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We examine theoretically and numerically fast propagation of a tensile crack along unidimensional
strips with periodically evolving toughness. In such dynamic fracture regimes, crack front waves form
and transport front disturbances along the crack edge at speed less than the Rayleigh wave speed and
depending on the crack speed. In this configuration, standing front waves dictate the spatio-temporal
evolution of the local crack front speed, which takes a specific scaling form. Analytical examination
of both the short-time and long-time limits of the problem reveals the parameter dependency with
strip wavelength, toughness contrast and overall fracture speed. Implications and generalization to
unidimensional strips of arbitrary shape are lastly discussed.

I. INTRODUCTION

Understanding how solids break continues to pose sig-
nificant fundamental challenges. For brittle solids bro-
ken under tension, Linear Elastic Fracture Mechanics
(LEFM) tackles the difficulty by reducing the problem
to the destabilization and growth of a dominant preex-
isting crack (see e.g [1, 2] for introductions). The theory
is based on the fact that, in an elastic material, all dis-
sipative and damaging processes are localized in a small
zone around the crack tip, referred to as fracture process
zone. Crack destabilization and further motion are then
governed by the balance between the flux of mechani-
cal energy released into the fracture process zone from
the surrounding material and the dissipation rate in this
zone. The former is computable within linear elasticity
theory and connects to the stress intensity factor. The
dissipation rate is quantified by the fracture energy.

LEFM is based on continuum mechanics; as such, it
considers homogeneous solids. However, stress concen-
tration at crack tip makes the behavior observed at the
continuum-level scale extremely sensitive to small-scale
inhomogeneities in the material. Consequences include
giant fluctuations in fracture dynamics [3–6] and erratic
crack paths [7–9] incompatible with engineering contin-
uum approach. To capture these features, it has been
proposed [10–12] to consider crack propagation in a solid
with spatially-distributed toughness. Within this frame-
work, the onset of fracture is mapped to a critical de-
pinning transition [13–15] and crack roughening is inter-
preted using interface growth models [16]. This approach
succeeds in explaining qualitatively several aspects: self-
affine features in fracture roughness [13, 17–19], crackling
seismic-like dynamics sometimes observed in slowly frac-
turing systems [20, 21], and toughening effects due to
microstructural disorder [22–24]. Yet, this approach was
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derived within the elastostatic approach, hence, it only
applies to slow fracture regimes.

A major bottleneck is to capture the dynamic stress
redistribution through elastic waves, which occurs when
a dynamically growing crack interacts with material in-
homogeneities. This was first examined [25–27] in a
minimal scalar (antiplanar) model of fracture, and these
works show that the crack front will continually roughen
under repetitive interactions with heterogeneities. More
recently, driven by the availability of analytical solutions
for the three dimensional vectorial elastodynamic crack
problem [28, 29], Ramanathan and Fisher [30] and Mor-
rissey and Rice [31, 32] examined the problem of the crack
front interaction with a single asperity. They demon-
strate that a new kind of front waves (FW) form and
transport perturbations along the crack front without ge-
ometric attenuation. Originally invoked for mode I (ten-
sile) loading, Fekak et al. [33] recently showed FW also
exist for mode II (shear) fracture. Some experiments [34]
suggest FW are responsible for characteristic undulations
along fracture surfaces, even though the precise origin of
these undulations remains controversial [35–37]. These
FW were suggested to be the possible source of crack
surface roughening in brittle materials [38–40]. Never-
theless, the processes by which a dynamically growing
crack roughens due to interactions with inhomogeneities
and the underlying role of FW remain to be clarified.

We report herein a numerical and theoretical study of
dynamic heterogeneous fracture in the simplest configu-
ration: a single propagating crack growing along a two-
dimensional (2D) plane made of unidimensional strips
parallel to crack propagation with periodically modu-
lated toughness. The approach is presented in Sec. II.
We consider first-order perturbations from the situation
of straight front propagation at constant speed and ap-
ply Morrissey & Rice’s numerical methodology formulat-
ing the perturbative solution into the wavenumber-time
domain to obtain an equation of motion. The spatio-
temporal evolution of local front distortions and local
speeds is examined in Sec. III. They are shown to result
from standing FW, which determines their scaling form.
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Section IV presents an analytical examination of both
the short and long time limits of the equation of motion.
This provides the dependencies in the parameters con-
cerning strip wavelength, toughness contrast and overall
fracture speed. Finally, Sec. V demonstrates how the
interaction of dynamic crack with unidimensional strips
of arbitrary shape can be reconstructed from the super-
position of these elementary solutions.

II. THEORETICAL AND SIMULATION
FRAMEWORK

A. Dynamic crack growth in homogeneous
materials: LEFM theory

Let us first consider the situation depicted in Fig. 1(a)
with a crack propagating in a brittle solid loaded in ten-
sion (mode I fracture). Herein (and subsequently), axes
x, y and z are aligned with the mean direction of crack
growth, tensile loading and mean crack front, respec-
tively. L denotes the specimen width along z. To address
the problem, standard LEFM makes several assumptions:

• The effect of material inhomogeneities are coarse-
grained so that the solid is assumed to be linear
elastic, isotropic and homogeneous. The elastic re-
sponse is fully characterized by Young Modulus E
and Poisson ratio ν;

• The crack is assumed to be straight and perpendic-
ular to tensile loading;

• The crack front motion is assumed to be invariant
along z, so that the 3D elastic problem reduced to
a 2D plane stress one.

LEFM then provides the theoretical framework to de-
scribe crack growth (see [41, 42] for detailed presenta-
tions). We summarize the main steps leading to the
equation of motion.

The stress field is shown [43] to be singular at the crack
tip. It writes:

σij(r, θ, t) ∼
r→0

K(t)√
2πr

gij(θ, v0) (1)

where (r, θ) are the polar coordinates in the frame (~ex, ~ey)
centered at the moving crack tip, and v0 is the crack
speed. The dimensionless functions gij(θ, v0) provid-
ing the angular variations of the stress components are
generic (see [41, 42] for details). Conversely, the dynamic
stress intensity factor, K(t), depends on both applied
loading and specimen geometry at time t. It fully char-
acterizes the instantaneous prying force acting on the
crack front.

Crack velocity is then predicted from the balance be-
tween dynamic energy release rate G(t) and the fracture
energy Γ. G(t) is the flux of mechanical (potential and

FIG. 1. Sketch of a crack propagating in a material along with
notations used herein. (a) LEFM description of a straight
crack front propagating at a speed v0 in a homogeneous brit-
tle solid. The crack front is being loaded in mode I (open-
ing mode). The stress intensity factor is referred to as K.
(b) Due to microstructural heterogeneities, the crack front
distorts both in-plane and out-of-plane. The approach pro-
posed here neglects out-of-plane roughness. It only consid-
ers the first-order in-plane perturbations of the crack front
from the reference situation in panel (a) with a straight crack
growing at constant speed v0 due to overall loading K0(v0).
The in-plane projection of crack front is parametrized by
F (z, t) = v0t+ f(z, t) where f(z, t) refers to the in-plane per-
turbations. L is the system size.

kinetic) energy released from the specimen as crack prop-
agates over a unit length; Γ is the energy dissipated to
expose a new unit area of fracture surface. LEFM consid-
ers Γ a material constant. The difficulty is to determine
G(t). To do so, one considers [41, 42] a region R around
the crack tip. This region moves at v0 with the crack tip.
G writes:
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G =
1

v0

d

dt

∫
R

(
1

2
ρu̇2i +

1

2
σij

∂ui
∂xj

)
dA, (2)

where ρ is the material density, ui are the components
of the displacement fields, and u̇i is the time derivative
of ui. The summation convention are used for repeated
indices. The first and second terms in the integral are the
density of kinetic and strain energy, respectively. Invok-
ing Reynolds transport theorem to invert time derivative
and spatial integration, then using the equation of mo-
mentum conservation ρüi = ∂jσij and finally applying
the divergence theorem, permit to recast Eq. 2 into:

G =
1

v0

∮
∂R

u̇iσijnj +
1

2
(ρu̇2i + σij

∂ui
∂xj

)v0nxds (3)

where ∂R is the contour of the region R and ni are the
components of the outward normal to the contour. Since
we are interested in the mechanical energy flowing into
the crack tip, we can make R and ∂R go to zero. Then,
stress field can be replaced by its asymptotic form (Eq.
1). Invoking Hooke’s laws for a linear elastic isotropic
material, the asymptotic form for the displacement field
can also be deduced. It turns out that the contour in-
tegral in Eq. 3 becomes path independent. By choosing
the path wisely, it can be shown that:

G =
1− ν2

E
A(v0)K2(t), (4)

where:

A(v0) =
v20αD(v0)

(1− ν2)c2SR(v0)
, (5a)

αD(v0) =

√
1− v20

c2D
, (5b)

αS(v0) =

√
1− v20

c2S
, (5c)

R(v0) = 4αD(v0)αS(v0)− (1 + αS(v0)2)2, (5d)

and cD is the dilatational wave speed and cS is the shear
wave speed. Finally the equation of motion is obtained
by equating G and Γ, which yields:

1− ν2

E
A(v0)K2(t) = Γ (6)

This equation gives way to a prediction of the crack speed
from the knowledge of the dynamic stress intensity factor
and the fracture energy.

B. From front distortions to perturbations in
dynamic stress intensity factor

Equation 6 describes the propagation of dynamic
cracks in a homogeneous solid. As in [30, 32], the ef-
fects of microstructural inhomogeneities are now taken
into account by considering a spatially distributed frac-
ture energy:

Γ(x, y, z) = Γ0(1 + γ(x, y, z)) (7)

Hence, the crack front is no longer straight. Rather, it
exhibits in-plane and out-of-plane distortions [Fig. 1(b)].
These distortions, in turn, induce variations on the local
loading applying along the front. Willis and Movchan
[28, 29] determined the resulting local variations in terms
of stress intensity factors providing several assumptions:

Hyp. 1 The reference situation is that of a straight front
propagating at a constant speed v0, and the corre-
sponding dynamic stress intensity factor is referred
to as K0(v0).

Hyp. 2 In-plane and out-of-plane distortions are small
enough such that a first order perturbation anal-
ysis is sufficient to relate the local perturbations of
stress intensity factor to the front distortions. Note
that second order analysis are now available [44].

As in [30, 32], we make two additional assumptions:

Hyp. 3 The out-of-plane distortions are neglected, and the
front is assumed to remain within the plane y = 0.
This assumption is justified for quasi-static crack
growth since the full three-dimensional description
leads to logarithmic out-of-plane roughness [12, 45].
However, it should be emphasized that out-of-plane
roughness may be rougher in the case of dynamic
fracture [30, 38].

Hyp. 4 The terms brought by the non-singular stresses
near crack tip in the reference situation (T -stress) is
neglected. This assumption remains valid as long
as T ≤ 0 (stable in-plane perturbation) and dis-
tortion wavelengths are small with respect to the
system size and characteristic distances defined by
the loading applied [46].

In the following, crack front position at time t is de-
fined by the function F (z, t) [Fig. 1(b)]. It splits into a
global part propagating at v0 and a distorted part f(z, t)
: F (z, t) = v0t + f(z, t). Within the hypotheses above,
to first order in f , the perturbed stress intensity factor
at position z writes [28]:

K(z, t|v0) = K0(v0) (1 +Q(z, t|v0) ~ f(z, t)) , (8)

The operator ~ denotes time and space convolution. The
function Q(z, t|v0) is provided in [28] (Eq. 9.14). At this
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stage, its expression is quite complicated and does not
allow for an easy computation.

Introducing Eqs. 7 and 8 in Eq. 6 leads to:

1− ν2

E
A

(
v0 +

∂f

∂t

)
K2

0 × (1 +Q~ f)2 = Γ0(1 + γ) (9)

By expanding this equation to first order, and subse-
quently making

(
(1− ν2)/E

)
A(v0)K2

0 = Γ0 in the ob-
tained equation, we get:

A′(v0)

A(v0)

∂f

∂t
+ 2Q~ f = γ(z, x = v0t+ f(z, t)), (10)

where A′(v) is the derivative of A(v) with respect to
v. This equation provides the equation of motion of
the crack line in an inhomogeneous landscape of frac-
ture energy. In the following, we make explicit the time
dependency of the right-hand term and define γ̃(z, t) =
γ(z, x = v0t+ f(z, t)). Hence, equation 10 becomes:

A′(v0)

A(v0)

∂f

∂t
+ 2Q~ f = γ̃(z, t). (11)

C. On the elastodynamic crack kernel: Dispersive
relation of crack front waves

The difficulty at this point is to express the left-
hand part of Eq. 11. As a matter of fact, it
conveniently cast in Fourier space {k, ω}, such that

f̂(k, ω) =
∫∞
−∞

∫∞
−∞ f(z, t) exp(−ikz − iωt)dzdt. Equa-

tion 11 writes:

− P̂ (k, ω|v0)f̂(k, ω) = γ̂(k, ω) (12a)

with − P̂ (k, ω|v0) = 2Q̂(k, ω|v0)− iωA
′(v0)

A(v0)
(12b)

Here, γ̂(k, ω) is the Fourier transform of γ̃(z, t) and the

kernel P̂ (k, ω|v0) writes [47]:

P̂ (k, ω|v0) = |k|p
(
u = (ω/k)2|v0

)
with

p(u|v0) =
2cR

c2R − v20

√
c2R − (v20 + u)

− cD
c2D − v20

√
c2D − (v20 + u)

− 1

π

∫ c2D

c2S

[
arctan

(
4

√
1− η/c2D

√
η/c2S − 1

(2− η/c2S)
2

)

×
2v20η −

(
v20 + u

) (
η + v20

)√
η (η − v20 − u) (η − v20)

2

]
dη

(13)

FIG. 2. Speed of the crack front waves, cFW , along the front
as a function of reference crack speed v0. Vertical dashed
line shows Rayleigh wave speed, cR, which sets the maximum
speed v0 for a mode I crack. All speeds are expressed in cS
units. Poisson ratio is set to ν = 0.35, so that cD = 2.082cS
and cR = 0.935cS .

Interestingly, for all values v0, there exists a positive
finite value cFW (v0) = ω/k at which p(c2FW |v0) = 0.
Moreover, dω/dk|ω=cFW k = 0. This is the signature
of non-dispersive waves, referred to as crack front waves
(FW); any perturbation f(z, t0) initiated at time t0 sub-
sequently propagates along z, both upward and down-
ward and without distortions, at the speed cFW . The
variations of cFW with v0 are plotted in Fig. 2. It starts
at a value slightly below cR for v0 = 0, then decreases
with v0 and vanishes as v0 = cR. This speed is the FW
speed measured along z, in the frame fixed on the crack
line moving at v0.

D. Numerical implementation

We now turn to the numerical implementation of the
problem. The goal is to solve Eq. 11 once a landscape for
fracture energy is prescribed. This will reveal the spatio-
temporal dynamics of front distortions f(z, t), and sub-
sequently that of the real front F (z, t). Unfortunately,
the expression of Q(z, t) is too complex to be handled
numerically. Working in the Fourier space in both time
and space yields a tractable expression for Q̂(k, ω) (Eq.
13). However, it is difficult to address the quenched dis-
order term γ(z, x = v0t+f(z, t)) in the equation of prop-
agation.

Hence, as in [32, 47], we choose to work in real space
for t and in Fourier space for z. This formulation of the
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equation of propagation gives:

− P̂ (k, t|v0) ~ f̂(k, t) = γ̂(k, t), with : (14a)

{−P̂ ~ f̂}(k, t) = 2{Q̂~ f̂}(k, t) +
A′(v0)

A(v0)

df̂

dt
(14b)

Here, cR refers to the Rayleigh wave speed. The right-
hand term of Eq. 14a, γ̂(k, t), is the z Fourier transform
of γ̃(z, t) After some manipulations available in [32], this
equation becomes:

df̂

dt
=− k2

Cv(v0)

∫ t

−∞
B̂(k(t− t′)|v0)f̂(k, t′)dt′

+
γ̂(k, t)

Cv(v0)

(15)

where Cv(v) is:

Cv(v0) =
cD

c2D − v20
− 2cR
c2R − v20

+

∫ cD

cS

Θ(η)

(
η2 + v20

)
(η2 − v20)

2 dη

(16)

and B̂ is :

B̂(u|v0) = cD
J1(αDcDu)

αDcDu
− 2cR

J1(αRcRu)

αRcRu

+
1

2

∫ cD

cS

Θ(η)

[(
η2 + v20

)
(η2 − v20)

J2(αηηu)− J0(αηηu)

]
dη

(17)

where Jν(u) are the Bessel functions of the first kind.
The function Θ involved in Eqs. 16 and 17 is:

Θ(u) =
2

π
arctan

(
4

√
1− u2/c2D

√
u2/c2S − 1

(2− u2/c2S)2

)
(18)

Figure 3(a) shows −1/Cv as a function of v0 (−1/Cv
rather than Cv is plotted since −1/Cv has the dimension
of speed). −1/Cv starts at a value slightly smaller than
cR at v0 = 0, then decreases with v0 and vanishes as
v0 → cR. This means that faster cracks are less sensitive
to inhomogeneities in the fracture energy. A typical curve
B̂ vs u is shown in Fig. 3(b). B̂ has also the dimension
of speed; it is an oscillating function, the amplitude of
which decreases with u as 1/u3/2 in the asymptotic limit
[Inset in Fig. 3(b)].

In the following, the crack line f(z, t) is discretized
along z, f(z, t) = fz(t) with z = 0, 1, 2..., L−1 where L =
1024 is the system size. Periodic boundary conditions are

invoked along z, so that f̂(k, t) = f̂k(t) can be obtained

FIG. 3. Evolution of the two functions involved in the prop-
agation Eq. 15. (a) −1/Cv as a function of v0. −1/Cv rather
than Cv has been plotted since −1/Cv is homogeneous at a
speed. Both −1/Cv and v0 are expressed in cS unit. Dash
vertical line shows Rayleigh wave speed, cR. (b) main panel:

B̂(u|v0) vs u = kt at v0 = 0.8cS . (b) inset: same curve in
logarithmic scales. Red (straight) line shows a power-law de-
crease with exponent−3/2. All speeds are expressed in cS
units. Poisson ratio is set to ν = 0.35, so that cD = 2.082cS
and cR = 0.935cS .

from f(z, t) via discrete Fourier transform. Similarly, the
x axis is discretized (x = 0, 1, 2, ..., N − 1) and a discrete
map γz,x = γ(z, x) is prescribed. At time t = 0, the front
is flat, fz(t = 0) = 0, and a Euler scheme is used to solve
Eq. 15 and determine the subsequent time evolution of
fz(t). The different steps involved to move from step ti
to ti+1 = ti + δt are:

1. Linear interpolation of the map γz,x to get the value
at each point (x = v0ti + fz(ti), z). This provides
γ̃z(ti) = γ̃(z, ti).

2. Discrete Fourier transform of γ̃z(ti). This provides
γ̂k(ti) = γ̂(k, ti), which is the second right-hand
term in Eq. 15.
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3. Obtaining the second derivative of fz(tn) with re-
spect to z at times tn ≤ ti: f

′′
z (tn) = fz+1(tn) +

fz−1(tn) − 2fz(tn). Then Discrete Fourier trans-
form of f ′′z (tn) along z.

4. Computation of
∑nmax

n=0 B̂k(tn)f̂ ′′k(ti−n), where

B̂k(t) = B̂(u = kt|v0) is obtained using Eq. 17.
This provides the first right-hand integral term in
Eq. 15. Here, the kernel B̂k(tn) was computed prior
to applying the Euler scheme and tnmax was chosen
so that |B̂(kt)/B̂(0)| < 0.01 for all k and t ≥ tnmax

.

5. Summing the results of steps 2 and 4 to get df̂k/dt

at time ti, and subsequently f̂k(ti+1).

6. Inverse Fourier transform of f̂k(ti+1) to get
fz(ti+1).

The time increment δt was chosen so that there is at least
10 points in the smallest period from the Bessel functions
involved in B̂(u|v0) (Eq. 17): δt = 2.4/10πcD αD.

In the following, space variables are expressed in pixel
size unit “1”, speeds are expressed in cS units, and times
are expressed in 1/cS units. The dilatational wave speed
is set to cD = 2.0817cS , leading to a Poisson ratio ν =
0.35. Hence, a Rayleigh wave speed cR = 0.935cS is
obtained. Moreover, we will use the notation f(z, t) or
v(z, t) rather than fz(t) or dfz/dt to present and discuss
the simulation results.

III. NUMERICAL RESULTS: DYNAMIC
CRACK GROWTH ALONG SINUSOIDAL

STRIPS

Let us consider the situation depicted in Fig 4(a), with
a toughness landscape given by

γ(z, x) = γ0 sin

(
2πz

λz

)
, (19a)

i.e. γ̃(z, t) = γ0 sin

(
2πz

λz

)
H(t) (19b)

Figure 4(b) displays the local velocity fluctuation v(z, t)
of the crack front, and Fig. 4(c) shows the distortion of
the crack front f(z, t). These images reveal a checker-
board structure reminiscent of standing waves. This
structure results from the interference between the FW
propagating upwards and downwards. The form pre-
scribed for γ(z, t) in Eq. 19a and the dispersive relation
given by the zeros of p(c|v0) in Eq. 13 make it relevant
to postulate sine waves for the FW:

A±FW (z, t) =
A(t)

2
sin

(
2π

λz
(z ± c(t)t)

)
(20)

where A(t) captures the amplitude variation due to the
elastodynamic kernel. Note that in Eq. 20, the FW speed

FIG. 4. (a) Toughness map patterned by parallel bands ac-
cording to Eq. 19 with γ0 = 0.1, N = 1024 and λz = 128. (b)
Space-time evolution of the local velocity v(z, t) for a crack
propagating in the toughness landscape shown in panel (a).
(c) Space-time evolution of the distorted part of the front,
f(z, t). Poisson ratio is set to ν = 0.35, so that cD = 2.082cS
and cR = 0.935cS . In both panels (b) and (c), v0 = 0.8cS .
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FIG. 5. Inset: v(z, t) vs. t in a typical simulation at three
distinct locations along the crack front: The green (solid oscil-
lating curve), blue (dash-dotted oscillating curve), and black
(dotted oscillating curve) correspond to z = 100 , z = 200,
and z = 400, respectively. Main panel: v(z, t)/ sin(2πz/λz)
vs. t at the same locations. Note the curve collapse, demon-
strating the variable separation proposed in Eq. 21 for z and
t. Red (plain non-oscillating) curve shows the amplitude A(t)
as obtained by interpolating between the positions and am-
plitudes of the successive optima. Here, v0 = 0.8cS , γ0 = 0.1,
N = 1024 and λz = 128. Poisson ratio is set to ν = 0.35, so
that cD = 2.082cS and cR = 0.935cS .

c(t) is also postulated to depend on t; as will be seen later,
it is only in the long-time limit that c(t)→ cFW .

Invoking this hypothesis, v(z, t) = A+
FW (z, t) +

A−FW (z, t). The velocity of the crack front becomes:

v(z, t) = A(t) sin

(
2πz

λz

)
cos

(
2π

λz
c(t)t

)
(21)

In all our simulations, v(z, t) was found to obey this spe-
cific form, irrespective of v0, γ0, λz and N [Fig. 5].

Let us first consider the function A(t) involved in
Eq. 21. For each simulation, the waveform am-
plitude A(t) was obtained by interpolating the suc-
cessive optima (maxima and minima) of the curve
v(z, t)/ sin(2πz/λz) vs. t. Fgure 6 inset displays the evo-
lution of A(t) with respect to t for fixed v0 and various
set of {γ0, N, λz} parameters. The linearity of Eq. 15
with f imposes A(t) to be proportional to γ0. Moreover,
all curves collapse onto a master curve when time is di-
vided by λz. As a result, we hypothesize the following
form for A(t|v0, γ0, N, λz):

A(t|v0, γ0, N, λz) = γ0A
∗ (u = t/λz| v0) (22)

where, for all v0, A∗(u) exhibits a rapid decrease at small
u, and subsequently fluctuates around a plateau at large
u. The analytical analysis detailed in the sectionIV char-
acterizes these two regimes.

FIG. 6. Inset: Time evolution of the amplitude, A(t) for
v0 = 0.8cS and different sets of parameters {γ0, N, λz}, the
value of which are specified in the legend on the right-hand
side of the main panel. Main panel: Collapse using the scaling
form proposed in Eq. 22. Poisson ratio is set to ν = 0.35, so
that cD = 2.082cS and cR = 0.935cS .

Now, let us turn to the form of the FW speed c(t) in
Eq. 21. To determine the time profile of c(t), we used
the following procedure. First, we determined the time
positions, topt(n), of the nth successive optima (maxima
and minima) v(z, t)/ sin(2πz/λz) vs t [Fig. 5]. Second,
we plotted L(n) = nλz/2 as a function of topt(n) [Fig.
7(a), inset]. Finally, we differentiated the so-obtained
curve to get c(t). A typical time profile is plotted in Fig.
7(a), main panel. The collapse observed in Fig. 7(b)
suggests the following form of c(t|v0, γ0, N, λz):

c(t|v0, γ0, N, λz) = c∗(u = t/λz|v0). (23)

IV. ANALYTICAL RESULTS

We now turn to the analytical examination of the equa-
tion of motion, in order to discuss the short and long time
limits of the front space-time dynamics and the selection
of FW speed and amplitude.

A. Short-time limit

First, let us examine the short-time limit. To the first
order in time, the Bessel functions involved in the defi-
nition of B̂(u = kt) (Eq. 17) writes: J0(u) = 1 + O(u2),
J1(u) = u/2 +O(u2) and J2(u) = O(u2). As a result, to
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FIG. 7. FW speed c(t) as measured from the simulations.
(a), inset: L = nλz/2 as a function of the time posi-
tion t of the nth optima (maxima or minima) of the curve
v(z, t)/ sin(2πz/λz) vs. t [Fig. 5].(a), main panel: The dis-
crete differentiation of this Lvs. t curve provides the tempo-
ral evolution of c(t). In this panel, γ0 = 0.1, N = 1024,
λz = 128 and v0 = 0.8cS . (b) Collapsed curve c vs. t/λz ob-
tained in simulations performed at v0 = 0.8cS and different
set of parameters {γ0, N, λz}, the value of which are specified
in the legend on the right-hand side. In both panels (a) and
(b), red horizontal line indicates the theoretical value cFW

so that p(c2FW |v0) = 0, where p(u|v0) is provided in Eq. 13.
All speeds are expressed in cS units. Poisson ratio is set to
ν = 0.35, so that cD = 2.082cS and cR = 0.935cS .

second order in time, Eq. 15 becomes:

df̂

dt
= −k

2B0(v0)

Cv(v0)

∫ t

−∞
f̂(k, t′)dt′ +

γ̂(k, t)

Cv(v0)
+O(t3)

(24a)

with B0(v0) =
1

2
cD − cR −

1

2

∫ cD

cS

θ(η)dη (24b)

By differentiating this equation with respect to time and
returning to (z,t) space, we get:

FIG. 8. FW speed at initiation (solid line), c0FW = c(t →
0), as a function of crack speed, v0. Dashed line recalls the
variations of cFW with v0 [Fig. 2]. Dash-dotted vertical line
shows Rayleigh wave speed, cR. All speeds are expressed in cS
units. Poisson ratio is set to ν = 0.35, so that cD = 2.082cS
and cR = 0.935cS .

∂2f

∂t2
− B0(v0)

Cv(v0)

∂2f

∂z2
=
γ̃(z, t)

Cv(v0)
+O(t2) (25)

This partial differential equation is a wave equation of
wave speed c0 =

√
Cv(v0)/B0(v0). This speed is the FW

speed at initiation:

c(t→ 0) = c0FW =

√
Cv(v0)

B0(v0)
(26)

Its variations with v0 are plotted in Fig. 8. c0FW (v0) is
about twice smaller than cFW (v0) and, as cFW , vanishes
as v0 → cR.

Note finally that B̂(u) can be expressed as a power
series up to any order. By introducing this expres-
sion in Eq. 15 and subsequently seeking series solutions
f(k, t) =

∑
m fm(k)tm of the obtained equation, it is

possible to solve analytical Eq. 15 up to any order. The
whole procedure is detailed in appendix A.

B. Long time limit

To determine the long-time limit solution, we looked
again at the equation of motion in the Fourier space
(k, ω). Making γ̂(k, ω) = γ̂(k)(πδ(ω) − i/ω) (where
πδ(ω) − i/ω is the Fourier transform of H(t) in Eq. 19)

and f̂(k, ω) = v̂(k, ω)/iω in Eq. 12 yields in (k, t) space :

v̂(k, t) = − γ̂(k)

2π|k|

∫ ∞
−∞

1

p (u = (ω/k)2)
exp(iωt)dω

(27)
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FIG. 9. Main panel: Comparison between v(z, t) as obtained
by simulations (black circles) and v∞(z, t) as predicted ana-
lytically by Eq. 30 in the long-time limit regime (red line).
Inset: zoom on a smaller time scale to emphasize the overlap.
Here, v0 = 0.8, L = 1024, γ0 = 0.1 and λz = 0.1. Poisson
ratio is set to ν = 0.35, so that cD = 2.082 and cR = 0.935.
All speeds are expressed in cS unit.

The exact computation of the integral is difficult. How-
ever, the integrand has two poles: ω+ = cFW k and
ω− = −cFW k, which corresponds to the FW solutions
that emerge as t → ∞ (Fig. 7). Hence, we propose to
simplify the integrand and approximate p(u = (ω/k)2)
by its first order expansion around u = c2FW :

p∞
(
u = (ω/k)2

)
= p′(c2FW )

(
ω2

k2
− c2FW

)
(28)

Then, Eq. 27 becomes:

v̂∞(k, t) = − γ̂(k)|k|
2πp′(c2FW )

∫ ∞
−∞

exp(iωt)

(ω2 − c2FW k2)
dω (29)

The integral evaluation is detailed in Appendix B. It
gives:

v∞(z, t) =
γ0

cFW p′(c2FW )
sin

(
2πz

λz

)
sin

(
2πcFW t

λz

)
(30)

As shown in Fig. 9, this solution superposes almost ex-
actly the numerical solution in the long time limit, as
soon as t � λz/cFW . This justifies a posteriori the ap-
proximation proposed in Eq. 28.

The long-time limit value of normalized amplitude A∗

[Eq. 22] can then be deduced:

A∗(t� λz
cFW

) = A∗∞ =
1

cFW |p′(c2FW )|
(31)

FIG. 10. Full line: FW normalized amplitude A∗∞ =
A(t/λz >> 1)/γ0 as a function of crack speed, v0. Dash line
recalls the variations of A∗(t = 0 = −1/Cv(v0)) with v0 [Fig.
3(a)].Here, c0FW , cFW and v0 are normalized by cS . Poisson
ratio is set to ν = 0.35, so that cD = 2.082 and cR = 0.935.
All speeds are expressed in cS unit

Its variations with v0 are plotted in Fig. 10. Its value is
about twice smaller than the FW amplitude at initiation,
A∗0 = 1/|Cv(v0)|. As A∗0, A∗∞ vanishes as v0 → cR.

To interpret this long time behavior, it is of interest to
replace p(u) by its approximation p∞ in Eq. 13 and ex-
press the resulting equation of motion back in the direct
(z, t) space. It gives:

1

c2FW

∂2f∞
∂t2

− ∂2f∞
∂z2

= S(z, t), (32)

where S(z, t) is a function of γ(z, t):

S(z, t) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

|k| γ̂(k, ω)

c2FW p′(c2FW )
e(iωt+ikz)dkdω

(33)
In other words, the long-time limit solution f∞(z, t) is
the solution a simple 1D wave equation (Eq. 32) with a
source term given by Eq. 33.

C. Approximate solution over whole time range

Let us now use the analytical results obtained in sec-
tions IV.A and IV.B to interpret the time profiles of the
FW speed c and the amplitude A entering into Eq. 21.
Figure 11(a) shows the curves c vs. t/λz obtained at var-
ious fracture speeds v0. All curves can be superimposed
by making c→ (c−c0FW )/(cFW−c0FW ) and t→ cFW t/λz
[Fig. 11(b)] and the resulting curve is well approximated
by:
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FIG. 11. (a) (a) FW speed, c(t), as a function of t/λz at
different v0. Both c(t) and v0 are expressed in cS units. (b)
Curve collapse obtained using Eq. 34. The different data
point symbols correspond to different values v0 as specified in
the legend on the right-hand side of both panels (a) and (b).
Red solid line in panel (b) is a fit gc(u) = (au)2/(1 + (au)2)
with a fitted parameter a = 2.78 ± 0.05 (± indicates a 95%
confident interval). Poisson ratio is set to ν = 0.35, so that
cD = 2.082cS and cR = 0.935cS .

c− c0FW
cFW − c0FW

= gc

(
u =

cFW t

λz

)
,

with gc(u) ≈ (au)2

1 + (au)2
,

(34)

where a is a fitting parameter: a ≈ 2.8.
Figure 12(a) shows the curves A∗ vs. t/λz obtained

at various fracture speed v0. All curves can be super-
imposed by making A∗ → (A∗ − A∗∞)/(A∗0 − A∗∞) and
t→ cFW t/λz [Fig. 12(b)]. Thus:

A∗ −A∗∞
A∗0 −A∗∞

= gA

(
u =

cFW t

λz

)
. (35)

FIG. 12. (a) normalized FW amplitude, A∗(t), as a function
of t/λz at different v0. Both A∗(t) and v0 are expressed in cS
units (b) Curve collapse obtained using Eq. 35. The different
data point symbols correspond to different values v0 as spec-
ified in the legend on the right-hand side of both panels (a)
and (b). Poisson ratio is set to ν = 0.35, so that cD = 2.082cS
and cR = 0.935cS .

In summary, the space-time evolution of speed fluctua-
tions for a crack propagating in a periodically patterned
toughness map given by Eq. 19 is given by:

v(z, t) =− γ0A∗(u) sin

(
2πz

λz

)
sin

(
2π

λz
c(u)t+

π

2

)
,

(36a)

with u =
cFW t

λz
, (36b)

c(u|v0) = c0FW + (cFW − c0FW )gc(u), (36c)

A∗(u) = A∗∞ + (A∗0 −A∗∞)gA(u), (36d)

Where the generic dimensionless functions gA(u) and
gc(u) are respectively plotted in Figs. 11(b) and 12(b).
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The parameters c0FW (Eq. 26), cFW (pole of p(u) in Eq.
13), A∗0 = 1/|Cv(v0)| and A∗∞ [Eq. 31] are all functions of
v0. The evolutions are plotted in Figs. 8 and 10, respec-
tively. Note that the cosine term cos(2πct/λz) in Eq. 21
has been replaced by sin(2πct/λz +π/2) to be consistent
with the long-time limit [Eq. 30].

V. DYNAMIC CRACK GROWTH PERTURBED
BY A SINGLE STRIP

In Secs III and IV, we examined crack propagation
along a periodically patterned toughness map. The anal-
ysis can be extended to any map as long as it remains
invariant upon translation along x: γ(x, z) = γ(z). In
particular, calling γ̂(k) the z-Fourier transform of γ(z),
local front speed distortions can be written in (k, t) space
as:

v̂(k, t) = −sgn(k)γ̂(k)A∗(u) sin
(
c(u)kt+

π

2

)
for k 6= 0,

v̂(0, t) = γ̂(0)/Cv for k = 0

(37)

In this expression, u = cFW kt. Note, the case k = 0 in
Eq. 37 is now explicitly considered. This term was not
considered since sinusoidal toughness landscapes were ex-
amined till now (γ̂(k = 0) = 0 in this case). However, in
the general case, γ(k = 0) 6= 0 and, hence, v(k = 0, t) is
to be considered. Its expression in Eq. 37 was obtained
by making k = 0 in Eq. 15.

In the general case, the inverse Fourier transform of
Eq. 37 does not yield a simple expression for v(z, t).
This is due to the variations of c and A∗ with u. On the
other hand in the long-time limit regime, an expression
is feasible. Indeed, v̂∞(k, t) writes:

v̂∞(k, t) = A∗∞H(k, t)γ̂(k)−A∗0γ̂(0)δ(k),

with H(k, t) = −sgn(k) sin(cFW kt).
(38)

The inverse z-Fourier transform of H(k, t) is:

H(z, t) =
1

2π

(
1

z − cFW t
− 1

z + cFW t

)
. (39)

Then, long-time limit velocity fluctuations become:

v∞(z, t) = −A∗0 γ + F∞(z − cFW t)− F∞(z + cFW t),

with F∞(z) =
A∗∞
2π

∫ ∞
−∞

γ(z′)− γ
z − z′

dz′

(40)

where A∗0(v0), A∗∞(v0) and cFW (v0) are recalled to be
function of v0 only. Here, γ is the average of γ(z) over z.

Of particular interest is the situation with a single strip
localized at a position z0, of width ξz, amplitude γ0, and
dimensionless shape γ∗(z∗) defined so that:

γ(z)

γ0
= γ∗

(
z∗ =

z − z0
ξz

)
. (41)

Such toughness maps were constructed [Fig. 13(a)] and
the spatio-temporal evolution of the local speed was de-
termined using the numerical scheme described in Sec.
II.D [Fig. 13(b)]. Once moving front begins to inter-
act with this strip, two localized disturbances form in
v(z, t = 0). In the long-time limit, these two disturbances
are of opposite signs (see minus sign in between the two
right-hand terms of first Eq. 40) and propagate upwards
and downwards along the front, with the FW speed cFW .
In the long-time limit (i.e. for t � ξz/cFW ), the profile
of velocity fluctuations as determined numerically is in
very good agreement with Eq. 40 [Fig. 13(c)].

By injecting Eq. 41 into Eq. 40, it is possible to express
the long-time limit pulse shape, F∞(z), in a dimension-
less form:

F∞(z)

A∗(v0)γ0
= F ∗∞γ∗

(
z∗ =

z − z0
ξz

)
. (42)

This form is generic, independent of strip amplitude,
width and position; it is selected by the strip shape only:

F ∗∞γ∗(z∗) =
1

2π

∫ ∞
−∞

γ∗(z∗′)− γ∗
z∗ − z∗′

dz∗′ (43)

Figure 14 test this prediction against numerical simula-
tions performed at two v0, different parameters γ0 and
ξz, and two different strip shapes γ∗(z∗): Mexican hat
shape (γ∗(z∗) = (1 − z∗2) exp(−z∗2/2)) and Hanning
shape (γ∗(z∗) = cos(πz∗/2) for |z∗| < 1/2, γ∗(z∗) = 0 for
|z∗| ≥ 1/2). The scaling proposed in Eq. 42 is fulfilled
very well, and the analytical predictions given in Eq. 43
are also fullfilled.

VI. CONCLUDING DISCUSSION

We have examined numerically and analytically the
propagation of a dynamic crack along a 2D plane made of
unidimensional strips with periodically modulated tough-
ness. The space-time structure of local speed fluctuations
was found to exhibit the check-board structure charac-
teristic of standing FW. An analytical solution was ob-
tained in the long-time limit, and an asymptotic expan-
sion up to any order was obtained for the initial transient
regime. These solutions were finally shown to extend to
any toughness landscape provided it remains invariant
along the mean direction of crack propagation.

Several important features emerge from this analysis.
First, there is a clear initial regime where both FW am-
plitude and speed are different from what they are in the
long-time limit regime. The typical duration of this tran-
sient is set by the ratio between the toughness in-plane
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FIG. 13. (a) Toughness map with a localized strip of Mexi-
can hat shape (inset): γ∗(z∗) = (1 − z∗2) exp(−z∗/2). Strip
amplitude and size are γ0 = 0.1 and ξz = 32. Map size
is L = 1024. (b) Space-time evolution of the local velocity
v(z, t) for a crack propagating in the landscape shown in panel
(a). Black vertical line indicates time tc = 1700 when profile
v(z, tc) is recorded. (c) Variation of local velocity v(z, tc) as a
function of z at time tc. Black dots show v(z, tc) as obtained
from the numerical simulation, while red solid line is the so-
lution provided by Eq. 40. In panels (b) and (c) v0 = 0.8cS .
Poisson ratio is set to ν = 0.35 so that cD = 2.0832cS and
cR = 0.935cS .

FIG. 14. Generic shape for the FW pulse generated when
a dynamic crack propagates at v0 along a toughness with
a single strip of Mexican hat profile (γ∗(z∗) = (1 −
z∗2) exp(−z∗2/2)) or Hanning profile (γ∗(z∗) = cos(πz∗/2)
for |z∗| < 1/2, γ∗(z∗) = 0 for |z∗| ≥ 1/2) and different pa-
rameters γ0 and ξz. The different data point symbols corre-
spond to the velocity profiles along z at tc = 1700 obtained
in the simulations achieved with the parameters provided in
the legend, once rescaled via Eq. 42. Red solid line and red
dashed line are the analytical predictions provided by Eq. 43
for the Mexican-hat strip shape and the Hanning strip shape,
respectively.

length-scale (sinusoidal wavelength or strip width), and
the FW speed. FW amplitude starts at a value about two
times larger than long-time limit value, then decreases
and saturates to this long-time limit value. It is of in-
terest to note that both the short-time and long-time
limit regimes obey a simple d’Alembert 1D wave equa-
tion with different wave speeds and source functions; this
may enable cost-effective numerical simulations of both
regimes in more complex situations. This is consistent
with what is observed in numerical simulations of dy-
namically growing crack interacting with a single local-
ized asperity [32, 33]. This FW speed also evolves in the
transient regime: it starts at a value about two times
less than the long-time limit value. Then increases to
reach the long-time limit value. This may explain why
the FW speed measured in simulations (single asperity
configuration) [33] are slightly (but noticeably) smaller
than the value predicted theoretically, from the zero of
the elastodynamic kernel P (k, ω) (Eq. 13). Finally, it
is interesting to note that FW pulses emitted as a dy-
namic front interacts with a single strip takes a generic
dimensionless scaling form (Eq. 42).

Obtaining simple exact analytical results was made
possible here since the examined configuration is sim-
ple: 2D planar crack with toughness landscape invariant
along crack growth direction. However, most situations
of experimental and engineering interests consider cracks
interacting with one or several localized inclusions (e.g.
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placed to reinforce material [48]). It is therefore of inter-
est to extend the analysis derived here to this situation.
The problem of how a crack front roughens as it moves
through a spatially-distributed toughness landscape has
also been widely considered within the elastostatic limit
[11, 12, 49] and our analysis may be used to incorporate
the elastodynamics effects to these approaches. Works
in these directions are currently in progress. Let us fi-
nally mention that, beyond Eq. 8, there exists solutions
[29, 40, 44] providing the relations between the local vari-
ation of all modes of stress intensity factors and both
in-plane and out-of-plane front distortions. Hence, it
may be possible to extend this work to shear fracture
and/or full 3D problem, with predictions on the out-of-
plane roughness in which experiments have sought so far
signatures of FW [34, 50]. Work in this direction is also
in progress.

Appendix A: Series solution up to any order m

First, let us examine the short time limit. The idea to
solve Eq. 15 is to write B̂(u = kt|v0) as a power series

and seek solutions f̂(k, t) of the form:

f̂(k, t) =
∞∑
m=1

fm(k) tm (A1)

Note that the zeroth order term f0 = 0; since f(t =
0) = 0 is prescribed as an initial condition. The Bessel
function of the first kind Jν(u) writes:

Jν(u) =
(u

2

)ν ∞∑
m=0

(−1/4)m

m!(ν +m)!
u2m (A2)

By replacing J0(u), J1(u) and J2(u) by the above series
in Eq. 17, we get:

B̂(u|v0) =
∞∑
m=0

Bm(v0)u2m with :

Bm(v0) =
(−1/4)m

m! (m+ 1)!

(
1

2
cD(αDcD)2m − cR(αRcR)2m

−1

2

∫ cD

cS

Θ(η)

[
η2 + v20
η2 − v20

m+ (m+ 1)

]
(αηη)2m dη

)
(A3)

As shown in Fig. 15(a), this series expansion approxi-

mates B̂(u|v0) very well at short times.
Introducing this series expansion and Eq. A1 in Eq.

15 yields:

Cv(v0)
∞∑
m=0

(m+ 1) fm+1 t
m

+k2
∫ t

0

∞∑
m=0

Bm(k(t− t′))2m
∞∑
n=0

fn(k)t′ndt′ = γ̂(k)

(A4)

FIG. 15. (a) Comparison between B̂(u|v0) as computed di-
rectly using Eq. 17 (black points), and as approximated using
the series expansion given by Eq. A3. The various colored
lines correspond to increasing truncations mmax: mmax = 2,
mmax = 5, mmax = 10, mmax = 20 and mmax = 50. Here,
v0 = 0.8 and the black point curve (numerical B̂(u|v0)) is the
same as that represented in Fig. 3(b), zoomed on shorter u.
(b) Comparison between v(z, t)/ sin(2πz/λz) as obtained by
simulations (black points), and as obtained analytically using
the series expansion given in Eq. A8 at increasing order 2m.
Here, v0 = 0.8cS , γ0 = 0.1, N = 1024 and λz = 128; the
black point curve (numerical v(z, t)/ sin(2πz/λz)) is the same
as that represented in Fig. 5, zoomed on shorter t.

.

After reversing integral and the sum in the second left-
hand term, one gets:

Cv(v0)f1 +
∞∑
m=1

Cv(v0)(m+ 1)fm+1t
m

+k2
∞∑
m=1

(
m∑
n=1

Bm−nf2n−1gm−n,2n−1

)
t2m

+k2
∞∑
m=0

(
m∑
n=0

Bm−nf2ngm−n,2n

)
t2m+1 = γ̂(k).

(A5)
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where gm,n is defined by:

g(m,n) =
m∑
p=0

(
m
p

) (−1)p

p+ n+ 1
(A6)

By balancing the successive coefficients in front of each
tm term, we determine the coefficients fm(k):

f0 = 0,

f1 = γ̂(k)/Cv(v0),

f2m = 0,

f2m+1 =
−k2

Cv(v0)(2m+ 1)

×
m−1∑
n=0

Bm−1−nk
m−1−ng(m− 1− n, 2n+ 1)f2n+1.

(A7)

Differentiating Eq. A1 with respect to time yields:

v̂(k, t) =
γ̂(k)

Cv(v0)
+
∞∑
m=1

v2m(kt)2m with :

v2m =
−1

Cv(v0)

m−1∑
n=0

Bm−1−ng(m− n− 1, 2n+ 1)f2n+1

(A8)

Equation A8 provides a solution up to any order 2m.
Consider now the sinusoidal toughness given by Eq. 19,
its z-Fourier transform yields:

γ̂(k) = iπγ0

[
δ

(
k +

2π

λz

)
− δ

(
k − 2π

λz

)]
(A9)

By replacing γ̂(k) in Eq. A8 by its expression above, and
then by applying inverse z-Fourier transform, we get:

v(z, t) =
γ0

Cv(v0)
sin

(
2πz

λz

)
+
∞∑
m=1

v2m

(
2πt

λz

)2m

with :

v2m =
−1

Cv(v0)

m−1∑
n=0

Bm−1−ng(m− n− 1, 2n+ 1)f2n+1

(A10)

As shown in Fig. 15(b), this analytical solution coincides
perfectly with the numerical result at short times.

Appendix B: Evaluation of the integral involved in
the inverse Fourier transform for the long-time limit

solution

As explained in Sec. IV B, the long-time limit solution
v∞(k, t) for the velocity fluctuations is given by Eq. 29,
that is:

FIG. 16. Closed contour along which exp(izt)/(z2 − k2c2FW )
is integrated. (a) Contour γ+ used for the positive times; (b)
Contour γ− used for negative times.

v̂∞(k, t) = − γ̂(k)|k|
2π p′(c2FW )

∫ ∞
−∞

exp(iωt)

(ω2 − k2 c2FW )
dω (B1)

The integrand has two simple poles ω± = ±cFW k. The
associated residues are given by:

Res(ω±) = lim
ω→ω±

(ω − ω±) exp(iωt)

(ω2 − k2 c2FW )
(B2)

This yields Res(ω±) = ±e±icFW kt/(2cFW k). To com-
pute the integrand in B1, we use complex analysis and
the residue theorem (see e.g. [51], Sec. 15.3 for similar
analysis). Let us consider the integration of the function
exp(izt)/(z2 − k2c2FW ) along two closed contours in the
complex plane z: γ+ for t > 0 [Fig. 16(a)], and γ− for
t < 0 [Fig. 16(b)]. The second Jordan lemma tells us
that, for t ≥ 0 :

∫ ∞
−∞

exp(iωt)

(ω2 − k2 c2FW )
dω =

∫
γ+

exp(i z t)

(z2 − k2 c2FW )
dz, (B3)

and for t < 0:

∫ ∞
−∞

exp(iωt)

(ω2 − k2 c2FW )
dω =

∫
γ−

exp(i z t)

(z2 − k2 c2FW )
dz (B4)

Then, the application of the residue theorem yields:
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∫
γ+

exp(izt)dz

(z2 − k2c2FW )
= 2iπ (Res(ω+) +Res(ω−)) (B5)

and:

∫
γ−

exp(i z t)dz

(z2 − k2 c2FW )
= 0 (B6)

As a result, we get:

for t < 0, v̂∞(k, t) = 0

for t ≥ 0, v̂∞(k, t) =
sgn(k)γ̂(k)

cFW p′(c2FW )
sin(cFW kt)

(B7)

In the following, we only consider t ≥ 0. We use Eq. A9
to go back into the real (z, t) space:

v̂∞(z, t) =
iγ0

2cFW p′(c2FW )

∫ ∞
−∞

sgn(k) sin(cFW kt)×

[
δ

(
k +

2π

λz

)
− δ

(
k − 2π

λz

)]
exp(ikz)dk (B8)

Subsequently v∞(z, t) takes the form given by Eq. 30.
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