and characterization of the significant en-
tanglement area, the degree of the entanglement (mainly
through the von Neumann entropy), and sometimes in-
dication of possible complex entangled excitations [31].
All the mentioned works estimate the entanglement, the
phase boundaries etc. numerically for finite chains.

In contrast to the cited works, here we focus on how to
manage the degree of entanglement. This can be done by
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mixing different intrasubsystem and intersubsystem in-
teractions and by applying and switching external fields.
Here we consider these two issues.

We consider several versions of spin-orbital model both
with symmetric and nonsymmetric spin-pseudospin in-
teraction. We also introduce different kinds of external
fields and study their effect on the entanglement. In ad-
dition, we show the relationship between the degree of
entanglement and pair correlators between the orbital
and spin degrees of freedom.

In general, the Hamiltonian of the model reads

Ĥ = Ĥs + Ĥt + Ĥts, (1)

Here Ĥs, Ĥt are Heisenberg-type interactions in the spin
pseudospin-spin subsystems:

Ĥs = J
∑
<i,j>

ŜiŜj; Ĥt = I
∑
<i,j>

T̂iT̂j, (2)

and Ĥts is interaction between subsystems. Depending

on the compound and its symmetry Ĥts could be written
as:

Ĥ
(1)
ts = K

∑
<i,j>

(
ŜiŜj

)(
T̂iT̂j

)
, (3)

Ĥ
(2)
ts = K

∑
<i,j>

(
ŜiŜj

) (
T zi T

z
j

)
, (4)

Ĥ
(3)
ts = K

∑
<i,j>

(
Szi S

z
j

) (
T zi T

z
j

)
, (5)

Ĥ
(4)
ts = K

∑
<i,j>α

(
Sαi S

α
j T

α
i T

α
j

)
, (6)

In (2)–(6) i, j are vectors of the nearest neighbors, Ŝi

and T̂i are spin and pseudospain operators, related to
orbital degrees of freedom. Hereafter, we consider the
most common case when S = 1/2, T = 1/2. α is a spin
and pseudospin components index.

Note here that a broad class of Hamiltonians of this
type can be simulated not only in the framework of solid-
state strongly correlated systems but also by ultracold
atoms in the traps [22, 23]. In this case, the Kugel-
Khomskii model may be applicable to the bosonic atoms
with an integer spin. Note also that in transition metal
compounds (such as ruthenates or vanadates), we are
sometimes dealing with integer values of effective spin
and orbital quantum numbers.

The additional terms to the Hamiltonian related to the
presence of external magnetic fields in both subsystems
can be written as:

Ĥf = −Hs
∑
i

Ŝzi −Ht
∑
i

T̂z
i , (7)

where Hs, Ht fields in spin and pseudospin systems, re-
spectively. An efficient magnetic field in a pseudospin
system occurs, for example, as a result of the action of

elastic stresses during uniaxial compression of a crys-
tal. We note that in this model, in contrast to multi-
sublattice magnets, the fields Hs, Ht can be steered in
opposite directions. Moreover, hereafter we consider also
staggered fields in both subsystems.

The entanglement of the two systems can be deter-
mined if density matrix is known. There are several
quantitative criteria divided into two main courses. One
is based on the calculation of von Neumann entropy
[20, 25, 28, 30, 31], while the second one requires a par-
tial trace of the density matrix by the degrees of freedom
of one of the subsystems. We note right away that qual-
itatively all criteria give the same result. Nonetheless,
they may differ quantitatively. Here, we use the so called
“concurrence”. Naturally, since we use the exact diago-
nalization of the Hamiltonian [32–36] method, any other
criterion can also be calculated.

As it was mentioned, we study entanglement, between
two subsystems — spin and orbital. Concurrence [4] is
defined as

C =
√

2(1− tr1(tr2(ρ̂)2)), (8)

where ρ̂ is the density matrix of the entire system, tri(ρ̂))
is the partial trace of the density matrix in one of the
subsystems, i is the subsystem index (in our case, spin
or pseudospin). Thus defined concurrence for two sin-
gle particles takes values from C = 0 in the absence of
entanglement, to C =

√
3/2 in the textbook Einstein-

Podolsky-Rosen pair.
We compare the entanglement obtained in terms of the

strict criterion based on C with the behavior of the local
correlation functions of the operators Ŝi and T̂j. It turns
out that paired correlators provide minimal information
about entanglement, even if the operators belong to dif-
ferent cites. Moreover, the range of parameters where
the state of the system is most entangled could be found
with the correlators of the four operators, more precisely,
their gradients.

Naturally, the inclusion of sufficiently high uniform
external magnetic fields (7) suppresses entanglement.
Nonetheless, in the range of interest, when the magnetic
field has the same order of amplitude as the exchange in-
tegrals J, I,K, entanglement is not suppressed. Further-
more, as it will be seen below, in some cases the exter-
nal field surprisingly increases the entanglement. There
is a dramatic change, however, in the regions with the
strongest entanglement in the phase diagram. The most
vivid effect is the shrink of entanglement areas along spe-
cific directions or at points in the phase diagram under
the influence of external fields.

II. METHODS

We consider the Kugel-Khomskii model (1)–(2) with
the conventional symmetric spin-pseudospin interaction
(3) and the related models with asymmetric (4), (5)
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and symmetric (6) interactions for a small linear clus-
ter. We accurately determine the many-particle ground
state wave function in the framework of the exact diago-
nalization method. The maximum cluster size is limited
by computing resources, nevertheless the key character-
istics of the system are stable for variations in the chain
size. We study both the cases of zero field and strong ex-
ternal field in each subsystem, and focus mainly on how
to manage the degree of entanglement.

This leads to a nontrivial and unobvious behaviour of
entanglement between spin and orbital degrees of free-
dom.

We have studied in detail one-dimensional systems
with different boundary conditions: an open chain and
a ring. For the whole range of the considered parame-
ters, the open chain appeared to be more convenient for
calculation. In addition, as it was mentioned earlier, we
consider mainly the case of nonzero external fields when
the problem with the ground state accidental degeneracy
is insignificant (for zero field limit we simply set relatively
small fields). We should also note that the anisotropy [25]
removes the problem even without external fields.

Hereinafter, we consider the open chain by the exact
diagonalization method. We calculate the ground state
wave function, that allows us to evaluate von Neumann
entropy, any entanglement criterion, as well as corre-
lation functions in each subsystem and between them.
The Hamiltonian matrices for the systems under study
are very sparse, so it is natural to use the sparse ma-
trix format. The maximum available size of the chain for
comprehensive calculation is determined by the compu-
tational resources, mainly by the RAM size, so we ex-
trapolate the results to 1/N → 0.

In our work, we have mainly used the QuTiP package,
which simplifies the work with quantum objects [37, 38].
In particular, the package has a convenient interface for
constructing the many-particle Hamiltonian using a large
number of direct products of various spin operators. All
objects in the package are by default converted to sparse
format, which significantly simplifies their further pro-
cessing. The exact diagonalization procedure was per-
formed in the QuTiP package as well. A typical calcula-
tion for a chain of 10 cites for 3600 points takes about a
day. Results for N = 8, 9, 10 slightly differ qualitatively
and allow fine extrapolation to 1/N → 0. When it was
possible, we have compared the results with the earlier
works on entanglement.

III. KUGEL-KHOMSKII MODEL WITH
Ĥts =

∑
(ŜiŜj)(T̂iT̂j) INTERACTION

First, we consider the Kugel-Khomskii model (1)–(2)
with the most common form (3) of spin-pseudospin in-
teraction. We remind that in the mean field, all four
common phases are realized: FM-FM, AFM-AFM, FM-
AFM, and AFM-FM [39]. For large absolute values of
K < 0 compared to I and J , this system prefers FM or

AFM ordering in both subsystems simultaneously. The
opposite case, large K > 0, favors FM in one subsystem
and AFM in the other.

For infinite system, quantum fluctuations destroy long-
range order even at T → 0 and the state structure is
governed by the local order, i.e. correlation functions
on distinct sites. We address a finite chain, but not to
go into the redundant details, will mark different phases
(technically, different local orders) by local correlation
functions.

In the mean field, FM order in e.g. spin subsystem
can be characterized by unidirectional average of spins
〈Ŝi〉, and AFM order — by a checkerboard pattern (in
1D average spin directions altering from site to site). In
terms of local correlators (irrespective to the long-range

order) FM structure corresponds to 〈ŜiŜj〉 > 0 for any
pair of sites. As for AFM, the sign of correlation function
〈ŜiŜj〉 is negative for nearest neighbor sites i, j, and alters
when i and j make a step one from the another. The same
naturally holds for the pseudospin subsystem.

In the quantum case, we adopt the following classifi-
cation: “FM” — 〈ŜiŜj〉 > 0 for close neighbor pairs i, j;

“AFM” — 〈ŜiŜj〉 < 0 for nearest neighbors and altering
henceforth. We do not deal with the exhaustive classifica-
tion and the fine details of the state structure, but rather
superficially mark the local correlation. All the forego-
ing does not necessarily mean the phase transitions with
distinct order parameters, but rather short-range order
rearrangement.

Hereafter, we study how entanglement changes across
local order boundaries, i.e. among the areas with differ-
ent patterns of local correlations.

A. Entanglement and the sign of intersubsystem
exchange K

We begin with the case of a negative intersubsystem
exchange K < 0.

Fig. 1a presents a measure of entanglement — con-
currence C (see Eq.(8)) for negative intersubsystem ex-
change K = −1. As it can be expected, nonzero entan-
glement is observed in the area of a negative exchanges in
both subsystems and its maximum is achieved for com-
parable values of J , I, and K. This acknowledges that
not only the binding interaction K between subsystems
is decisive for the entanglement, but local interactions J
and I as well. For K > 0 the same conclusion holds, see
below.

For K = −1, the phase (local order) boundary and the
structure of the C-maximum differs significantly from the
case K = +1 (see Fig. 2a). Maximum of entanglement
arises at a segment, while for K = +1 — at a single
point.

Figs. 1a and 2a qualitatively reproduce the known re-
sults [28, 31]. The spin-pseudospin structure in the finite
entanglement area corresponds to AFM spin and AFM
pseudospin local orders (this is supported by the inter-
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(a)

(b) (c)

(d) (e)

FIG. 1. Entanglement C (8) for intersubsystem exchange (3)

∼ (ŜiŜj)(T̂iT̂j) with negative K = −1 and external fields. In
contrast to the case of K = +1, here the C-maximum occurs
not at a single point, but at a segment of the diagonal line.
(a) Hs = Ht � 1. (b) Hs = 1,Ht � 1. (c) Hs � 1,Ht = 1.
(d) Hs = 1 and Ht = 1. (e) Staggered fields |Hs| = |Ht| = 1
in both subsystems. Here, Hs and Ht stand for external fields
in spin and pseudospin subsystems.

subsystem local correlation functions, see Sec. S1 of Sup-
plementary). Below in Sec. IV, we discuss the intercon-
nection the entanglement and local correlators in depth,
which is much less studied.

It appears that nonzero external fields change the de-
gree of entanglement in different ways. We will discuss
this in more detail in the foregoing Sec. III B. Neverthe-
less, let us first note once more, that for both signs K ≷ 0
the significant entanglement appears in the intuitive case
of AFM exchanges in both subsystems, J, I > 0.

B. Entanglement and external fields

We now discuss the effect of external fields on the en-
tanglement. Let us note once again, that in the spin-
orbital model different fields can be introduced in differ-
ent subsystems, even if they act in the opposite direc-
tions.

It is intuitive that sufficiently large external field sup-
presses the entanglement, as it strengthens the tendency
to form a common ferromagnetic state. We will discuss
below that the entanglement area transformation under
strong external field is not so trivial, especially in a very

(a)

(b) (c)

(d) (e)

FIG. 2. Entanglement C (8) for intersubsystem exchange (3)

∼ (ŜiŜj)(T̂iT̂j) with positive K = +1. The maximum en-
tanglement is achieved at single point. (a) Hs = Ht � 1.
(b) Hs = 1,Ht � 1. (c) Hs � 1,Ht = 1. (d) Hs = 1 and
Ht = 1. (e) Staggered fields |Hs| = |Ht| = 1 in both subsys-
tems. Here, Hs and Ht stand for external fields in spin and
pseudospin subsystems.

frustrated case J ∼ I ∼ K, where entanglement typically
has a maximum.

With the negative sign of the intersubsystem exchange
K = −1, the initial zero-field picture under the influence
of an external field shifts, almost without deformation,
along the corresponding coordinate axis, see Figs. 1b–c.

The case of two simultaneously acting fields is more
peculiar. A local area of strong entanglement is formed,
having a tooth-shape, see Fig. 1d. The result is practi-
cally independent of the mutual orientation of the fields.
With magnification of the field amplitude, the localiza-
tion effect increases, though is not transformed qualita-
tively, so we put the corresponding figure to Sec. S2 of
Supplementary.

The effect of the staggered fields (similar in both sub-
systems) is even more amazing, see Fig. 1e. The area
substantial entanglement in J–I plane is dramatically
enlarged and the non-zero entanglement appears in the
domains, where it was negligible in all other cases under
discussion.

Similar effects are observed with the positive sign of
intersubsystem exchange K = +1. Here, also, the initial
nullipole pattern under an external field shifts along the
corresponding coordinate axis; see the Fig. 2b-c. Nev-
ertheless, some deformation of the initial structure are
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(a) Spin-pseudospin single-site correlator (b) Spin-pseudospin two-site correlator

-2 0 2

I

-2

0

2

J

FM-FM

AFM-AFMFM-AFM

AFM-FM

(c) Gradient of the two-site
correlator

FIG. 3. K = −1 (a) The chain-averaged single-site spin-pseudospin correlator does not provide accurate information on the
entanglement. (b) The two-site spin-pseudospin correlator reveals the entanglement region boundaries. (c) The gradient of
the two-site correlator allows us to select the area of entanglement. The order structure in spin and pseudospin subsystem is
designated.

(a) Spin-pseudospin single-site correlator (b) Spin-pseudospin two-site correlator

-2 0 2

I

-2

0

2

J

FM-FM

AFM-AFMFM-AFM

AFM-FM

(c) Gradient of the two-site
correlator

FIG. 4. K = +1. Analogous to Fig. 3 (a) The chain-averaged single-site spin-pseudospin correlator does not provide accurate
information on the entanglement. (b) The two-site spin-pseudospin correlator detects reveals the entanglement region bound-
aries. (c) The gradient of the two-site correlator allows us to select the area of entanglement. The order structure in spin and
pseudospin subsystem is designated.

observed with a nonmonotonic behavior of entanglement
with increasing J or I.

With two simultaneously nonzero fields, as well as for
K = −1, the local area of entanglement is formed, see
Fig. 2d. Moreover, the situation is almost unrelated to
the mutual orientation of the fields, and as the field am-
plitude increases, the localization effect of a region of
strong entanglement becomes more pronounced.

The destructive effect of the staggered fields in the case
of positive K = +1 is much stronger, than for K = −1,
see Fig. 2e. Only sharp narrow segment near |J | ∼ |I| . 1
survives against the smooth concurrence background.

IV. INTERRELATION BETWEEN
SPIN-PSEUDOSPIN CORRELATION

FUNCTIONS AND ENTANGLEMENT

Correlation functions between spin (pseudospin) de-
grees of freedom provide important information about
the system state structure. On one hand, you can find out

the local structure in the spin and pseudospin subspace
that allows us to roughly distinguish “FM” and “AFM”-
like local ordering. On the other hand, irreducible inter-
subsystem correlators may be sensitive to entanglement
effects. We are studying this question in detail below.

It would be natural to expect a one-site intersubsystem
correlator 〈ŜiT̂i〉 to be related with entanglement. Nev-
ertheless, our analysis shows that in the general case,
a chain-averaged single-site spin-pseudospin correlator
does not provide accurate information on the entangle-
ment region. As an example see Fig. 3a in comparison
with Figs. 1a: the single-site spin-pseudospin correlator
reproduces only one small segment of the entanglement
area borders (this is also the case for other types of in-
tersystem interaction considered posterior).

Thus, one should address a two-site correlator:
〈ŜiŜjT̂iT̂j〉. In Fig. 3b, two-site spin-pseudospin corre-

lator 〈ŜiŜjT̂iT̂j〉 (i, j are the nearest neighbors) is shown
for K = −1. According to Fig. 1a, the two-site spin-
pseudospin correlator reasonably reproduces the entan-
glement region boundaries. Note, that one-site and
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two-site irreducible correlators (covariances) 〈ŜiT̂i〉 −
〈Ŝi〉〈T̂i〉, 〈ŜiŜjT̂iT̂j〉 − 〈ŜiŜj〉〈T̂iT̂j〉 lead to the same
result for phase boundaries as the initial correlators.

A much clearer picture of the boundaries is visible in
Fig. 3c, where the gradient (in the parameters’ space) of
a two-site spin-pseudospin correlator is presented. The
gradient structure allows one to distinguish the entangle-
ment in the phase diagram precisely.

In Fig. 4, similar data are shown for positive spin-
pseudospin exchange K = +1. In Fig. 4a, the single-
site spin-pseudo-spin correlator does not provide infor-
mation on the entanglement area (compare with Fig. 2a).
In Fig. 4b similarly to Fig. 3b two-site spin-pseudo-spin
correlator reasonably reproduces boundaries of the en-
tanglement region. Finally, the gradient of a two-site
spin-pseudospin correlator selects the entanglement —
Fig. 4c accurately.

Thus, in this section, we propose a criterion (purely
empirical) for indicating the region of quantum entangle-
ment in complex many-particle systems. It requires nei-
ther checking the Bell’s inequalities nor calculating the
full density matrix. The corresponding two-site correla-
tor can be determined either numerically, but with much
less waste of resources, or even analytically [24].

(a)

(b) (c)

(d) (e)

FIG. 5. Entanglement C (8) for intersubsystem exchange (4)

∼
(
ŜiŜj

) (
T zi T

z
j

)
with negative K = −1. At zero external

fields, the entangled state is realized at a half of the phase
plane. (a) Hs = Ht � 1. (b) Hs = 1,Ht � 1. (c) Hs �
1,Ht = 1. (d) Hs = 1 and Ht = 1. (e) Staggered fields
|Hs| = |Ht| = 1 in both subsystems. Here, Hs and Ht stand
for external fields in spin and pseudospin subsystems.

V. OTHER TYPES OF SPIN-PSEUDOSPIN
INTERACTIONS

Hereinafter, we consider other possible types of spin-
pseudospin interaction, that up to now have not been
investigated, at least, in the context of entanglement.

A. Pseudospin anisotropic Interaction:

Ĥts =
∑(

ŜiŜj

) (
T zi T

z
j

)
In this subsection, we consider what changes in the

entanglement pattern entail a nontrivial, less symmetric
spin-pseudospin interaction. This refers to the Hamil-
tonian (1)–(2) with the interaction between the subsys-

tems (4) — Heisenberg-type interaction in Ĥts relating
for spins and Ising-type one for pseudospins (note that
this kind of interaction along with (3) was already pro-
posed in the pioneering work on spin-orbital physics in
compounds of transition-metal elements [18]).

The most dramatic changes occur in the case of neg-
ative intersubsystem exchange constant K = −1. Here,
in addition to the region J, I & 0, a whole new region of

(a)

(b) (c)

(d) (e)

FIG. 6. Entanglement C (8) for intersubsystem exchange (4)

∼
(
ŜiŜj

) (
T zi T

z
j

)
with positive K = +1. At zero external

fields, the entangled state is realized at a the J, J > 0 domain.
(a) Hs = Ht � 1. (b) Hs = 1,Ht � 1. (c) Hs � 1,Ht = 1.
(d) Hs = 1 and Ht = 1. (e) Staggered fields |Hs| = |Ht| = 1
in both subsystems. Here, Hs and Ht stand for external fields
in spin and pseudospin subsystems.
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significant entanglement C (8) arises (see Fig. 5a). More
than a half of the investigated region is occupied by en-
tangled state separated by the trivial line I = 0.

For the other sign of the intersubsystem exchange con-
stant K = +1, there are no qualitative changes in the
entanglement structure in Fig. 6a in comparison with the
similar one in Fig. 2a for symmetric intersubsystem inter-
action (3). Here, the entanglement area is qualitatively
the same, a distinct “shark tooth” is formed near the ori-
gin. On the other hand, quantitative changes in the fine
structure are rather significant.

The response of the spin-orbital system to a nonzero
field for K = −1 differs qualitatively from the previous
case, see Fig. 1b-e. The picture does not change qual-
itatively, when the external field is nonzero in the spin
subsystem. Only a shift is observed along the correspond-
ing coordinate axis (J) (Fig. 1b). On the contrary, the
external field in the pseudospin subsystem destroys the
entangled state in a quarter of the phase plane (J > 0,
I < 0)(Fig. 1c). If there is a nonzero external field in
both subsystems, a sharp peak of entanglement is formed
near the origin, see Fig. 1d. As in Sec. III B, the mutual
orientation of the fields does not affect the structure of
entanglement significantly.

Finally, the staggered field drastically changes the
whole entanglement pattern. Qualitatively picture seems
to be rotated from zero-field case by π/4 counterclock-
wise. Significant entanglement appears at half plane
(pseudospin subsystem exchange I < 0).

At K = +1, Figs. 6a-e, the zero-field maximum entan-
glement is localized nearly at a single point, and when
an external field is nonzero in one of subsystems, there is
a tendency to isolate the area of maximum entanglement
from the rest of the region with zero entanglement. This
tendency is especially pronounced for Hs � 1,Ht = 1,
see Fig. 6c. When there are two nonzero external fields,
a sharp peak of entanglement is formed near the origin
Fig. 6c, which is insensitive to the mutual orientation of
the fields.

The effect of the staggered field (“counterclockwise ro-
tation”), significant entanglement for I < 0) is similar
to that for K = −1 except inessential details. We can’t
help mentioning that Fig. 5e, and Fig. 6e resemble some
of arts of Zaha Hadit.

B. Spin and pseudospin anisotropic interaction:
Ĥts =

∑(
Szi S

z
j

) (
T zi T

z
j

)
Here, we discuss the case when the intersubsystem in-

teraction is even less symmetrical and has an Ising form
in the parts in Ĥts, referring to both spins and pseu-
dospins. This is the Hamiltonian (1) - (2) with the in-
teraction between the subsystems (5). This interaction
is the Ashkin–Teller one [40], although model (1), (2),
(5) technically differs from the Ashkin–Teller model for
which the exact solution exists [41].

The case of K = −1 is of a special interest here.

The entanglement is realized here at three-quarters of
the phase plane (two of the entanglement regions are,
of course, symmetrical), and there are three sharp peaks
near the origin, besides, all areas of entanglement are sep-
arated by lines J, I = 0. For the opposite sign of the spin-
pseudospin exchange K = +1, the entanglement pattern
is realized, which is qualitatively similar to Fig. 6a —
entanglement in the quarter of the phase diagram and
the “shark tooth” near the origin (we will not give the
corresponding figures).

Now, we address the nonzero field case. When the
magnetic field is nonzero in one of the subsystems, the
entanglement in the corresponding quadrant completely
decays, and the situation in the other quadrants does not
change qualitatively (with the increase of entanglement
“edges” along one of the coordinate axes), see Figs. 7b–
c. When two external fields are nonzero simultaneously,
a sharp peak is formed near the coordinate origin with
weak entanglement in the quadrant J > 0, I > 0 and
zero in the remaining regions, see Fig. 7d.

The effect of the staggered field is even more dramatic.
The entanglement is almost or completely destroyed in

(a)

(b) (c)

(d) (e)

FIG. 7. Entanglement C (8) for intersubsystem exchange (5)
∼
(
Szi S

z
j

) (
T zi T

z
j

)
with negative K = −1. At zero external

fields, the entanglement is realized at 3/4 of the phase plane
(except FM-FM region) with sharp maxima near the origin.
When external field in spin/pseudospin subsystem is nonzero,
the entanglement in the corresponding quadrant disappears
completely. (a) Hs = Ht � 1. (b) Hs = 1,Ht � 1. (c)
Hs � 1,Ht = 1. (d) Hs = 1 and Ht = 1. (e) Staggered fields
|Hs| = |Ht| = 1 in both subsystems. Here, Hs and Ht stand
for external fields in spin and pseudospin subsystems.
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(a)

(b) (c)

(d) (e)

FIG. 8. Entanglement C (8) for intersubsystem exchange (6)
∼
(
Sαi S

α
j T

α
i Tαj

)
) with negative K = −1. At zero external

fields, the super-entanglement is formed in the FM-FM region
of the phase plane. When external fields are nonzero, the
entanglement disappears, leaving a sharp peak near the origin.
(a) Hs = Ht � 1. (b) Hs = 1,Ht � 1. (c) Hs � 1,Ht = 1.
(d) Hs = 1 and Ht = 1. (e) Staggered fields |Hs| = |Ht| = 1
in both subsystems. Here, Hs and Ht stand for external fields
in spin and pseudospin subsystems.

the whole phase plane, except the peak at the origin.
Note, however, that the concurrence is nonzero in the
J < 0, I < 0 quadrant.

The nonzero field case for the opposite sign K = +1
differs in small details from the one just discussed, and
we will not comment on it here.

C. Model interaction: Ĥts =
∑(

Sαi S
α
j T

α
i Tαj

)
Here, we consider even more exotic case: a model in-

teraction (6)a. This interaction looks very peculiar (and
slightly resembles the compass model [42–44]), neverthe-
less we discuss it for completeness of classification. With
both signs of K, the most striking feature is the arising
super-entanglement at J, I < 0, that is, with the fer-
romagnetic both intersubsystem exchanges. The behav-
ior of entanglement in the region J, I > 0 qualitatively
(and semi-quantitatively) resembles the case of Fig. 1a
and Fig. 2a.

Here, all the nonzero field cases are peculiar. When a
magnetic field is nonzero in any of the subsystems, the en-
tanglement in the corresponding quadrant dramatically

decays, leaving mainly a sharp peak near the origin, see
Fig. 8b,c. The presence of magnetic fields in two subsys-
tems results in a peak near the origin insensitive to the
mutual direction of the fields (Fig. 8d).

The effect of the staggered field looks here like in the
model just considered (compare Fig. 8e and Fig. 7e). The
entanglement almost or completely absent in the whole
phase plane, except the peak at the origin. The concur-
rence is considerable on within the J < 0, I < 0 quadrant.

Since, as in the previous section, for K = +1, the con-
currence structure appears to be qualitatively the same,
we will not comment on this case.

CONCLUSIONS

In this paper, the problem of quantum entanglement
was addressed in terms of the behavior of finite chains
described by different types of of two-spin models. The
analysis was performed by the exact diagonalization tech-
nique allowing one to find out comprehensive quanti-
tative information concerning the systems under study.
We were mainly focused on the behavior of concurrence,
which is a good numerical measure of the entanglement.
We determined the regions of pronounced entanglement
at various relations between the characteristic parame-
ters of the models. We have also revealed certain sim-
ilarities in the behavior of concurrence and that of the
two-site correlation functions (the latter can be consid-
ered as a local indicator of entanglement).

We have also demonstrated the possibility to provide
efficient control of the entanglement pattern by external
fields (and by switching on nontrivial interactions). In
particular, external fields can induce considerable entan-
glement in the areas, where zero-field entanglement is
clearly absent. On the other hand, the inverse effect is
possible — the concerted action of the fields in both spin
subsystems diminishing the entanglement.

We emphasize that due to the different physical ori-
gins of effective spin and pseudospin the applied fields
fields may be of a completely different nature, from the
magnetic field to elastic stresses. For example, the sim-
plest field-dependent part of a spin–orbital Hamiltonian
has the form hSz + ∆T z, where h is the magnetic field
in energy units and ∆ is the energy gap induced by local
distortions [45]. Note that here the superscript z corre-
spond to the z axis in different spaces, spin and orbital
ones. Depending on the ground state of the main Hamil-
tonian, such fields can affect the ground state in various
ways, thus either enhancing or suppressing the entangle-
ment.

The common experimental realization the entangle-
ment effects is related to the spin–orbital excitations,
referred to as orbitons [46–51]. This issue has drawn re-
cently and an additional interest in connection to the so
called Higgs and Goldstone modes in condensed matter
physics [52–54].

Ultracold atoms bring a new perspective to spin–
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orbital physics. Namely, a broad class of Hamiltonians
of this type can be simulated not only in the framwork
of solid-state strongly correlated systems but also by ul-
tracold atoms in the traps [22, 23, 55]. Then, the Kugel–
Khomskii model can also involve an integer spin. In such
experiments, a variety of artificial external fields can be
introduced by tuning laser beams or by the trap geome-
try rearrangemnet.

However, the role of quantum entanglement in the
spin–orbital (spin–pseudospin) excitations has not been
addressed properly yet. We believe, that our present
work could be a good step forward in this direction.
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[25] D. Gotfryd, E. M. Pärschke, J. Chaloupka, A. M. Oleś,
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Order in an Entangled SU(2)×XY Spin-Orbital Ring,”
Phys. Rev. Lett. 112, 117204 (2014).

[30] W.-L. You, P. Horsch, and A. Oleś, “Quantum entangle-
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[31] W.-L. You, A. Oleś, and P. Horsch, “Von Neumann En-
tropy Spectra and Entangled Excitations in Spin-Orbital
Models,” Phys. Rev. B 86, 094412 (2012).
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