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Compared to isolated C3−
60 ions, characterized by a three-dimensional equipotential trough at the

bottom of the lowest adiabatic potential energy surface (APES), the Jahn-Teller (JT) effect in cubic
fullerides is additionally influenced by the interaction of JT distortions at C60 sites with vibrational
modes of the lattice. This leads to modification of JT stabilization energy and to the warping of
the trough at each fullerene site, as well as to the interaction of JT distortions at different sites.
Here we investigate these effects in three fcc fullerides with A=K,Rb,Cs and in Cs3C60 with bcc
(A15) structure. DFT calculations of orbital vibronic coupling constants at C60 sites and of phonon
spectra have been done for fully ordered lattices (1 C60/u.c.). Based on them the elastic response
function for local JT distortions has been evaluated and the lowest APES investigated. To this end
an expression for the latter in function of trough coordinates of all sites has been derived. The
results show that the JT stabilization energy slightly increases compared to an isolated C3−

60 and
a warping of the trough of few meV occurs. The interaction of JT distortions on nearest- and
next-nearest-neighbor fullerene sites is of similar order of magnitude. These effects arise first of all
due to the interaction of C60 sites with the displacements of neighbor alkali atoms and are more
pronounced in fcc fullerides than in the A15 compound. The results of this study support the picture
of weakly hindered independent rotations of JT deformations at C60 sites in cubic A3C60.

I. INTRODUCTION

Cubic akali-doped fullerides A3C60 (A = K, Rb, Cs)
have attracted much attention due to a large variety of
unusual electronic properties, such as the superconduc-
tivity in equilibrium [1–5] and in nonequilibrium [6, 7]
states and the metal-insulator transition controlled by
the carrier concentration n (number of electrons in the
LUMO band) [1, 8, 9], type of alkali atom A and applied
pressure [3–5, 10]. The electronic properties of these ma-
terials are strongly influenced by the Jahn-Teller (JT) ef-
fect on fullerene sites, notably the superconductivity, for
which it represents the main mechanism of Cooper pair-
ing. One should stress that A3C60 superconductors are
remarkable in several respects. They are high-Tc super-
conductors with a highest critical temperature (Tc = 38
K for A = Cs) among organic superconductors. Recently
a transient superconductivity with a critical temperature
exceeding many times its value at equilibrium was found
in K3C60 [6, 7, 11]. In addition these are the only su-
perconducting materials with JT mechanism of pairing
[comment]. Finally, the JT effect in these fullerides is dy-
namic due to a threefold orbital degeneracy of fullerene
sites C3−

60 imposed by their cubic site symmetry, which
persists also in metallic compounds [12, 13].
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The Jahn-Teller effect in fullerene ions was thoroughly
investigated during the last decades. With increased ac-
curacy of DFT methods and well resolved photoemission
bands, the value of Jahn-Teller stabilization energy in
an isolated anion C−60 was firmly established [14]. Re-
cently, by applying a novel exchange-correlation func-
tional, the theoretical reproduction of the magnitude of
vibronic coupling constants for active vibrational modes
nHg, n=1-8, became possible [15]. At the same time, the
Jahn-Teller effect on fullerene sites in fulleride materials
was not investigated yet.

Compared to isolated fullerene molecules, the JT effect
on C60 sites in fullerides is expected to be more com-
plex. Thus, although the strength of vibronic coupling
to intra fullerene vibrational modes is not expected to
be significantly modified compared to isolated molecules
(this is confirmed by the present calculations), the five-
fold degenerate active vibrational modes themselves split
into threefold and twofold degenerate modes each, Hg =
Tg + Eg due to the symmetry reduction from Ih to Th

group [16] when the fullerene is placed in a cubic crystal.
This effect gives a contribution to the warping of the two-
dimensional rotational trough of the adiabatic potential
of the corresponding T × h vibronic problem (actually
of a three-dimensional rotational trough in the case of
C3−

60 ). Second, the nearest environment of a C60 molecule
in a cubic crystal (nearest-neighbour alkali atoms and
fullerene molecules) provides additional JT active nuclear
modes which can modify the local Jahn-Teller effect on
sites. Finally, the active JT modes at neighbor fullerene
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FIG. 1. Crystal structures of A3C60. C60 molecules are
depicted by the green framework. (a). Fcc unit cell; alkali
atoms sitting in octahedral and tetrahedral interstitials are
shown by red and blue balls. (b). Bcc-like unit cell for A15
structure; Cs atoms are indicated by red balls.

sites interact with each other through common phonon
modes thus hindering or, eventually blocking the free ro-
tation of Jahn-Teller deformations on individual fullerene
sites. Despite the importance, the strength of these three
effects was never estimated in fullerides. On the other
hand the quantitative knowledge of these effects will al-
low to conclude on the character of JT effect on fullerene
sites in A3C60.

Despite intensive experimental research [17–19], it is
proved to be hardly conclusive on the details of intr-
asite vibronic interactions due to the superposition of
additional effects influencing the spectroscopic bands in
fullerides. On the contrary, given the success of DFT in-
vestigation of JT effect in individual fullerene ions, we
expect that a similar methodology could shed light on
its manifestation in fullerides. In the present work, the
the Jahn-Teller effect on fullerene sites in A3C60 is thor-
oughly investigated fully taking into account the effects
mentioned above.

II. VIBRONIC INTERACTION IN CUBIC
FULLERIDES

Cubic A3C60 crystalize into face-centered cubic (fcc)
and body-centered cubic (bcc) structures (Fig. 1). In
both types of A3C60, one electron from each alkali atom
A transfers to the t1u LUMO orbitals of fullerenes, due
to a very strong electronegativity of the latter, result-
ing in their three-fold population at each C60 site. Since
all fullerene molecules reside in cubic lattice points, their
symmetry is reduced from Ih to Th point group, imply-
ing that the t1u orbitals keep their three-fold degeneracy
(belonging now to the Tu irrep of the Th group). At
the same time the icosahedral irrep Hg splits under this
symmetry reduction into Eg and Tg [16].

In the following we consider the simplest situation of
fully localized LUMO electrons at sites.

A. The Jahn-Teller Hamiltonian for localized
LUMO electrons at C60 sites

The JT Hamiltonian for A3C60 reads as follows:

ĤJT = Ĥph +
∑

n

(
Ĥn

U + Ĥn
H + V̂ n

a + V̂ n
e + V̂ n

t

)
. (1)

The first term is the phonon Hamiltonian of the crystal,

Ĥph =
∑

κk

(1

2
P̂ 2
κk +

1

2
ω2
κkQ

2
κk

)
, (2)

expressed via phonon coordinates Qκk characterized by
the wave vector k and the branch κ. The other terms
in (1) are one-site contributions with n denoting the
unit cell which is supposed to include one A3C60 for-
mula unit. Ĥn

U and Ĥn
H describe bielectronic interactions

in the LUMO orbitals of n-th fullerene molecule:

Ĥn
U =

∑

α

∑′

β(6=α)

∑

σ

U⊥
2
n̂ασn̂βσ +

∑

ασ

U⊥
2
n̂ασn̂α−σ

=
U⊥
2

(
N̂2 − N̂

)
,

Ĥn
H =

∑

α

∑′

β(6=α)

∑

σ

JH

2

[
−n̂ασn̂βσ + ĉ†ασ ĉβσ ĉ

†
α−σ ĉβ−σ

+ĉ†ασ ĉβσ ĉ
†
α−σ ĉβ−σ

]
+
∑

ασ

JHn̂ασn̂α−σ, (3)

where the second-quantization operators correspond to
the LUMO orbitals of the corresponding fullerene site,
α, β = x, y, z, and N̂ =

∑
ασ n̂ασ is the operator of total

number of electrons in the t1u shell. The first term is
the Coulomb repulsion of LUMO electrons, the parame-
ter U⊥ describing the repulsion of electrons in different
orbitals within the same t1u shell. Since this contribution
depends only on the total number of LUMO electrons on
site considered constant in the present work, it gives only
a constant energy shift and is dropped in the subsequent
treatment. The term Ĥn

H describes orbitally-specific elec-
tronic interactions which, due to the isomorphism of cu-
bic t1u and atomic p shells, depend on one Hund’s pa-
rameter JH. Besides exchange (Hund’s rule) coupling and
electron pairs transfer between different t1u orbitals, this
operator also includes (through the last term) the dif-
ference between the electron repulsion in the same and
different orbitals, U‖ − U⊥ = 2JH.

The last three terms in the sum in Eq.(1) describe the
vibronic interaction with three types of nuclear distor-
tions at a given site, with irreps (of the Th group) con-
tained in the symmetric square

[
T 2
u

]
= Ag⊕Eg⊕Tg[20],
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V̂ n
A =

∑

µ

VµAq
n
µAN̂ ,

V̂ n
E =

∑

σ

∑

µ

VµE
(
ĉ†xσ, ĉ

†
yσ, ĉ

†
zσ

)



1
2q

n
µθ −

√
3

2 q
n
µε 0 0

0 1
2q

n
µθ +

√
3

2 q
n
µε 0

0 0 −qnθ






ĉxσ
ĉyσ
ĉzσ


 ,

V̂ n
T =

∑

σ

∑

µ

VµT
(
ĉ†xσ, ĉ

†
yσ, ĉ

†
zσ

)



0
√

3
2 q

n
µζ

√
3

2 q
n
µη√

3
2 q

n
µζ 0

√
3

2 q
n
µξ√

3
2 q

n
µη

√
3

2 q
n
µξ 0






ĉxσ
ĉyσ
ĉzσ


 , (4)

where qnµγ are symmetrized distortions at the n-th
fullerene site transforming after the row γ of the cor-
responding irrep; µ counts the repeating distortions of
a given type. The latter include both distortions of the
fullerene itself and displacements of surrounding atoms.

The operator V̂A depends on the total population num-
ber, i.e., a constant in the electronic space. It doesn’t lead
to the splitting of the t1u orbitals and merely represents
a constant force acting on the environment of the n-th
site in a totally symmetric fashion, i.e. without destroy-
ing its cubic site symmetry. Summed up over all sites,
the effect of such terms results in the reoptimization of
the structure of the cubic crystal, which is assumed to be
already done during quantum chemistry calculations.

The other two operators describe the JT coupling to
the local distortions at the n-th site. Under the sym-
metry reduction Ih →Th, two of five symmetrized func-
tions of the irrep Hg, γ = θ, ε, form the basis of the
irrep Eg, while the other three, γ = ξ, η, ζ, - of the irrep
Tg. Then the Clebsh-Gordan coefficients [the numerical
coefficients in two matrices in (4)] coincide for the two
groups: 〈tα|Γγ tβ〉 = 〈t1α|Hγ t1β〉, where Γ = E, T and
α, β = x, y, z. Therefore, for equal vibronic coupling con-
stants of two types, VµE = VµT , the matrix describing the
JT coupling with five symmetrized nuclear distortions in
(4) coincides with the one for the t1u ⊗Hg JT problem
[21, 22].

The assumption of localized electrons in the LUMO
orbitals of fullerene sites is valid for insulating cubic ful-
lerides Cs3C60 in the A15 structure (bcc) and fcc lattice
at ambient pressure, and in all expanded fullerides such
as, e.g., Li3 NH3C60 [23, 24]. It is a reasonable approxi-
mation in metallic fullerides which are not far from Mott-
Hubbard metal-insulator transition. These are the fcc
Cs3C60 under pressure, Rb3C60 and several AxA’3−xC60

compounds with different alkali atoms A and A’. As a
matter of fact, an experimental proof for (dynamical) JT
effect in Rb3C60 is the detection of a spin gap in its NMR
spectrum [25].

Another approximation, of a single C60 per unit cell,
was adopted to reduce the unit cell to one formula unit
because of complications with the calculation of phonon
spectrum. This situation is strictly realized only in mixed
compounds AA’2C60. All other fullerides are charac-
terized by different forms of merohedral arrangement of

C60’s (their C2 rotations around a cubic axis). Thus
the A15 Cs3C60 is characterized by the merohedral or-
der (two C60’s in a unit cell), while the three other fcc
compounds investigated here are subject to merohedral
disorder [26–28]. We believe that the neglect of merohe-
dral arrangement will not affect the main conclusions of
this study, the main reason being the high symmetry of
the C60 balls.

B. Calculation of orbital vibronic coupling
constants

The vibronic coupling constants at fullerene sites have
been extracted from the splitting of three t1u LUMO or-
bitals in function of the amplitude of active local nuclear
distortions [? ]. To this end, DFT calculations of AnC60

clusters including nearest and next-nearest neighbor al-
kaline atoms and point charges replacing other alkaline
atoms and fullerenes (Fig. 2) have been done with Gaus-
sian09 package [30]. Hybrid B3LYP exchange correlation
functional [31] and triple-zeta basis set (6-311G(d)) were
employed. The three LUMO orbitals have been popu-
lated by three electrons with parallel spins. For given
local nuclear distortions, ten calculations corresponding
to their different amplitude have been performed. From
them the slopes of LUMO orbital energies in vicinity of
equilibrium point have been extracted via an interpola-
tion procedure and vibronic coupling constants derived
for a number of active JT modes making use of vibronic
matrices from Eq. (4).

1. Intrafullerene modes

As active JT modes, the normal vibrational Hg modes
of isolated C60 [32] have been chosen, which merely sub-
divide into Eg and Tg modes in cubic fullerides. We
also calculated the vibronic coupling constants for intra-
fullerene Ag modes. The explicit form of the correspond-
ing nuclear displacements is given in the Suplementary
Material (SM) [33]. We note that these modes are not
vibrational eigenmodes in fullerides and have been cho-
sen for the sake of comparison with isolated C3−

60 . We
could have considered arbitrary combinations of them as
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(a) (b)

FIG. 2. AnC60 fragments used for the calculation of vibronic
coupling constants. (a) Fcc unit cell; octahedral and cubic
alkali atoms are shown by red and blue balls. (b). Bcc-like
unit cell (A15 structure); Cs atoms are indicated by red balls.
Nearest neighbor C60 molecules contributing to interfullerene
active JT modes are shown by green balls.

TABLE I. Vibronic coupling constants for Eg and Tg in-
trafullerene distortions of Hg genealogy compared to similar
coupling constants in isolated C−60 (in 10−6 a.u..).

fcc A15

K3C60 Rb3C60 Cs3C60 Cs3C60 C−60
Eg Tg Eg Tg Eg Tg Eg Tg Hg

Hg(1) 18.9 19.9 19.2 19.8 19.4 19.4 19.0 19.7 19.2

Hg(2) 42.4 39.9 43.4 41.0 44.4 42.3 44.4 43.0 45.0

Hg(3) 80.1 78.7 80.2 78.9 80.4 79.5 81.0 79.0 75.4

Hg(4) 56.3 53.0 56.6 53.3 56.7 53.9 54.8 55.6 55.4

Hg(5) 77.5 77.2 76.1 76.8 74.8 76.3 75.1 75.3 76.6

Hg(6) 58.1 58.5 58.6 58.9 58.9 59.4 58.1 59.8 57.8

Hg(7) 200.4 202.3 199.9 203.7 299.7 204.7 201.2 204.0 209.9

Hg(8) 206.1 201.5 205.4 202.4 204.7 203.3 205.0 203.5 204.3

Ag(1) 66.7 67.8 70.2 70.0 26.4

Ag(2) 311.8 310.5 308.7 309.5 238.0

well because the resulting electron-phonon Hamiltonian
is invariant with respect to any such choice.

The calculated vibronic coupling constants are shown
in Table I.

Despite the molecular character of fulleride crystals,
the difference between vibronic coupling constants for Eg
and Tg modes appears to be non-negligible and these con-
stants also deffer from corresponding vibronic coupling
constants of isolated fullerene ion (last column in Ta-
ble I). We did not consider the coupling to intrafullerene
modes of other Ih genealogy (Gg, T1g and T2g), which
according to the selection rules for the Th group also be-
come active in fullerides. Because the coupling to these
modes is absent for isolated fullerene anions, we expect
it to be negligible in fullerides.

TABLE II. Vibronic coupling constants for symmetrized dis-
tortions of cubic (cub), octahedal (oct) frame of surround-
ing alkali atoms in fcc A3C60, and pseudo-octahedral (p-oct)
frame in A15 (in 10−6 a.u.)

fcc A15

K3C60 Rb3C60 Cs3C60 Cs3C60

cub oct cub oct cub oct p-oct

Ag(1) 88.8 68.2 60.6 44.6 48.4 39.1 4.1

Eg(1) 2.6 2.4 1.6 1.5 1.0 1.1 1.8

T2g(1) 2.7 0.8 2.0 0.5 1.7 0.4 0.9

T2g(2) 0.2 - 0.2 - 0.1 - 0.9

Ag(2) - - - - - - 57.0

Eg(2) - - - - - - 0.8

Tg(3) - - - - - - 0.8

2. Alkali modes

In fcc A3C60 each fullerene is surrounded by a cube
of nearest neighbor and an octahedron of next-nearest
neighbor alkali atoms (blue and red balls in Fig. 1a, re-
spectively). The closest alkali environment contributes
with one Eg and two Tg modes of symmetrized distor-
tions, while the octahedral environment with one Eg and
one Tg modes. The expressions of these modes via atomic
displacements are given in SM [33] and also are depicted
in various textbooks (see, e.g. [20]). In the case of A15
fulleride, the closest alkali atoms form a pseudo octahe-
dron (two atoms at each face of surrounding cube) as
shown in Fig. 1b. The active distortions include two Eg
and two Tg modes whose form is given in SM [33].

The calculated vibronic coupling constants are given
in Table II. As we can see, they are smaller than the
vibronic coupling constants for intrafullerene modes by ca
one order of magnitude (an exception are alkali Ag modes
for fcc A3C60). Nevertheless these modes are related to
acoustic and low-frequency optical phonons (see the next
section), therefore their contribution to JT stabilization
cannot be neglected from the start. Moreover, as will be
seen below, their contribution is crucial for the warping
of one-site APES and for the interaction of JT distortions
at different sites.

3. Interfullerene modes

Each fullerene molecule in fcc A3C60 is surrounded by
twelve C60’s forming a cub-octahedron (Fig. 2a). The
latter yields two Eg and two Tg modes of symmetrized
distortions. In A15 fulleride the nearest alkali atoms form
a cube (Fig. 2b) which gives one Eg and two Tg modes.
The expressions of these modes via atomic displacements
are given in SM [33]. Given a large spacing between
fullerene molecules, only the electrostatic interaction be-
tween them is taken into account in the calculation of
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TABLE III. Vibronic coupling constants for active sym-
metrized distortions of fullerene molecules surrounding a
given C60 in fcc and A15 fullerides (in 10−6 a.u.).

fcc A15

K3C60 Rb3C60 Cs3C60 Cs3C60

Ag 35.1 34.3 32.5 27.7

Eg(1) 0.2 0.1 0.1 0.2

Eg(2) 0.2 0.2 0.2 -

T2g(1) 0.2 0.2 0.2 0.3

T2g(2) 0.3 0.3 0.2 0.1

vibronic coupling constants.
The calculated vibronic coupling constants are given

in Table III. They are obtained one order of magnitude
smaller than the vibronic coupling constants for alkali
modes (Table II). This is because the interfullerene vi-
bronic coupling can be seen as an electrostatic interaction
of a set of electric dipoles (arising from shifted charges
q = 3e) with the quadrupolar distribution of t1u LUMO
electrons, scaling as R−4 with a distance R to the center
of C60. On the other hand, there is an additional cova-
lent contribution to vibronic coupling constants for alkali
modes.

III. THE PHONON SPECTRUM OF CUBIC
FULLERIDES

In order to take into account exactly the effect of the
environment on the JT effect at fullerene sites and the
intersite interaction of their active JT modes, the pre-
cise knowledge on phonon modes of A3C60 is decisive.
Many attempts have been undertaken to calculate the
phonon dispersion. The first calculations by Varma et
al. [Science 1991] and You et al.. [34] in the beginning of
1990s were semiempirical but reflected qualitatively the
basic features of phonon spectrum in A3C60 fullerides.
In spite of that, they could not achieve a correct de-
scription of intra-fullerene vibronic interaction. Later
works [35, 36] with first principles methods also could not
provide accurate information on the low-energy phonon
modes: In these calculations, the low-energy frequecies
become imaginary. In this work, this issue is solved by
employing new ionized pseudopotentials for alkali atoms.

A. Calculation details

To reduce the calculational load, in both fcc and
A15 fullerides the fullerenes were supposed to be com-
pletely ordered. Experimental lattice constants were
used for the starting crystal structure [2, 3], then
they are fully relaxed in order to get good phonon
calulations. The phonon calculations have been done
by density functional perturbation theory (DFPT) [37]

 0
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FIG. 3. Phonon dispersion for A3C60, including A15. Red
and black lines correspond to PBE and LDA, respectively.

with exchange correlation funcionals of LDA and PBE
types [38, 39]. Given large unit cells in A3C60, soft
pseudopotentials (PPs) have been employed. To this
end, following Akashi and Arias[35], we chose the con-
figuration (3p)6.0(4s)0.0(3d)0.0, (4p)6.0(5s)0.0(4d)0.0 and
(5p)6.0(6s)0.0(5d)0.0 for K, Rb, and Cs, respectively, with
the nonlinear core correction [40]. The relativistic ef-
fects in alkali atoms were considered within scalar rela-
tivistic approximation [41]. All the PPs were generated
by Trolled-Martins[42] method using atomic code within
the plane wave based package Quantum Espresso [43].
For the LDA functional the parametrization of Perdew
and Zunger (PZ) [38] was used and for the GGA func-
tional the parametrization of Perdew, Burke, and Ernz-
erhof (PBE) [39] was employed. The details of generation
of ionized PPs and the test calculations are given in SM
[33].

The plane-wave kinetic energy cutoff was set to 60 Ry
with the density cut-off of 240 Ry, and shifted 4× 4× 4
Monkhorst-Pack meshes were used to perform Brillouin
zone integration in order to ensure the convergence of the
results. The convergence of the total energy was set to
be better than 10−14 Hartree and forces on the atoms
were limited within 10−5 Ry/a.u.

B. The phonon dispersion

The phonon dispersion for A3C60 is shown in Fig. 3,
where the frequency range was restricted to 300 cm−1 for
visibility (see the SM [33] for the dispersion of all phonon
bands). It is evident that no imaginary modes appear
anymore in the present calculations with both PBE and
LDA functionals, contrary to the previous calculations
[35, 36].

Visualization of polarization vectors at the Γ point
allows us to conclude that the lowest three optical
branches, 4-6, correspond to opposite displacements of
fullerene and a next nearest alkali atom, siting in the
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octahedral interstitial, along three Cartesian axes. The
next branches, 7-9, are three librational (pure rotational)
modes of fullerene molecules. The next branches, 10-12,
correspond to displacements of two nearest alkali atoms
hybridized with Hgγ(1) vibrations (γ = ξ, η, ζ) of C60

cage. Finally the upper mixed branches, 7-15, repre-
sent opposite translations of two nearest alkali atoms and
fullerene. All higher branches arise from almost pure
intrafullerene vibrations. Thus the highest five bands
in Fig. 3 correspond to Hg(1) intrafullerene vibrations,
split at the Γ point into Eg and Tg degenerate phonons
according to cubic symmetry of the lattice.

Above 150 cm−1, PBE gives slightly smaller frequen-
cies than LDA albeit displaying similar dispersion, while
in the lower frequency range, 0÷150 cm−1, the results of
PBE and LDA disagree significantly. The calculated fre-
quencies of the Hg intrafullerene phonons at the Γ point
are tabulated in Table S2. One can see that the fre-
quencies calculated by Nomura and Arita [36] with con-
strained DFPT within LDA are close to our results, and
both are in a good agreement with the experimental Ra-
man data [44–47].

IV. THE LOWEST ADIABATIC POTENTIAL
ENERGY SURFACE

The cooperative Jahn-Teller dynamics in fullerides is
highly complex and has never been assessed even for the
simplest, insulating compounds. The character of JT dy-
namics can be understood by analyzing the lowest adi-
abatic potential energy surface (APES) of the crystal,
when all JT centers (fullerenes) are in the ground elec-
tronic state for given distortions of the lattice.

A. Static JT effect in terms of electronic vectors at
C60 sites

The potential energy operator for A3C60 is obtained by
dropping the kinetic energy of phonons (we also neglect
some other contributions mentioned in Sect.IIA) from the
full Jahn-Teller Hamiltonian in Eq. (1):

ÛJT =
∑

κk

1

2
ω2
κkQ

2
κk +

∑

n

(
Ĥn

H +
∑

Γ=E,T

∑

µ

VµΓ

×
∑

γ(∈Γ)

qnµγ
∑

α,β

∑

σ

〈t1α|Hγ t1β〉 ĉn†ασ ĉnβσ
)
, (5)

where the operator of JT coupling is expressed through
Clebsh-Gordan coefficients for the icosahedral group [see
the discussion after Eq. (4)]. The lowest APES is ob-
tained by diagonalizing the electronic operator in (5)
corresponding to each site n and considering its lowest
eigenvalues in function of local JT distortions qnµγ . Thus
obtained function of local JT distortions of all sites of
the crystal is further investigated for extremes.

For the investigation of the extremes of APES there
exists a more convenient approach proposed by Öpie and
Pryce for molecular JT problems [48], which we extend
here. It essentially exploits the existence of a bijective re-
lation (one-to-one correspondence) between the extremes
of an APES and the electronic function corresponding
to nuclear distortions in these extremes. Basing on this
property, Öpik and Pryce proposed to find first the equi-
librium nuclear coordinates for an arbitrary form of the
electronic wave function (expressed via arbitrary fixed
parameters - adiabatic coordinates), and then to inves-
tigate the extremes of the obtained energy functional in
the space of these adiabatic coordinates. These adia-
batic coordinates can be viewed as directional cosines of
the vector representing an arbitrary wave function in the
functional space of electronic basis functions involved in
the Jahn-Teller effect. The representation via such vec-
tors (electronic pseudospins) was widely used for the in-
vestigation of static JT effect in molecular systems and
cooperative JT effect in solids for simple JT interaction
on sites. It was extended for molecular systems with mul-
timode vibronic coupling [49]. Here we further extend
this approach over multimode JT coupling in crystals in-
volving multielectric JT sites, a situation realized in our
fullerides.

The basis of electronic wave functions involved in JT
effect at a C3−

60 ion includes spin doublet terms of the
t31u electronic configuration, the atomic-like 2P and 2D
molecular terms amounting to eight electronic wave func-
tions for a given projection of the total spin S = 1/2
[50, 51]. For arbitrary distortions, in the presence of

multiplet splitting operator Ĥn
H all these eight electronic

states (equivalently eight spin-doublet Slater determi-
nants) are generally admixed to the ground adiabatic
wave function of C3−

60 . However, it was shown [13] that
in the case of multiply charged fullerene anions, with
n = 2, 3, 4, the ground adiabatic multielectronic wave
function corresponds in a good approximation to the low-
est eigenvalue of the operator of JT coupling only. This
means that the effect of multiplet splitting operator Ĥn

H
can be taken into account in the lowest order of pertur-
bation theory. This is done in Sect. IV B.1.

Given the JT coupling at each site is described by
one-electron operators, Eq. (5), its ground-state mul-
tielectronic eigenfunction (Ψn

σ) is a Slater determinant
of the lowest occupied eigenorbitals (adiabatic orbitals)

ψn
iσ = ân†iσ |0〉, (Fig. 4(a)):

Ψn
σ = ân†2σâ

n†
3↑ â

n†
3↓ |0〉,

ân†3σ = xnĉ
n†
xσ + ynĉ

n†
yσ + znĉ

n†
zσ,

ân†2σ = x̄nĉ
n†
xσ + ȳnĉ

n†
yσ + z̄nĉ

n†
zσ, (6)

where the adiabatic coordinates x, y, z and x̄, ȳ, z̄ are di-
rectional cosines of the doubly occupied and the half filled
adiabatic orbitals (Fig. 4(a)) w.r.t. three Cartesian axes
representing the reference t1u orbitals (Fig. 4(b)). The
unit vectors (x, y, z) and (x̄, ȳ, z̄) are obviously orthogo-
nal. Due to the electronic independence of the sites, the
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(a) (b)

FIG. 4. Adiabatic orbitals at C3−
60 sites. (a) Splitting and pop-

ulation of adiabatic orbitals in the ground adiabatic electronic
state Ψn

↑ . (b) Adiabatic orbitals 1,2,3 obtained from the ro-
tations of orthorombic LUMO orbitals x, y, z (corresponding
to t1uα, α = x, y, z) by three Euler angles.

ground-state adiabatic wave function of the whole crystal
Φ is merely a direct product of adiabatic wave functions
Ψn
σ at different sites,

Φ =
∏

n

ân†2σâ
n†
3↑ â

n†
3↓ |0〉. (7)

Averaging the potential energy operator (5) on the
ground-state adiabatic wave function (7), we obtain:

〈U〉≡ 〈Φ|ÛJT|Φ〉 =
∑

κk

1

2
ω2
κkQ

2
κk +

∑

n

[
〈Ψn

σ |Ĥn
H|Ψn

σ〉

+
∑

Γ=E,T

∑

µ

VµΓ

∑

γ(∈Γ)

qnµγ
(
2Rn

γ + R̄n
γ

)]
, (8)

where R and R̄ are tensorial combinations of adiabatic
coordinates:

Rn
γ =

∑

α,β

〈t1α|Hγ t1β〉αnβn,

R̄n
γ =

∑

α,β

〈t1α|Hγ t1β〉ᾱnβ̄n. (9)

Next we minimize the expression (8) w.r.t. nuclear co-
ordinates. Having in mind that the phonon coordinates
form a complete, linearly independent set, we first ex-
pand the local JT distortions on sites through the latter
(the Van Vleck expansion):

qnµγ =
∑

κk

anµγ(κk) Qκk, (10)

where anµγ(κk) are Van Vleck coefficients [52]. They are
obtained by decomposition of qnµγ into the displacements
of involved atoms, and the latter into phonon coordinates
using the calculated phonon frequencies and polarization

vectors in Sect III. Substituting (10) into (8) and mini-
mizing the obtained expression after phonon coordinates,
we obtain the equilibrium value of the latter,

Q
(0)
κk = − 1

ω2
κk

∑

n

∑

Γ=E,T

∑

µ

VµΓ

∑

γ(∈Γ)

anµγ(κk)
(
2Rn

γ+R̄n
γ

)
,

(11)
in terms of adiabatic coordinates on sites. Substituting
the equilibrium coordinates (11) back into the potential
energy expression (8) we obtain its equilibrium (extremal
after Qκk) form in terms of adiabatic coordinates only:

〈U〉(0)=
∑

n

〈Ψn
σ |Ĥn

H|Ψn
σ〉 −

1

2

∑

n1

∑

n2

∑

µ1Γ1

∑

µ2Γ2

Vµ1Γ1
Vµ2Γ2

×
∑

γ1(∈Γ1)

∑

γ2(∈Γ2)

ζµ2γ2
µ1γ1 (n2 − n1)

×
(
2Rn1

γ1 + R̄n1
γ1

)(
2Rn2

γ2 + R̄n2
γ2

)
, (12)

where the introduced parameters,

ζµ2γ2
µ1γ1 (n2 − n1) =

∑

κk

an1
µ1γ1(κk)an2

µ2γ2(κk)

ω2
κk

, (13)

describe the relaxation of the lattice along the local nu-
clear coordinates qn1

µ1γ1 in response to local JT distortions
qn2
µ2γ2 of unity amplitude. Due to translation symmetry

of fullerene sites, these parameters depend only on the
lattice vector connecting the positions of two local dis-
tortions. It is evident from Eqs. (13) and (10), that the
knowledge of the phonon polarization vectors and fre-
quencies allows to define completely these parameters.

The tensors Rγ are obtained from Eq. (9) using ex-
plicit JT matrices in (4):

Γ = E :

Rθ =
1

2

(
x2 + y2

)
− z2, Rε = −

√
3

2

(
x2 − y2

)
,

Γ = T :

Rξ =
√

3yz, Rη =
√

3xz, Rζ =
√

3xy,

(14)

and similar expressions (in terms of x̄, ȳ and z̄) hold for
tensors R̄γ (we dropped for simplicity all indices n).

It is convenient to present the APES from Eq. (12) as
a sum of one-site and two-sites contributions,

〈U〉(0) =
∑

n

W (1)
n +

∑

n1<n2

W (2)
n1,n2

. (15)

where W (1) and W (2) depend on the adiabatic coordi-
nates of one center and two centers, respectively. In the
following we calculate and analyze these quantities for
different A3C60.

B. APES at individual JT sites

The contributionsW
(1)
n (terms n1 = n2 in (12)) involve

response parameters (13) obeying the following relations
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[53]:

ζµ2γ2
µ1γ1 (0) = ζµ2γ1

µ1γ1 (0)δγ1,γ2 ≡ ζΓ
µ1µ2

δγ1,γ2 , (16)

where ζΓ
µ1µ2

is common for all γ ∈ Γ. Then the contribu-
tion to the APES from a given JT site can be written as
follows (we drop hereafter the index of the site):

W (1)= 〈|Ψσ|ĤH|Ψσ〉 −
1

2

∑

Γ=E,T

[ ∑

µ1µ2

Vµ1ΓVµ2Γζ
Γ
µ1µ2

]

×
∑

γ(∈Γ)

(
2Rγ + R̄γ

)2
. (17)

The first term is the averaged multiplet splitting in-
teraction in the adiabatic electronic state Ψσ. Given the
adiabatic orbitals can be seen as rotated reference elec-
tronic orbitals (Fig. 4(b)) in virtue of t1u − p isomor-

phism, the operator ĤH, being invariant under rotations
of coordinate system, could be written in the basis of
adiabatic orbitals from the beginning. That is the ĉασ,
(α = x, y, z) operators in Eq. (3) can be replaced by the
âiσ (i = 1, 2, 3) operators, Eq. (6) (the lacking operator
â1σ is uniquely defined for given â2σ and â3σ). There-

fore, the matrix element of ĤH will not depend on the
adiabatic coordinates, i.e., will be a constant,

〈Ψσ|ĤH|Ψσ〉 = EH, (18)

linearly scaling with JH.
The JT part in (17) can be conveniently rewritten as

follows. Consider first equal quantities in the square
brackets for both Γ. Then the last summation in (17)
can be extended over all γ ∈ H which, after substituting
Eqs. (14), gives the following equalities:

∑

γ(∈H)

R2
γ =

∑

γ(∈H)

R̄2
γ = 1,

∑

γ(∈H)

RγR̄γ = −1/2. (19)

The second relation becomes evident if one passes to
a coordinate system XY Z where one adiabatic vector
(x, y, z) is directed along Z and the other, (x̄, ȳ, z̄), lies in
the XY plane. The obtained relations show that the one-
site APES is independent from electronic coordinates in
the considered case. Given that the latter are parameter-
ized by three Euler angles (Fig. 4(b)), we conclude that
a three-dimensional continuum of equipotential minima
(a three-dimensional trough) is realized at the bottom of
lowest APES in this approximation. The motion at the
bottom of this trough is isomorphic with the rotation of
a rigid body which determines the structure of low-lying
vibronic levels in isolated C3−

60 ions [50, 51].
Using the relations (19), Eq. (17) can be given in two

equivalent forms:

W (1) = EH − 3EEJT +
(
EEJT − ETJT

) ∑

γ(∈T )

(
2Rγ + R̄γ

)2
,

(20)

or

W (1) = EH − 3ETJT +
(
ETJT − EEJT

) ∑

γ(∈E)

(
2Rγ + R̄γ

)2
,

(21)
where the parameters

EEJT =
1

2

∑

µ1µ2

Vµ1EVµ2Eζ
E
µ1µ2

,

ETJT =
1

2

∑

µ1µ2

Vµ1TVµ2T ζ
T
µ1µ2

, (22)

are JT stabilization energies after the distortions of E
and T type, respectively, in the case of a single electron
presenting in the t1u shell. The last term in (20) and
(21) describes the warping of the bottom of the trough
in terms of adiabatic coordinates of two occupied adi-
abatic orbitals (equivalently three Euler angles). The
parameter defining the amplitude of the warping scales
with the difference of energies of JT stabilization after
the distortions of E and T type. When these two stabi-
lization energies are equal, the warping contribution dis-
appears and we end up with a three-dimensional trough
similarly to an isolated C3−

60 ion. Given the complexity of
the systems (multicenter and multimode JT effect) the
expression for W (1) looks remarkably simple. In the fol-
lowing we analyze the contributions to W (1) in different
cubic fullerides using the calculated vibronic constants
and phonon spectra.

1. Contributions to the static JT stabilization

A consistent definition of JT stabilzation energy in the
presence of warping is obtained via averaging the second
term in Eq. (17) over all points of the trough. This is
equivalent with the averaging over adiabatic coordinates
(Euler angles) of the sums involving Rγ and R̄γ for γ ∈
E and γ ∈ T , respectively. Integration over all Euler
angles gives for these terms the weights 2/5 and 3/5,
respectively. With them we can write for the Jahn-Teller
stabilization energy,

EJT = 3

(
2

5
EEJT +

3

5
ETJT

)
. (23)

In the limit of an isolated C3−
60 , when the coupling to the

vibrational eigenmodes is considered from the beginning,
the Van Vleck coefficients in Eq. (10) become elements
of a unity matrix, so that the response matrix ζ becomes
diagonal too, ζHµ1µ2

= δµ1,µ2
/ω2

µH . Then we recover the
usual expression for the multimode t ⊗ H JT problem
involving three electrons, EJT = (3/2)

∑
µ V

2
µH/ω

2
µH .

The first term in (17) can be evaluated more accurately
than suggested in Eq. (24), by applying a second order

perturbation theory after ĤH (see the SM [33]), yielding

E
(2)
H = JH −

J2
H

4EJT
(24)
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TABLE IV. The JT stabilization energy and its contributions
(in meV). The JT stabilization energy of isolated C3−

60 is -150.9
meV.

fcc A15

K3C60 Rb3C60 Cs3C60 Cs3C60

LDA PBE LDA PBE LDA PBE LDA PBE

F
a -144.9 -153.6 -148.9 -153.4 -150.1 -155.3 -150.4 -156.7

-171.1 -179.5 -176.7 -181.7 -184.6 -190.4 -178.0 -187.3

A
a -16.1 -7.2 -17.6 -2.5 -19.0 -3.9 -3.0 -2.7

-15.7 -6.8 -17.3 -2.4 -18.7 -3.9 -3.0 -2.7

FF
a -0.2 -0.2 -0.2 -0.1 -0.2 -0.1 -0.2 -0.1

-0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.1

A-F -0.2 -0.2 -0.4 -0.1 -0.6 -0.2 0.6 0.7

F-FF 0.0 0.0 0.0 0.0 0.1 0.1 0.0 -0.0

A-FF -0.0 -0.1 -0.0 -0.0 -0.0 -0.0 0.0 0.0

EJT -161.4 -161.2 -167.1 -156.1 -169.8 -159.5 -152.9 -158.8
aThe data in the second row correspond to the neglect of

off-diagonal contributions after µ.

The first term here is the destabilization energy [the only
one given by Eq. (24) ], while the second term represents
a small correction due to a small value of Hund’s cou-
pling parameter (ca 40 meV) compared to the EJT of ca
150 meV [54, 55]. Note that the stabilization energy is
further increased in C3−

60 by ca 90 meV due to a dynami-
cal delocalization of JT distortions in the trough [54, 55],
which diminishes further this correction thus enhancing
the criterion of applicability of single-determinant adia-
batic wave function (6). In the following we neglect the
contribution (24) which only gives a constant shift of en-
ergy on sites.

This elastic response parameters ζΓ
µ1µ2

can be ex-
pressed through the lattice Green’s functions [53, 56].
Evaluating the latter via the integration over the Bril-
louin zone of the crystal for atomic displacements of dif-
ferent pairs of atoms we obtain the elastic response pa-
rameters for all relevant local modes and evaluate their
contribution to EJT.

Table IV shows the calculated EJT as well as its contri-
butions from different modes. The components F, A and
FF are separated contributions from intrafullerene, alkali
and interfullerene modes, respectively. We can see that
the off-diagonal contributions after µ (the interference
terms) are important for intrafullerene Hg modes because
the latter are not vibrational eigenmodes in fullerides.
The next rows, A-F, F-FF and A-FF, represent the
contributions from alkali-intrafullerene, intrafullerene-
interfullerene and interfullerene-alkali interference terms.
We may conclude that the intrafullerene modes give the
major contribution to JT stabilization as expected, while
interaction with alkali mode increases EJT by few per-
cents in LDA calculations. At the same time the effect
of interfullerene modes is negligible.

To get further insight into the origin of these contri-
butions we inspect the elastic response parameters en-

tering Eqs. (22), which have the meaning of inverse ef-
fective force constants (rigidity) w.r.t. the corresponding
active distortion mode. The inverse square root of ζΓ

µµ

which corresponds to the effective frequency of the cor-
responding mode can be referred in SM [33]. We can
see that in the case of intrafullerene modes these agree
well with the corresponding vibrational eigenmodes of
isolated fullerene ion supporting the molecular crystal
character of fullerides. At the same time, the effective
frequencies for alkali and interfullerene modes are much
lower amounting to few tens of wave numbers for some
of them. This explains the obtained important contri-
bution of alkali modes to the JT stabilization despite
the vibronic coupling constants are one order of magni-
tude smaller than for intrafullerene modes. Partly the

small value of
(
ζΓ
µµ

)−1/2
for alkali modes is explained by

the existence of low-frequency optical phonons involving
these modes as it is evident from the phonon dispersion
(Fig. 3). Another contribution comes from the acoustic
phonons as can be seen from Table VIII.

2. Warping of the APES

Weighting the expressions (20) and (21) in a similar
way as in Eq. (23), we obtain:

W (1) = EH − EJT +Wwarp, (25)

where the warping term is given by

Wwarp=
1

2

(
EEJT − ETJT

)[2

5

∑

γ(∈T )

(
2Rγ + R̄γ

)2

−3

5

∑

γ(∈E)

(
2Rγ + R̄γ

)2]
. (26)

Note that the warping term now averages to zero when
integrated over the trough.

Using the equality

∑

γ(∈H)

(
2Rγ − R̄γ

)2

= 3, (27)

emerging from the relations (19), we can represent the
warping term (26) only in terms of tensors with γ ∈ T
only:

Wwarp = ∆
[
− 9

5
+
∑

γ(∈T )

(
2Rγ + R̄γ

)2]
, (28)

where the warping parameter was introduced:

∆ =
1

2

(
EEJT − ETJT

)
(29)

This parameter is evaluated in a similar way as EJT. Ta-
ble V gives the calculated ∆ for the four materials, as well
as its separated contributions from intrafullerene, alkali
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and interfullerene modes and their intereference. The no-
tations and meaning of the columns are similar to Table
IV. We observe that the main contribution to the warping
comes almost entirely from alkali modes in the case of fcc
fullerides and from the intrafullerene modes in the case of
A15 structure. In all compounds (except for potassium
fulleride within LDA approximation) the contributions
from intrafullerene and alkali atoms are of opposite sign.
Note that now the interference of intrafullerene and al-
kali modes is relatively large. Table IX shows that ∆ is
mostly contributed by the acoustic phonon modes in the
case of fcc fullerides. On the contrary, it is contributed
by optical phonon modes in the case of A15 fulleride. We
stress that the warping is entirely due to the interaction
of fullerene molecules with the environment. In the case
of isolated fullerene ions the warping of the lowest APES
doesn’t arise in the approximation of linear JT coupling.
On the other hand, the quadratic JT coupling was shown
to have negligible effect on its warping [32].

The warping itself arises from the second factor in (28).
This factor represents a warping function which depends
on the adiabatic coordinates only and is universal for all
investigated fullerides. For the sake of analysis, consider
first the case of only two electrons in the lowest adiabatic
orbital (the case of C2−

60 ion). In the absence of warping
this situation leads to a two-dimensional trough in the
space of spherical angles θ and φ because of the constraint
x2 + y2 + z2 = 1. The warping function reduces in this
case to an expression depending only on the adiabatic
coordinates of this adiabatic orbital, −6[x4 + y4 + z4 −
(7/10)r4], where r = 1. The expression in the square
brackets coincides up to a constant -1/10 with the fourth-
order cubic invariant [57]. Such a function was considered
phenomenologically by O’Brien in connection with the
warping of the lowest APES of d⊗H JT problem [22, 51]
subject to a perturbation from a cubic environment. The
obtained warping function is shown in Fig. 5a and has
similar extremal properties as in the case of of d ⊗ H
JT problem. Thus two groups of extremes, three of [001]
type (tetragonal) and four of [111] type (trigonal) appear,
which are either minima or maxima depending on the
sign of the parameter ∆. On the contrary, six extremes
of [011] type (rhombic) are always saddle points.

In the case of C3−
60 , the warping function will depend on

three additional adiabatic coordinates entering the ten-
sors R̄γ in (28). It is easier, therefore, to investigate it
in the space of three Euler angles defining both occupied
adiabatic orbitals (Fig.5b). To this end we need to ex-
press the six adiabatic coordinates entering Eq. (28) via
these angles [50, 51],

x = sin θ cosφ, y = sin θ sinφ, z = cos θ,

x̄ = − sinχ cos θ cosφ− cosχ sinφ,

ȳ = cosχ cosφ− sinχ cos θ sinφ,

z̄ = sinχ sin θ. (30)

The obtained θ − φ maps of the warping function for
several values of the angle χ are shown in Fig. 5b. We

can see that the extremal structure of the lowest APES
has the same morphology as in the case of C2−

60 (Fig.
5a). The new feature is the cyclic shift of the landscape
in function of χ with a period of π. For ∆ > 0 the
minima are of trigonal type and the lowest energy path
connecting pairs of these minima, e.g., [111] and [1-11]
(not shown in Fig. 5), is via the saddle points ([101]).
For ∆ < 0 the minima are of tetragonal type (e.g., [001])
and the lowest-energy path connecting minima of these
type are again saddle points albeit now the path passes
through them in a perpendicular direction.

To establish the character of JT dynamics, it is neces-
sary to know the height of the barrier (the energy of the
saddle point measured from the minimum) separating the
minima. Fig. 6a shows the dependence of the barriers on
the angle χ. One can see that the barrier doesn’t depend
on χ in the case of trigonal minima, whereas its height
oscillates periodically in the case of tetragonal minima.
In all systems and for all χ the height of the barrier is
smaller than 4 meV which, at its turn, is smaller than
the rotational quantum in the trough for an isolated C3−

60

(ca 8 meV) and much smaller than the kinetic delocal-
ization energy of JT deformations in this anion (ca 90
meV) [54, 55]. This precludes the localization JT defor-
mation after θ and φ in vicinity of the minima. At the
same time, the energy of the minima is independent from
χ irrespective of their type (Fig. 6b). This means that a
one-dimensional trough after the coordinate 0 < χ ≤ 2π
will be preserved for the warping of any amplitude, a sit-
uation not realized in the case of the cubic warping of a
two-dimensional trough as Fig. 5a shows.

On the basis of these results we conclude that the JT
dynamics at one site in the A3C60 cubic fullerides corre-
sponds to weakly hindered rotations of JT deformations
in the three-dimensional trough.

C. Intersite interaction of JT centers

The two-site contributions to the lowest APES,

W
(2)
n1,n2 , can be extracted from Eq. (12) in the follow-

ing form:

W (2)
n1,n2

=
∑

Γ1

∑

Γ2

∑

γ1(∈Γ1)

∑

γ2(∈Γ2)

Bγ2γ1 (n2 − n1)

×
(
2Rn1

γ1 + R̄n1
γ1

)(
2Rn2

γ2 + R̄n2
γ2

)
,

Bγ2γ1 (n2 − n1)≡ −1

2

∑

µ1(Γ1)

∑

µ2(Γ2)

Vµ1Γ1
Vµ2Γ2

×ζµ2γ2
µ1γ1 (n2 − n1). (31)

We calculated the interaction parameters Bγ2γ1 (∆n) for
nearest neighbor and next nearest neighbor fullerene
pairs. In the former case ∆n ‖ [101] for fcc and ‖ [111]
for bcc fullerides, respectively (Fig. 1). The next nearest
neighbors are located along cubic axes for both kind of
lattices (∆n ‖ [001]). The results are given in Tables VII
and IX.
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TABLE V. The warping parameter ∆ and its contributions (in meV).

fcc A15

K3C60 Rb3C60 Cs3C60 Cs3C60

LDA PBE LDA PBE LDA PBE LDA PBE

F
a 0.044 -0.526 -0.577 -1.109 -1.112 -1.809 -0.532 -0.287

1.992 1.670 1.715 1.104 1.798 0.706 0.150 0.485

A
a 4.454 1.548 4.727 0.402 4.869 0.668 0.137 0.211

4.362 1.464 4.670 0.380 4.825 0.643 0.340 0.371

FF
a -0.018 -0.014 -0.019 -0.015 -0.025 -0.017 -0.003 -0.006

-0.014 -0.009 -0.015 -0.011 -0.018 -0.011 0.003 0.000

A-F 0.153 0.194 0.256 0.148 0.333 0.213 -0.179 -0.123

F-FF -0.036 -0.060 -0.043 -0.032 -0.065 -0.052 -0.003 0.003

A-FF 0.021 0.023 0.019 0.009 0.020 0.010 -0.024 -0.017

∆ 4.618 1.165 4.364 -0.598 4.019 -0.985 -0.605 -0.220
aThe data in the second row correspond to the neglect of off-diagonal contributions after µ.

One can see that the interaction parameters for the
A15 fulleride are much smaller than in fcc compounds.
A similar situation was also found for the warping param-
eter (Table VII) pointing to a generally weaker symmetry
lowering effect in bcc lattices compared to fcc ones (we
remind that in the present calculations the merohedral
order in the A15 compound was replaced by a full order
of fullerene molecules). In fcc fullerides the interaction
parameters corresponding to different pairs γ1γ2 is highly
selective. Actually, it is non-negligible only for θθ, θξ and
ξξ coupling in nearest neighbors and only for θθ coupling
in next nearest neighbor pairs. Remarkably, the latter
is significantly stronger than all coupling in the nearest
neighbor pairs. Even so it doesn’t exceed 4 meV (LDA
result for Cs3C60). However, the interaction with more
distant fullerenes is negligible. We expect that the in-
teraction of these pairs is mainly governed by acoustic
phonon modes due to their larger dispersion (Fig. 2),
which implies its R−3 dependence on the interfullerene
separation R.

We may conclude from this study that the interaction
of JT distortions on different fullerene sites is too weak to
quench their dynamics and localize them at some points
in the troughs. There can be however some correlation
in the rotations of these distortions. For instance, for
the strongest θθ coupling of next nearest neighbor pairs
the maximal negative value of the corresponding tenso-
rial factor in Eq. (31) reaches -9/4 for θ distortions on
the two sites of opposite sign. For fcc Cs3C60 this gives a
correlation energy amounting to half of rotational quan-
tum (in the LDA calculation). We can speculate that
this interaction can give rise at low temperature to an
antiferroditorsive ordering of θ distortions at next near-
est neighbor fullerene sites. These static distortions are
expected to have a small amplitude and will coexist with
the rotation of JT deformations of much larger ampli-
tude at each C60. This scenario corroborate the low-
temperature NMR data for insulating fcc Cs3C60 which

evidence weak static distortions of fullerenes gradually
disappearing with the rise of temperature [19].

Finally we would like to point out that the results of
the present and previous subsections are strongly depen-
dent on the type of exchange correlation functional used
in the DFT calculations. While it is not clear for the mo-
ment what functional from the two employed here is to
be preferred for phonon calculations (there is no clear an-
swer from the literature), we notice that the use of more
involved hybrid functionals is prohibited for the present
systems due to a large number of atoms in the unit
cell (even for the highest degree of ordering of fullerene
molecules in the lattice). To unambiguously determine
the low-energy phonon dispersion, it is desired that such
calculations will become feasible.

V. DISCUSSION AND CONCLUSIONS

In this paper, we investigate for the first time the mod-
ification of JT effect on fullerene anions C3−

60 when they
are incorporated in the cubic lattices of A3C60 fullerides.
The interaction of each fullerene molecule with the envi-
ronment leads to modification of JT stabilization energy
and to the warping of the trough at each fullerene site,
as well as to the interaction of JT distortions at different
sites. We studied these effects in three fcc fullerides with
A=K,Rb,Cs and in Cs3C60 with bcc (A15) structure by
using the results of DFT calculations of orbital vibronic
coupling constants at C60 sites and of phonon spectra of
these materials. The key quantities defining the charac-
ter of JT effect in these crystals are the elastic response
parameters for local JT distortions, which are evaluated
on the basis of phonon calculations. Using these response
parameters and the vibronic coupling constants the low-
est APES has been calculated and analyzed in these ma-
terials. To this end, an expression for the lowest APES in
function of trough coordinates at the fullerene sites has
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(a)

(b)

FIG. 5. Contour plots of the warping function in Eq. (28) for
an irreducible domain of Euler angles θ and φ (a) C2−

60 ion with
cubic warping. (b) Cross section of a three-dimensional sur-
face, corresponding to the APES of C3−

60 site in cubic A3C60,
at indicated values of Euler angle χ. The lines correspond to
increasing energies for colors varying from white to black.

been derived. We found that the JT stabilization energy
increases by few percents compared to isolated C3−

60 and
a warping of the trough amounting to few meV occurs in
all investigated compounds. The interaction of JT dis-
tortions on nearest- and next-nearest-neighbor fullerene
sites is quite selective w.r.t. to their symmetry and turns
out to be of similar order of magnitude as the warping of
the APES on individual sites. All these effects are mostly
due to the interaction of C60 ions with the displacements
of neighbor alkali atoms.

The obtained results concerning the APES of A3C60

are sufficient for the description of eventual static co-
operative JT effect in such systems, i.e., the distorted
equilibrium geometry and its evolution with the temper-
ature, including the structural phase transition [20, 58].
However, in cubic fullerides the dynamical JT effect on
fullerene sites, destroying any ordering of static JT de-
formations is the most probable scenario [13, 59] because
the energy of kinetic delocalization of JT deformations
along the trough is of the order of ca 90 meV [54], which
exceeds by two orders of magnitude the interaction pa-
rameters for JT active distortions on nearest-neighbor
fullerene sites (Table VI). Given this situation, the dy-

(a) (b)

FIG. 6. Calculated barriers (a) and energies of the minimum
(b) of the lowest APES at a C3−

60 in cubic fullerides in function
of the Euler angle χ. The energy of the lowest minimum
among the investigated systems is taken as zero in (b). Solid
and dashed lines are the results of LDA and PBE calculations;
red, blue, green, and black lines correspond to fcc K3C60,
Rb3C60, Cs3C60 and A15 Cs3C60 fullerides. In (b), the solid
red and blue lines are hidden behind the solid green line; the
dashed red line is hidden behind the solid green line.

namical cooperative JT effect could be considered within
an approach using a single set of Hg modes (effective
modes) on each fullerene site [13, 54] with JT, warping
and interaction parameters derived in the present work.
One should note, however, that the latter will by further
modified when the JT dynamics on sites is considered
in a pretty similar way as the isotope substitution leads
to localization of JT distortions in perfectly equipoten-
tial troughs [60]. However, such modifications are not
expected to change the order of magnitude of the calcu-
lated parameters corresponding to static JT distortions.
We may conclude, therefore, that the present study sup-
ports the picture of weakly hindered independent rota-
tions of JT deformations at C60 sites in all A3C60.

The results obtained in this work are relevant to a num-
ber of the observable properties of insulating cubic ful-
lerides such as the NMR [19] and infrared [17, 18] spec-
tra. For instance, a weak localization of JT distortions on
fullerene sites due to their elastic coupling could slightly
lower the symmetry of C60 anions, which can be the rea-
son for the “orbital glass” behavior found in the NMR
spectra of Cs3C60 [19]. This static and dynamic sym-
metry lowering of fullerene molecules is also expected
to show up in the fine structure of infrared spectra of
insulating A3C60, the reason for which the latter have
not been completely assigned by the simulations of iso-
lated C3−

60 units [61]. Complementary information on the
JT dynamics is expected to be gained from other spec-
troscopy as well such as optical absorption, Raman and
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TABLE VI. The interaction parameter Bγ2γ1 (∆n) for nearest
neighbor fullerene sites (in meV), calculated by LDA and PBE
(parentheses).

fcc A15

K3C60 Rb3C60 Cs3C60 Cs3C60

Eθ

Eθ -0.55( -0.17) -0.52( -0.44) -0.36( -0.39) -0.01( -0.02)

Eε -0.06( 0.09) -0.03( 0.02) -0.02( 0.01) 0.15( 0.18)

Tξ -0.24( -0.30) -0.26( -0.22) -0.26( -0.24) 0.02( 0.03)

Tη 0.02( 0.04) 0.03( 0.01) 0.03( 0.02) 0.30( 0.27)

Tζ -0.01( 0.07) -0.01( 0.01) -0.02( 0.01) -0.08( -0.13)

Eε

Eε -0.06( 0.09) -0.03( 0.02) -0.02( 0.01) 0.15( 0.18)

Tξ -0.06( -0.11) -0.06( -0.04) -0.03( -0.04) 0.01( 0.01)

Tη -0.02( -0.04) -0.03( -0.01) -0.03( -0.02) -0.06( -0.09)

Tζ -0.03( -0.09) -0.03( -0.01) -0.05( -0.01) -0.05( -0.05)

Tξ

Tξ -0.50( -0.56) -0.65( -0.41) -1.04( -0.73) 0.02( -0.00)

Tη 0.10( 0.12) 0.13( 0.12) 0.15( 0.15) -0.07( -0.05)

Tζ -0.00( 0.02) 0.01( 0.06) 0.00( 0.04) -0.06( -0.04)

Tη
Tη -0.07( -0.10) -0.09( -0.08) -0.10( -0.10) -0.18( -0.14)

Tζ -0.01( 0.05) -0.01( -0.00) -0.01( 0.01) -0.01( 0.01)

Tζ Tζ -0.11( 0.08) -0.05( -0.09) 0.06( -0.06) -0.15( -0.09)

TABLE VII. The interaction parameter Bγ2γ1 (∆n) for next
nearest neighbor fullerene sites (in meV), calculated by LDA
and PBE (parentheses).

fcc A15

K3C60 Rb3C60 Cs3C60 Cs3C60

Eθ

Eθ 2.49( 0.79) 3.25( 0.50) 4.20( 1.07) 0.04( 0.04)

Eε 0.03( 0.07) 0.17( 0.05) 0.35( 0.12) 0.00( 0.02)

Tξ -0.00( -0.00) -0.00( -0.00) -0.00( -0.00) 0.03( 0.05)

Tη -0.04( -0.04) -0.04( -0.01) -0.06( -0.01) 0.03( 0.06)

Tζ 0.00( 0.00) 0.00( 0.00) -0.00( -0.00) 0.01( 0.02)

Eε

Eε 0.03( 0.07) 0.17( 0.05) 0.35( 0.12) 0.00( 0.02)

Tξ 0.00( 0.00) 0.00( 0.00) 0.00( 0.00) 0.01( 0.00)

Tη -0.05( -0.08) -0.05( -0.00) -0.08( -0.01) 0.02( 0.02)

Tζ -0.00( -0.00) -0.00( -0.00) -0.00( -0.00) 0.02( 0.05)

Tξ

Tξ -0.02( 0.08) 0.04( -0.05) 0.10( -0.00) -0.09( -0.07)

Tη -0.00( -0.01) -0.01( -0.00) -0.02( -0.01) -0.05( -0.03)

Tζ 0.05( 0.05) 0.00( -0.01) -0.01( -0.03) -0.08( -0.07)

Tη
Tη 0.03( 0.03) 0.04( 0.02) 0.03( 0.03) -0.02( -0.02)

Tζ 0.00( 0.00) 0.00( 0.00) 0.00( 0.00) -0.03( -0.02)

Tζ Tζ -0.02( 0.01) 0.00( -0.02) 0.02( -0.03) 0.03( 0.04)

inelastic neutron scattering. Further application of the
present results to the rationalization of various spectro-
scopic data of insulating fullerides will result in a thor-
ough understanding of the physics of dynamical cooper-
ative JT effect in these materials.

TABLE VIII. The contribution of acoustic modes to the total
JT stabilization energy and its components (in meV).

K3C60 Rb3C60 Cs3C60 A15

LDA PBE LDA PBE LDA PBE LDA PBE

F
a -0.1 -0.1 -0.4 -0.1 -0.8 -0.4 -0.0 -0.0

-1.4 -0.2 -2.5 -0.1 -4.2 -0.6 -0.1 -0.3

A
a -12.6 -2.4 -16.5 -0.4 -18.3 -2.3 -1.0 -1.2

-12.1 -2.3 -16.1 -0.4 -17.9 -2.3 -1.0 -1.3

FF
a -0.1 -0.1 -0.0 -0.1 -0.0 -0.1 -0.1 -0.1

-0.1 -0.1 -0.0 -0.1 -0.0 -0.1 -0.1 -0.1

A-F -0.1 -0.0 -0.4 -0.0 -0.5 -0.0 0.0 0.0

F-FF 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.0

A-FF -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0

∆EJT -12.9 -2.6 -17.3 -0.5 -19.6 -2.8 -1.1 -1.4

aThe data in the second row correspond to the neglect of
off-diagonal contributions after µ.
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Appendix A: Effect of acoustic modes on EJT and ∆

Considering only the lowest three phonon branches in
Eq. (22), we calculate their contributions to JT energies,
Eq. (23), in Table VIII, and to the warping parameters,
Eq. (29), in Table IX.
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TABLE IX. The contribution from acoustic modes to warping
parameter, ∆ac, and its components (in meV).

fcc A15

K3C60 Rb3C60 Cs3C60 Cs3C60

LDA PBE LDA PBE LDA PBE LDA PBE

F
a -0.048 -0.232 0.107 -0.263 0.256 0.093 -0.031 -0.021

0.392 -0.112 0.815 -0.130 1.379 0.174 0.008 0.049

A
a 3.747 0.407 4.824 -0.003 5.191 0.480 0.035 0.119

3.617 0.395 4.747 -0.024 5.149 0.458 0.132 0.212

FF
a -0.002 -0.015 0.005 -0.010 0.006 -0.004 0.014 0.005

-0.001 -0.006 0.002 -0.005 0.003 0.001 0.019 0.010

A-F 0.060 0.034 0.125 0.016 0.178 0.014 -0.037 0.012

F-FF -0.028 -0.059 -0.021 -0.035 -0.032 -0.051 -0.003 0.001

A-FF 0.013 0.020 0.011 0.008 0.010 0.010 -0.017 -0.016

∆ac 3.741 0.155 5.051 -0.286 5.610 0.542 -0.040 0.100

aThe data in the second row correspond to the neglect of
off-diagonal contributions after µ.
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I. CRYSTAL CONTANTS

TABLE I. Lattice constants a of A3C60 used in phonon calculations.

K3C60
1 Rb3C60

1 Cs3C60
2 A15 Cs3C60

2

a(
◦
A) 14.240 14.384 14.793 11.784

II. GENERATION AND TEST OF IONIZED PSEUDOPOTENTIAL

Energies of different elements for final consistency check were shown in Table II, from

which we could see that the energy differences of all the generated PP gave the same energy

level corresponding to AE calculation, except for Rb, of which the energy difference was less

than 0.1 mRy, nearly to zero. As a further check, the pseudized Kohn-Sham orbitals and the

logarithmic derivatives were compared, as plotted in Fig.1 and Fig.2. For both PBE and PZ

PPs, the pseudized wavefunctions (Ψnl(r), right column) went directly and smoothly to zero,

with no wiggles or other strange features. For logarithmic derivatives (Dlog, left column),

the AE orbitals and PP orbitals matched very well, and slightly deviations appeared only

at relatively high ( > 1Ry) energies.

In order to confirm good the ionized PPs were good enough for use, it should be tested

whether these generated PPs could give or not the nearly same information when applied

in real calculations of A3C60. All the calculations were performed by package Quantum

Espresso[3] with the most used calculation parameters[4,5]: 60 Ry for cutoff energy for the

wave functions, 4×4×4 for Monkhorst-Pack grids of K points with 0.010 Ry for the Gaussian

smearing. As we could see, the band structure of ionized PPs had a very good consistence

with that of general PPs provided by Quantum Espresso PP library, with a slight dismatched

at Γ point which was only about 0.02 eV, which, to some extent, showed that the generation

of ionized PPs was successful and the generated PPs behave very well in describing A3C60

system.

III. FULL PHONON DISPERSION AND ELASTIC COUPLING CONSTANTS

The full phonon dispersion for A3C60 is shown in Fig. 3. The acoustic and optical phonon

modes were transformed into the localized modes with the similar method as the construction
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of the Wannier orbitals from the band orbitals. All the elaxtic coupling constant were shown

in the attached txt files. Here is a short description for these attachements. The file were

named by the notation of “ECC” with respect to each system. Taking “ECC K PB000”

for an example, this means the information contained in this file is the elastic coupling

constants between the local vibrational modes in the origin unit cell (labelled by R =

(0, 0, 0)) and that in the next unit cell (labelled by R = (0, 0, 0)), while “ECC K PB001”

means the information contained in this file is the elastic coupling constants between the

local vibrational modes in the origin unit cell (labelled by R = (0, 0, 0)) and that in the

next unit cell (labelled by R = (0, 0, 0)). For the information listed in these files, the first

3 columns contain the information of local vibration modes. The first column labels the

symmetry type of local vibration modes, 1 for Ag, 2 for Au, 3 for Gg, 4 for Gu, 5 for Hg, 6

for Hu, 7 for T1g, 8 for T1u, 9 for T2g, 10 for T2u, 11 for translational modes, 12 for pure

rotational modes of fullerene modes, and 13 for normal modes of alkli-atoms. For A15,

there are two extra labels, which are 14 for pure rotational modes of the second fullerene

molecule sitting on the center of the unit cell, and 15 for the vibronic modes between two

types of fullerene. The second columns showed the ith order of each type of local modes.
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FIG. 1. GGA-PBE PPs, the comparation of the pseudized Kohn-Sham orbitals (Ψnl(r), right

column) and logarithmic derivatives (Dlog, left column) for C, K, Rb, and Cs. Solid line and

dashed line represented the calculation from PPs and AE, correspondingly, and black, red, and

blue accounted for s, p, and d orbital, respectively.
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And the third column had the vibrational frequency, main fro the local modes obtained

within fullerene molecule, of which we set all the frequencies for the vibrational modes of

translational, pure rotational and alkli-atoms to 0. The unit for the frequencies are cm−1,

for the elastic coupling constants are Rydberg.

IV. JT ACTIVE VIBRATION MODES

A. JT active vibration modes of Fullerene

The symmetrization of the mass-weighted normal modes were done by using projection

operator. The symmetrized normal modes were shown below (Figs. 4 and 5).
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FIG. 2. LDA-PZ PPs, the comparation of the pseudized Kohn-Sham orbitals (Ψnl(r), right

column) and logarithmic derivatives (Dlog, left column) for C, K, Rb, and Cs. Solid line and

dashed line represented the calculation from PPs and AE, correspondingly, and black, red, and

blue accounted for s, p, and d orbital, respectively.
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FIG. 4. Schematic representation of Ag modes
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B. Symmetry adapted alkali JT active modes

Structures and coordinates of octahedron and cube are shown in Fig. 6 ((a) and (b)) and

Table IV.

FIG. 6. Structures of alkali atom in both FCC and BCC structures. (a) and (b) correspond to

octahedron and cube, respectively, and (c) represents pseudo-octahedron.
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TABLE IV. Coordinates of octahedron, cube and pseudo-octahedron Akali atoms.

octahedron cube pseudo-octahedron

A1 (1, 0, 0) 1/2(1, 1, 1) 1/4(2, 1, 0)

A2 (−1, 0, 0) 1/2(1, 1,−1) 1/4(2, 1, 0)

A3 (0, 1, 0) 1/2(1,−1, 1) 1/4(−2,−1, 0)

A4 (0,−1, 0) 1/2(1,−1,−1) 1/4(−2, 1, 0)

A5 (0, 0, 1) 1/2(−1, 1, 1) 1/4(0,−2, 1)

A6 (0, 0,−1) 1/2(−1, 1,−1) 1/4(0, 2,−1)

A7 - 1/2(−1,−1, 1) 1/4(0, 2, 1)

A8 - 1/2(−1,−1,−1) 1/4(0,−2,−1)

A9 - 1/2(−1,−1,−1) 1/4(−1, 0,−2)

A10 - 1/2(−1,−1,−1) 1/4(1, 0,−2)

A11 - 1/2(−1,−1,−1) 1/4(−1, 0, 2)

A12 - 1/2(−1,−1,−1) 1/4(1, 0, 2)

The irreducible representation of LUMO is t1u. The orbital couples to A1g, Eg, and T2g

vibrational modes. And the symmetry adapted vibrational vectors for cube, octahedron,

and pseudo-octahedron are given in Tables V, VI, and VII, respectively.

TABLE V. Symmetry adapted modes of octahedron

a1g eg t2g

θ ε ζ

A1 1√
6
(1, 0, 0) 1

2
√
3
(−1, 0, 0) 1

2(1, 0, 0) 1
2(0, 1, 0)

A2 1√
6
(−1, 0, 0) 1

2
√
3
(1, 0, 0) 1

2(−1, 0, 0) 1
2(0,−1, 0)

A3 1√
6
(0, 1, 0) 1

2
√
3
(0,−1, 0) 1

2(0,−1, 0) 1
2(1, 0, 0)

A4 1√
6
(0,−1, 0) 1

2
√
3
(0, 1, 0) 1

2(0, 1, 0) 1
2(−1, 0, 0)

A5 1√
6
(0, 0, 1) 1

2
√
3
(0, 0, 2) (0, 0, 0) (0, 0, 0)

A6 1√
6
(0, 0,−1) 1

2
√
3
(0, 0,−2) (0, 0, 0) (0, 0, 0)
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TABLE VI. Symmetry adapted modes of cube

a1g eg t2g(1) t2g(2)

θ ε

A1 1√
24

(1, 1, 1) 1√
48

(−1,−1, 2) 1
4(1,−1, 0) 1√

24
(1, 1, 1) 1√

48
(1, 1,−2)

A2 1√
24

(1, 1,−1) 1√
48

(−1,−1,−2) 1
4(1,−1, 0) 1√

24
(1, 1,−1) 1√

48
(1, 1, 2)

A3 1√
24

(1,−1, 1) 1√
48

(−1, 1, 2) 1
4(1, 1, 0) 1√

24
(−1, 1,−1) 1√

48
(−1, 1, 2)

A4 1√
24

(1,−1,−1) 1√
48

(−1, 1,−2) 1
4(1, 1, 0) 1√

24
(−1, 1, 1) 1√

48
(−1, 1,−2)

A5 1√
24

(−1, 1, 1) 1√
48

(1,−1, 2) 1
4(−1,−1, 0) 1√

24
(1,−1,−1) 1√

48
(1,−1, 2)

A6 1√
24

(−1, 1,−1) 1√
48

(1,−1,−2) 1
4(−1,−1, 0) 1√

24
(1,−1, 1) 1√

48
(1,−1,−2)

A7 1√
24

(−1,−1, 1) 1√
48

(1, 1, 2) 1
4(−1, 1, 0) 1√

24
(−1,−1, 1) 1√

48
(−1,−1,−2)

A8 1√
24

(−1,−1,−1) 1√
48

(1, 1,−2) 1
4(−1, 1, 0) 1√

24
(−1,−1,−1) 1√

48
(−1,−1, 2)
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TABLE VII. Symmetry adapted modes of pseudo-octahedron

Ag(1) Egθ(1) Egε(1)

A1 0.000000 0.247154 -0.149159 0.000000 0.149157 0.247155 -0.000000 0.009650 0.193490

A2 0.000000 -0.247154 -0.149159 0.000000 -0.149157 0.247155 -0.000000 -0.009650 0.193490

A3 0.000000 0.247154 0.149159 0.000000 0.149157 -0.247155 -0.000000 0.009660 -0.193490

A4 0.000000 -0.247154 0.149159 0.000000 -0.149157 -0.247155 -0.000000 -0.009650 -0.193490

A5 -0.149159 0.000000 0.247154 0.247155 0.000000 0.149157 0.202060 -0.000000 0.082150

A6 -0.149159 0.000000 -0.247154 0.247155 0.000000 -0.149157 0.202060 -0.000000 -0.082150

A7 0.149159 0.000000 0.247154 -0.247155 0.000000 0.149157 -0.202060 -0.000000 0.082150

A8 0.149159 0.000000 -0.247154 -0.247155 0.000000 -0.149157 -0.202060 -0.000000 -0.082150

A9 0.247154 -0.149159 0.000000 0.149157 0.247155 0.000000 -0.091800 -0.395550 -0.000000

A10 -0.247154 -0.149159 0.000000 -0.149157 0.247155 0.000000 0.091800 -0.395550 -0.000000

A11 0.247154 0.149159 0.000000 0.149157 -0.247155 0.000000 -0.091800 0.395550 -0.000000

A12 -0.247154 0.149159 0.000000 -0.149157 -0.247155 0.000000 0.091800 0.395550 -0.000000

Ag(2) Egθ(2) Egε(2)

A1 0.000000 -0.100430 -0.345030 -0.000000 0.126520 -0.068090 0.000000 0.374810 -0.074450

A2 0.000000 0.100430 -0.345030 -0.000000 -0.126520 -0.068090 0.000000 -0.374810 -0.074450

A3 0.000000 -0.100430 0.345030 -0.000000 0.126520 0.068090 0.000000 0.374810 0.074450

A4 0.000000 0.100430 0.345030 -0.000000 -0.126520 0.068090 0.000000 -0.374810 0.074450

A5 0.340090 0.000000 0.058580 -0.030430 -0.000000 0.261330 0.096200 0.000000 -0.296970

A6 0.340080 0.000000 -0.058580 -0.030430 -0.000000 -0.261330 0.096200 0.000000 0.296970

A7 -0.340080 0.000000 0.058580 0.030430 -0.000000 0.261330 -0.096200 0.000000 -0.296970

A8 -0.340080 0.000000 -0.058580 0.030430 -0.000000 -0.261330 -0.096200 0.000000 0.296970

A9 0.041860 0.004950 0.000000 -0.387850 0.098520 -0.000000 -0.077840 -0.021740 0.000000

A10 -0.041860 0.004950 0.000000 0.387850 0.098530 -0.000000 0.077830 -0.021740 0.000000

A11 0.041860 -0.004950 0.000000 -0.387850 -0.098520 -0.000000 -0.077830 0.021740 0.000000

A12 -0.041860 -0.004950 0.000000 0.387850 -0.098530 -0.000000 0.077830 0.021740 0.000000

T2gξ(1) T2gξ(2) T2gξ(3)

A1 0.000000 -0.183513 0.143035 0.034419 -0.000000 -0.000000 0.441224 0.000000 0.000000

A2 0.000000 -0.183513 -0.143035 0.034419 -0.000000 -0.000000 -0.441224 0.000000 0.000000

A3 0.000000 0.183513 0.143035 -0.034419 -0.000000 -0.000000 0.441224 0.000000 0.000000

A4 0.000000 0.183513 -0.143035 -0.034419 -0.000000 -0.000000 -0.441224 0.000000 0.000000

A5 0.000000 0.441225 0.000000 -0.143036 -0.000000 0.183517 0.000000 -0.034417 0.000000

A6 0.000000 -0.441225 0.000000 0.143036 -0.000000 0.183517 0.000000 -0.034417 0.000000

A7 0.000000 0.441225 0.000000 -0.143036 -0.000000 -0.183517 0.000000 0.034417 0.000000

A8 0.000000 -0.441225 0.000000 0.143036 -0.000000 -0.183517 0.000000 0.034417 0.000000

A9 0.000000 0.000000 -0.034417 -0.000000 -0.000000 -0.441223 -0.183514 0.143037 0.000000

A10 0.000000 0.000000 -0.034417 -0.000000 -0.000000 0.441223 -0.183514 -0.143037 0.000000

A11 0.000000 0.000000 0.034417 -0.000000 -0.000000 -0.441223 0.183514 0.143037 0.000000

A12 0.000000 0.000000 0.034417 -0.000000 -0.000000 0.441223 0.183514 -0.143037 0.000000
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And the symmetry adapted vibrational vectors for inter-fullerence in FCC and A15 cases

are given in Tables VIII, IX, respectively.
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TABLE VIII. Symmetry adapted modes of inter-fullerene of FCC fullerides.

Ag Egθ(1) Egε(1)

A1 0.000000 0.204124 0.204124 -0.000000 -0.142461 -0.146206 0.000000 -0.251075 -0.248911

A2 0.000000 -0.204124 0.204124 -0.000000 0.142461 -0.146206 0.000000 0.251075 -0.248911

A3 0.000000 -0.204124 -0.204124 -0.000000 0.142461 0.146206 0.000000 0.251075 0.248911

A4 0.000000 0.204124 -0.204124 -0.000000 -0.142461 0.146206 0.000000 -0.251075 0.248911

A5 0.204124 0.000000 0.204124 -0.142461 -0.000000 -0.146206 0.251075 0.000000 0.248911

A6 -0.204124 0.000000 0.204124 0.142461 -0.000000 -0.146206 -0.251075 0.000000 0.248911

A7 -0.204124 0.000000 -0.204124 0.142461 -0.000000 0.146206 -0.251075 0.000000 -0.248911

A8 0.204124 0.000000 -0.204124 -0.142461 -0.000000 0.146206 0.251075 0.000000 -0.248911

A9 0.204124 0.204124 0.000000 0.288667 0.288667 -0.000000 0.002164 -0.002164 0.000000

A10 -0.204124 0.204124 0.000000 -0.288667 0.288667 -0.000000 -0.002164 -0.002164 0.000000

A11 -0.204124 -0.204124 0.000000 -0.288667 -0.288667 -0.000000 -0.002164 0.002164 0.000000

A12 0.204124 -0.204124 0.000000 0.288667 -0.288667 -0.000000 0.002164 0.002164 0.000000

Egθ(2) Egε(2) T2gξ(1)

A1 -0.000000 -0.251074 0.248911 0.000000 -0.142457 0.146210 0.000000 0.348929 0.348929

A2 -0.000000 0.251074 0.248911 0.000000 0.142457 0.146210 0.000000 0.348929 -0.348929

A3 -0.000000 0.251074 -0.248911 0.000000 0.142457 -0.146210 0.000000 -0.348929 -0.348929

A4 -0.000000 -0.251074 -0.248911 0.000000 -0.142457 -0.146210 0.000000 -0.348929 0.348929

A5 -0.251074 -0.000000 0.248911 0.142457 0.000000 -0.146210 0.000000 0.056999 0.000000

A6 0.251074 -0.000000 0.248911 -0.142457 0.000000 -0.146210 0.000000 0.056999 0.000000

A7 0.251074 -0.000000 -0.248911 -0.142457 0.000000 0.146210 0.000000 -0.056999 0.000000

A8 -0.251074 -0.000000 -0.248911 0.142457 0.000000 0.146210 0.000000 -0.056999 0.000000

A9 0.002163 0.002163 -0.000000 0.288667 -0.288667 0.000000 0.000000 0.000000 0.056999

A10 -0.002163 0.002163 -0.000000 -0.288667 -0.288667 0.000000 0.000000 0.000000 0.056999

A11 -0.002163 -0.002163 -0.000000 -0.288667 0.288667 0.000000 0.000000 0.000000 -0.056999

A12 0.002163 -0.002163 -0.000000 0.288667 0.288667 0.000000 0.000000 0.000000 -0.056999

T2gξ(2) - -

A1 0.056997 0.000000 0.000000 - -

A2 0.056997 0.000000 0.000000 - -

A3 -0.056997 0.000000 0.000000 - -

A4 -0.056997 0.000000 0.000000 - -

A5 0.348929 0.000000 0.348929 - -

A6 0.348929 0.000000 -0.348929 - -

A7 -0.348929 0.000000 -0.348929 - -

A8 -0.348929 0.000000 0.348929 - -

A9 0.000000 0.000000 0.056997 - -

A10 0.000000 0.000000 -0.056997 - -

A11 0.000000 0.000000 -0.056997 - -

A12 0.000000 0.000000 0.056997 - -
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TABLE IX. Symmetry adapted modes of inter-fullerene of A15.

Ag Egθ Egε

A1 0.204124 0.204124 0.204124 -0.144338 -0.144338 0.288675 0.250000 -0.250000 0.000000

A2 -0.204124 0.204124 0.204124 0.144338 -0.144338 0.288675 -0.250000 -0.250000 0.000000

A3 0.204124 0.204124 -0.204124 -0.144338 -0.144338 -0.288675 0.250000 -0.250000 0.000000

A4 -0.204124 0.204124 -0.204124 0.144338 -0.144338 -0.288675 -0.250000 -0.250000 0.000000

A5 0.204124 -0.204124 0.204124 -0.144338 0.144338 0.288675 0.250000 0.250000 0.000000

A6 -0.204124 -0.204124 0.204124 0.144338 0.144338 0.288675 -0.250000 0.250000 0.000000

A7 0.204124 -0.204124 -0.204124 -0.144338 0.144338 -0.288675 0.250000 0.250000 0.000000

A8 -0.204124 -0.204124 -0.204124 0.144338 0.144338 -0.288675 -0.250000 0.250000 0.000000

T2gξ(1) T2gξ(2) -

A1 0.204124 0.204124 0.204124 0.144338 0.144338 -0.288675 -

A2 0.204124 -0.204124 -0.204124 0.144338 -0.144338 0.288675 -

A3 0.204124 0.204124 -0.204124 0.144338 0.144338 0.288675 -

A4 0.204124 -0.204124 0.204124 0.144338 -0.144338 -0.288675 -

A5 -0.204124 0.204124 -0.204124 -0.144338 0.144338 0.288675 -

A6 -0.204124 -0.204124 0.204124 -0.144338 -0.144338 -0.288675 -

A7 -0.204124 0.204124 0.204124 -0.144338 0.144338 -0.288675 -

A8 -0.204124 -0.204124 -0.204124 -0.144338 -0.144338 0.288675 -

V. ELASTIC COUPLING INFORMATION

VI. ADIABATIC POTENTIAL OF ISOLATED TRIVALENT C60

The adiabatic potential energy surface of isolated C3−
60 is calculated. The model Hamil-

tonian consists of harmonic potential, Hund coupling ĤH, and linear Jahn-Teller coupling

V̂h = V̂e + V̂t. The explicit forms of the Hund and Jahn-Teller couplings are given in Eqs.

((3) and (4) in the main text, respectively. The vibronic coupling parameters for the e and

t2 modes are the same, Ve = Vt = V .

For the analysis of the adiabatic potential energy surface, it is convenient to use the
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adiabatic orbitals which diagonalizes V̂h:

ĤJT =
∑

σ

V q
(
â†1σ, â

†
2σ, â

†
3σ

)



− cos
(
α− 2π

3

)
0 0

0 − cos
(
α + 2π

3

)
0

0 0 − cosα







â1σ

â2σ

â3σ


 . (1)

q is the length of the Hg normal coordinates. See for details, Refs. O’Brien 1971, Auerbach

1994, O’Brien 1996, Iwahara 2018.

When the adiabatic orbitals are populated by three electrons without Jahn-Teller defor-

mations, the Hund coupling splits the electron configurations into 4S, 2D and 2P terms.

The Jahn-Teller effect is relevant to the doublet terms: The 2P term is higher in energy by

2JH than 2D term.

The electronic states for the 2D terms are expressed by

1√
6

(
2â†1↓â

†
2↑â
†
3↑ − â†1↑â†2↓â†3↑ − â†1↑â†2↑â†3↓

)
,

1√
2

(
â†1↑â

†
2↓â
†
3↑ − â†1↑â†2↑â†3↓

)
,

1√
2

(
â†1↑â

†
2↑â
†
1↓ − â†2↑â†3↑â†3↓

)
,

1√
2

(
â†2↑â

†
3↑â
†
2↓ − â†3↑â†1↑â†1↓

)
,

1√
2

(
â†3↑â

†
1↑â
†
3↓ − â†1↑â†2↑â†2↓

)
,

(2)

and those for the 2P term are

1√
2

(
â†3↑â

†
1↑â
†
3↓ + â†1↑â

†
2↑â
†
2↓

)
,

1√
2

(
â†1↑â

†
2↑â
†
1↓ + â†2↑â

†
3↑â
†
3↓

)
,

1√
2

(
â†2↑â

†
3↑â
†
2↓ + â†3↑â

†
1↑â
†
1↓

)
.

(3)

With the use of the multiplet states as the basis, the Jahn-Teller coupling matrix is written

as

(Vh)PD = V q




0 0 0 0 − sin
(
α + π

6

)
− cosα

0 0 sin
(
−α + π

6

)
+ cosα 0 0

0 0 0
√

3 sinα 0


 ,

(Vh)DP = [(Vh)DP ]T . (4)

The diagonal 3× 3 and 5× 5 blocks for the P and D terms are zero.

The eigenvalues of HH + Vh for the spin doublet terms are given as

0, 0, JH ∓
√
J2
H + 3 [V q sinα]2,

JH ∓
√
J2
H + 3

[
V q cos

(
α +

π

6

)]2
, JH ∓

√
J2
H + 3

[
V q cos

(
α− π

6

)]2
. (5)
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The minima of the APES locate at (elastic energy ω2q2/2 is considered too)

(q, α) =



√

3V

ω2

√
1−

(
JH

3V 2/ω2

)2

,
π

2


 , (6)

with the Jahn-Teller stabilization energy

E
(3)
JT = JH −

3V 2

2ω2
− J2

H

6V 2/ω2
. (7)

The 2D term energy is used as the origin of the energy.
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TABLE II. Comparation of the final energy of all electron calculation (AE) EAE , pseudopoten-

tial calculation (PS) EPS , and the absolute difference between them ∆E for difference exchange-

correlation functional (PBE and PZ) and difference elements (C, K, Rb, and Cs). n, l were principal

quantum number and angular quantum number for pseudopotential, respectively. nl was the con-

figuration of all-electron. Occu was the occupation of electron in the state. All the unit for energy

was Ry

Exc n l nl Occu EAE EPS ∆E

C

PBE
1 0 2S 1(2.00) -1.00980 -1.00980 0.00000

2 1 2P 1(2.00) -0.38872 -0.38872 0.00000

PZ
1 0 2S 1(2.00) -1.00195 -1.00195 0.00000

2 1 2P 1(2.00) -0.39860 -0.39860 0.00000

K

PBE

2 1 3P 1(6.00) -1.82985 -1.82985 0.00000

3 2 3D 1(0.00) -0.28335 -0.28335 0.00000

1 0 4S 1(0.00) -0.45444 -0.45444 0.00000

PZ

2 1 3P 1(6.00) -1.83622 -1.83622 0.00000

3 2 3D 1(0.00) -0.28975 -0.28975 0.00000

1 0 4S 1(0.00) -0.44778 -0.44778 0.00000

Rb

PBE

2 1 4P 1(6.00) -1.59127 -1.59128 0.00001

2 0 5S 1(0.00) -0.44447 -0.44453 0.00006

3 2 4D 1(0.00) -0.27500 -0.27499 0.00001

PZ

2 1 4P 1(6.00) -1.60172 -1.60173 0.00001

2 0 5S 1(0.00) -0.44245 -0.44255 0.00009

3 2 4D 1(0.00) -0.27829 -0.27827 0.00001

Cs

PBE

2 1 5P 1(6.00) -1.37222 -1.37223 0.00000

2 0 6S 1(0.00) -0.41445 -0.41445 0.00000

3 2 5D 1(0.00) -0.32319 -0.32319 0.00000

PZ

2 1 5P 1(6.00) -1.38411 -1.38412 0.00000

2 0 6S 1(0.00) -0.41523 -0.41523 0.00000

3 2 5D 1(0.00) -0.32893 -0.32893 0.00000
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TABLE III. Phonon frequencies (cm−1) of Hg modes at the Γ point calculated by density functional

perturbation theory (DFPT) with LDA and PBE exchange-correlation functionals (denoted by

superscipts L and P in the first column, respectively) compared with the results of calculations by

Nomura and Arita4 and experimental frequencies.

DFT exp.

present Nomura et al

Mode K3C60 Rb3C60 Cs3C60 K3C60 Rb3C60 Cs3C60 K3C60 Rb3C60 Cs3C60

Eg Tg Eg Tg Eg Tg

HL
g (1) 257 269 256 266 254 265 257, 268 255, 267 256,277

268a 263b, 265c –
HP
g (1) 257 274 256 271 252 267 – – –

HL
g (2) 407 403 404 403 394 397 423, 425 422, 423 422, 425

416a 415b, 395c 418b

HP
g (2) 406 401 399 402 391 391 – – –

HL
g (3) 653 657 660 658 649 650 683, 686 683, 686 686, 688

712a 713c –
HP
g (3) 637 642 636 641 629 632 – – –

HL
g (4) 777 778 771 769 772 768 777, 778 777, 778 780, 788

752a 749b, 743c –
HP
g (4) 770 768 762 758 761 755 – – –

HL
g (5) 1107 1103 1096 1090 1093 1085 1110,1114 1110,1114 1116,1125

– – –
HP
g (5) 1094 1087 1071 1081 1076 1065 – – –

HL
g (6) 1270 1263 1246 1240 1241 1237 1267,1273 1267,1272 1277,1283

– – –
HP
g (6) 1251 1240 1224 1216 1217 1211 – – –

HL
g (7) 1382 1380 1361 1363 1357 1354 1402,1407 1403,1405 1415,1415

1409a – –
HP
g (7) 1357 1353 1333 1334 1327 1323 – – –

HL
g (8) 1521 1518 1512 1515 1512 1515 1531,1536 1531,1535 1541,1544

1550a – –
HP
g (8) 1499 1497 1486 1491 1484 1488 – – –

a Ref.6

b Ref.7,8

c Ref.9
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TABLE X. Effective frequencies extracted from corresponding elastic response parameters ζ,

compared with the frequencies of isolated C60 (in cm−1). Calculations are done with LDA and

PBE (in the parentheses) functionals.

K3C60 Rb3C60 Cs3C60 Cs3C60 (A15) Isolated C60

IntraC60

Ag(1) 497( 488) 492( 490) 491( 488) 496( 489) 496

Ag(2) 1468( 1427) 1448( 1440) 1446( 1438) 1472( 1444) 1470

Hg(1) 256( 254) 255( 255) 253( 251) 254( 252) 273

Hg(2) 403( 402) 402( 399) 394( 390) 398( 393) 437

Hg(3) 653( 641) 656( 639) 649( 630) 656( 636) 710

Hg(4) 765( 748) 755( 748) 749( 740) 755( 742) 774

Hg(5) 1104( 1078) 1093( 1078) 1088( 1071) 1092( 1076) 1099

Hg(6) 1279( 1233) 1256( 1234) 1254( 1229) 1257( 1232) 1250

Hg(7) 1335( 1285) 1301( 1275) 1270( 1239) 1289( 1253) 1428

Hg(8) 1455( 1407) 1427( 1399) 1400( 1365) 1418( 1380) 1575

Akali:cube

Ag 116( 97) 83( 99) 65( 74) - -

Eg 111( 96) 78( 93) 61( 70) - -

T2g(1) 104( 93) 73( 86) 55( 63) - -

T2g(2) 107( 95) 76( 88) 58( 66) - -

Akali:oct

Ag 32( 39) 17( 58) 11( 27) - -

Eg 28( 46) 16( 49) 11( 26) - -

T2g 30( 41) 17( 54) 12( 26) - -

Akali:poct

Ag(1) - - - 36( 37) -

Ag(2) - - - 40( 40) -

Eg(1) - - - 51( 52) -

Eg(2) - - - 32( 32) -

T2g(1) - - - 48( 55) -

T2g(2) - - - 43( 49) -

T2g(3) - - - 44( 51) -

InerC60:FCC

Ag(1) 43( 49) 43( 53) 39( 48) - -

Eg(1) 35( 35) 32( 41) 26( 33) - -

Eg(2) 35( 36) 33( 42) 29( 35) - -

T2g(1) 34( 35) 33( 41) 28( 34) - -

T2g(2) 40( 43) 39( 48) 34( 42) - -

InerC60:A15

Ag(1) - - - 21( 24) -

Eg(1) - - - 21( 24) -

T2g(1) - - - 29( 32) -

T2g(2) - - - 31( 34) -
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