
Signatures of bath-induced quantum avalanches in a many-body–localized system
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Strongly correlated systems can exhibit surprising phenomena when brought in a state far from
equilibrium. A spectacular example are quantum avalanches, that have been predicted to run
through a many-body–localized system and delocalize it. Quantum avalanches occur when the
system is locally coupled to a small thermal inclusion that acts as a bath. Here we realize an
interface between a many-body–localized system and a thermal inclusion of variable size, and study
its dynamics. We find evidence for accelerated transport into the localized region, signature of a
quantum avalanche. By measuring the site-resolved entropy we monitor how the avalanche travels
through the localized system and thermalizes it site by site. Furthermore, we isolate the bath-
induced dynamics by evaluating multipoint correlations between the bath and the system. Our
results have fundamental implications on the robustness of many-body–localized systems and their
critical behavior.

One of the founding principles of statistical physics is
that a generic macroscopic system can equilibrate on its
own. This means that local fluctuations of energy, mag-
netization, or particle density can relax towards thermal
equilibrium because interactions allow different parts of
the system to serve as reservoirs to each other. This uni-
versal picture has been challenged by the idea of many-
body localization (MBL), which suggests that systems
with strong disorder can evade thermalization even in
the presence of interactions [1–9].

In one-dimensional systems, a stable MBL phase can
be argued as follows: Matrix elements of local operators
decay exponentially with separation between two points,
whereas the density of states increases exponentially with
the system size. For strong disorder, matrix elements can
thus be argued to decay faster than the density of states
increases, ultimately inhibiting relaxation. However, the
existence of MBL remains a subject of debate [10–17],
since it is unclear whether those conditions can actually
be fulfilled. For instance, by introducing a small region
with weak disorder, part of the system may be delocalized
and thus give rise to local operators with non-exponential
decay [18–28]. Those weakly disordered regions occur
naturally in randomly disordered systems, when poten-
tial offsets on consecutive lattice sites accidentally co-
incide [29, 30]. The dynamics in MBL systems in the
presence of a locally thermalizing region have been pre-
dicted to occur in so-called quantum avalanches, which
imply those small islands grow by absorbing nearby disor-
dered regions [31–35]. Under which conditions quantum
avalanches can arise, run out of steam, or propagate with-
out halt determines the ultimate fate of MBL at very long
times. Their understanding is thus closely connected to
discerning thermalization in interacting many-body sys-
tems.

Bath-induced relaxation dynamics can often be cap-
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FIG. 1. Bath-induced quantum avalanches. a, Two sce-
narios at an interface of a thermal bath (clean) and a localized
(disordered) region: a weak bath penetrates logarithmically
slow and localization remains robust (left), or an avalanche
from a strong bath thermalizes the disordered region site by
site (right). b, Fluorescence pictures of a two-dimensional
Mott insulator at unity filling, and of the initialized one-
dimensional system of L sites. Projected optical potentials
isolate the system and apply site-resolved offsets onto the dis-
ordered region (blue). c, The initial state is brought far from
equilibrium through a quantum quench by abruptly enabling
tunneling along all links, then evolved under the Hamiltonian,
until we detect the site-resolved atom number with a fluores-
cence picture. d, The system’s dynamics are governed by
the Bose-Hubbard model with tunneling energy J and on-site
interaction energy U , extended by a disorder potential with
amplitude W in the disordered region.
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FIG. 2. Accelerated transport across the clean-disorder interface. a, Density correlations for all pairs of sites in
a system consisting of Lclean = Ldis = 6 at disorder strength W = 9.1 J . After a quantum quench, an uncorrelated initial
state (left) develops separate dynamics within each subsystem (center), followed by particle transport across the clean-disorder

interface (grey dashed lines) for evolution times � Lclean, Ldis (right). Cuts show the total density correlations g(2)(i) of the
clean region with site i (i.e. average of top six rows, excluding diagonal entries), featuring homogeneous coupling among the
clean sites, and exponentially decaying anti-correlations with the distance of the disordered site from the interface. b, The
decay length ξd of the total density correlations increases first logarithmically in time and accelerates at long evolution times.
c, The decay length ξd after an evolution time of 100τ grows with Lclean, indicating improved particle transport into the
disordered region. The data point at Lclean = 0 and the dashed line show the localization length of an isolated MBL system.
Solid lines (bars in panel c) show the prediction from exact numerics without free parameters. Error bars denote the s.e.m.
(below the marker size in panel a).

tured semi-classically in the context of Fermi’s golden
rule. In an isolated MBL system particle rearrangements
are restricted to the length scales of the order of the local-
ization length ξloc. The relaxation rate Γi of a lattice site
at distance i coupled to the bath is captured by Fermi’s
golden rule Γi = g2i ρbath. Here, the coupling for a re-
laxation process on site i away from the bath leading to
a transfer of energy or particles into the bath is set by
gi ∝ Je−i/ξloc . The density of states in the thermal re-
gion is exponential in its size, i.e. ρbath ∝ J−1eαLbath

with a constant α. This model implies that site i shows
relaxation after a time Ti = 1/Γi, or equivalently, after
an evolution time T we expect relaxation on the sites up
to the distance dFGR(T ) ∼ ξloc log(J2ρbathT ). In con-
clusion, within a perturbative description MBL remains
robust against a local bath, with a bath penetration into
the MBL region that increases only logarithmically in
time. Quantum avalanches, however, are predicted to
emerge from dynamics beyond Fermi’s golden rule. As
the bath begins to delocalize neighboring disordered sites,
the size of the thermalizing bath expands, leading to an
increase in its density of states.

In this work we explore the dynamics of an MBL sys-
tem coupled to a thermal bath (Fig. 1). We observe phe-
nomena that suggest the presence of non-perturbative
avalanche processes, while other features of dynamics
can be explained using the perturbative Fermi’s golden

rule. Our experimental protocol starts by preparing a
Mott-insulating state with one 87Rb atom on each site
of a two-dimensional optical lattice (Fig. 1b). The sys-
tem is placed in the focus of a high-resolution imaging
system through which we project site-resolved repulsive
potentials on individual lattice sites. We isolate a one-
dimensional system of L lattice sites from the Mott insu-
lator and add potential offsets to the lattice sites. At this
point, the system remains in a product state of one atom
per lattice site. We then perform a quantum quench by
abruptly reducing the lattice depth (Fig. 1c). The sub-
sequent non-equilibrium dynamics are described by the
Bose-Hubbard Hamiltonian:

Ĥ = −J
∑
i

(
â†i âi+1 + h.c.

)
+
U

2

∑
i

n̂i (n̂i − 1) +W
∑
i∈Ldis

hin̂i,

where â†i (âi) is the creation (annihilation) operator for a

boson on site i, and n̂i = â†i âi is the particle number op-
erator. The first term describes the tunneling between all
neighboring lattice sites, and the second term represents
the on-site repulsive interactions. The last term intro-
duces a site-resolved energy offset. We set hi = 0 for all
lattice sites in the clean region of size Lclean, whereas the
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energy offsets in the disordered region of size Ldis follow
a quasi-periodic disorder distribution hi = cos(2πβi+φ)
with 1/β ≈ 1.618, phase φ and amplitude W . The quasi-
periodic distribution avoids nearby lattice sites to co-
incidentally have similar energy offsets, which inhibits
the presence of secondary rare regions within the disor-
dered region [36]. After a variable evolution time, we
read out the site-resolved atom number by fluorescence
imaging. The applied unitary evolution preserves the
initial purity of 99.1(2)% per site [7, 37]. All observ-
ables are disorder-averaged by realizing potential with
different φ. The tunneling time τ = ~/J = 4.3(1) ms
(with the reduced Planck constant ~), the interaction
strength U = 2.87(3) J , and the number of disordered
sites Ldis = 6 remain constant in all experiments.

We first use the full site-resolved readout of our mi-
croscope to investigate the local transport dynamics in
the system. The connected density-density correlations
〈n̂in̂j〉c = 〈n̂in̂j〉 − 〈n̂i〉〈n̂j〉 detects correlations between
the particle numbers on site i and j [9]. Negative values
of 〈n̂in̂j〉c signal anti-correlated density fluctuations, and
thus particles motion between the involved sites (Fig. 2a).
In the following, we consider a system with Lclean = 6
at disorder strength W = 9.1 J after different evolution
times T after the quantum quench. At the beginning
of the evolution (T = 0τ), we do not detect any cor-
relations, because the initial state is a product state.
After short evolution times (T . τL), we observe the
buildup of spatially dependent anti-correlations in the
system. Within the clean region all lattice sites develop
mutual anti-correlations, signaling delocalizing particles.
In contrast, the anti-correlations in the disordered region
remain short-ranged, indicating localized particles. At
this time, we do not detect significant anti-correlations
between the clean and the disordered region.

The situation changes for long evolution times (T �
τL), where the correlations in the clean region have
spread out evenly among all pairs of lattice sites, signal-
ing homogeneously delocalized particles. Furthermore,
we observe the buildup of anti-correlations between lat-
tice sites in the clean and the disordered region, evi-
dence for transport dynamics across the interface. Each
of the disordered sites is equally anti-correlated to all
clean sites, which suggests that the clean region acts as
a homogeneous bath for the disordered region. Moti-
vated by this picture, we extract the total correlations
of the clean region g(2)(i) =

∑
j∈Lclean

〈n̂in̂j〉c by taking
the sum of the correlations of each site with all clean
sites (Fig. 2b cute). The results show a decay with dis-
tance from the clean region, in agreement with the Fermi
golden rule picture of exponentially decaying couplings
between bath and MBL.

While a static bath spectrum causes bath correla-
tions to penetrate MBL logarithmically in time, a sig-
nature of the quantum avalanche is an accelerated in-
crease, faster than logarithmically in time. In order to
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FIG. 3. Site-resolved thermalization dynamics. a, The
atom number probability distribution for the edge sites in
the clean region (left) and the disordered region (right), mea-
sured after 100τ in a system consisting of Lclean = Ldis = 6
at disorder strength W = 9.1 J . b, Local entropy per particle
si = −

∑
n pn log pn/〈n̂i〉 extracted from the atom number

distribution on site i. The entropy grows after a stationary
evolution whose length depends on the distance from the in-
terface (indicated by the grey dashed line). Traces are verti-
cally offset for better readability. c, Local entropy si (offset
by si(T = 1τ)) for all disordered sites. Solid lines (bars in
panel a) show the prediction from exact numerics without
free parameters. Error bars denote the s.e.m. (below the
marker size in panel a).

test this picture, we quantify the correlation decay into
the disordered region by measuring the average distance
ξd =

∑
i∈Ldis

ig(2)(i) from the clean region over which
anti-correlations form (Fig. 2b). At short times the decay
length ξd increases logarithmically in time, but acceler-
ates at long evolution times — signature for the emer-
gence of a quantum avalanche.

The size Lclean determines the number of degrees of
freedom of the initial thermal region, and thus the spec-
tral density of the thermal bath. While a bath of small
number of degrees of freedom can only couple to dis-
ordered sites at distances on the order of the localiza-
tion length ξloc, larger baths are expected to significantly
exceed this length scale. The perturbative picture pre-
dicts that ξd ∝ ξloc log(Jρbath) ∝ ξloc × Lclean, therefore
a deviation from this proportionality can be regarded
as evidence for non-perturbative dynamics in form of
avalanches. In order to investigate this effect, we real-
ize systems with different Lclean, while keeping Ldis = 6
constant (Fig. 2c). For each system size, we characterize
the particle transport by measuring ξd after an evolution
time of 100(1)τ . Our results show an increasing value of
ξd for larger Lclean. The enhanced ξd for Lclean = 6 sug-
gests the presence of a quantum avalanche in the system.
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FIG. 4. Bath-induced many-body correlations. a,
Three-point correlations 〈n̂in̂j n̂k〉c among pairs of clean sites
i, j and one disordered site k (summed over all disordered
k) in a system with Lclean = Ldis = 6 at disorder strength
W = 9.1 J and evolution time T = 100(1). Cuts across the
site j = 6 (arrows) show nonzero entries for all sites, evidence
for multi-particle entanglement between all sites in the clean
region with the disordered sites. The flat distribution visual-
izes the homogeneous coupling to the disordered region. b,
Correlations 〈n̂in̂j n̂k〉c among pairs of disordered sites i, j
and one clean site k (summed over all clean k) vary strongly
with the chosen lattice sites, and decrease with the distance
from the clean region. The presence of multi-point corre-
lations demonstrates non-perturbative dynamics: delocaliza-
tion is driven through many-body processes between the dis-
ordered region and the clean region. c, We average over all
off-diagonal sites and find a maximum for intermediate disor-
der for the MBL-bath entanglement. d, The total multi-point
correlations among disordered sites with the bath show a sim-
ilar maximum at slightly lower intermediate disorder. Solid
lines show the prediction from exact numerics without free
parameters. Error bars denote the s.e.m.

We next examine the local thermalization dynamics in
a system with Lclean = Ldis = 6. The site-resolved full
atom number readout enables us to measure the atom
number distribution on a local level (Fig. 3a). Lattice
sites in the clean region show a distribution correspond-
ing to a thermal ensemble, whereas lattice sites in the dis-
ordered region show a distribution with enhanced proba-
bility for one particle, the initial state of the system. We
quantify the site-resolved thermalization dynamics with
the entropy per particle si = −

∑
ni
p(ni) log p(ni)/〈n̂i〉

on site i from the atom number distributions. We ob-
serve reduced thermalization dynamics of the disordered
sites with increasing distance from the interface (Fig. 3b).
Moreover, the data suggest that the dynamics are first

stationary until thermalization sets in with a delay that
is exponential in the site’s distance from the interface.
This picture is confirmed by our exact numerical calcu-
lations.

The signatures for quantum avalanches imply that
many-body processes drive the long-term dynamics of
the system. We investigate this effect through multipoint
correlations [9, 38]. The presence of non-zero three-point
connected correlations 〈n̂in̂j n̂k〉c signals the presence of
entanglement among all involved lattice sites, which can-
not be explained by lower order processes. We start by
evaluating the connected correlations 〈n̂in̂j n̂dis〉c among
two clean lattice sites i, j and a disordered site k, summed
over all possible k (Fig. 4a). The correlations are non-zero
across the clean region, and their homogeneous distribu-
tion indicates that all clean sites contribute equally to
the delocalization in the disordered region. In contrast,
when evaluating the connected correlations 〈n̂in̂j n̂clean〉c
among two disordered sites i, j and a clean site k, aver-
aged over all possible k (Fig. 4b), the data show a strong
dependence on the involved disordered sites. Close to the
interface we find strong correlations, whereas they are ab-
sent for distant sites. We quantify the presence of many-
body correlations at different disorder strengths and find
a maximum at intermediate strengths (Fig. 4c,d), close
to the estimated critical point of the system [9].

In conclusion, we experimentally studied signatures of
quantum avalanches in an MBL system, set in motion by
a thermal inclusion. We observed an accelerated intru-
sion of the bath in the MBL system, its evolution to ther-
mal equilibrium site after site, and the many-body entan-
glement between the two subsystems. By varying the size
Lclean, we studied the emergence of quantum avalanches
for increased number of degrees of freedom of the bath. In
future, our experiments can be readily extended in many
ways. For example, one could more systematically study
the fate of quantum avalanches as a function of bath size
and localization length. By increasing both the system
size of the disordered region, one could explore the inter-
play at intermediate disorder strengths in a quantitive
way through its scaling behaviour, i.e. by increasing the
system size at constant ratio of Lclean and Ldis, which
may provide insight into the critical behaviour of the
transition. An interesting extension would also be the
influence of the statistical distribution of the disorder on
the critical behaviour of the system.
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SUPPLEMENTARY INFORMATION

Experimental sequence

Mott insulator preparation. All described experi-
ments start with a Bose-Einstein condensate of bosonic
87Rb atoms in the |F = 1,mF = −1〉 hyperfine state.
This ultracold gas is loaded into a single 2D plane of a
deep lattice along the vertical direction with lattice con-
stant 1.5µm at laser wavelength 760 nm. This lattice
stays on for the remainder of the experiment. We use an
attractive dimple potential to isolate a controlled num-
ber of atoms from the 2D gas and load them into the
center of a repulsive ring-shaped potential, created from
a second laser beam at wavelength 760 nm. At this point
the atoms form a two-dimensional superfluid with har-
monic in-plane confinement. We then ramp up further
laser beams at wavelength 760 nm over 250 ms to create
a repulsive two-dimensional square lattice with lattice
constant a = 680 nm in both directions and lattice depth
45Er, where Er = h2/(2ma2) = h× 1.1 kHz is the recoil
energy of a 87Rb atom of mass m.
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Initial state preparation. We use two digital micro-
mirror devices (DMD) to project repulsive potentials
onto the Mott insulator. The DMDs are placed in the
Fourier plane with respect to the atoms, which allows
us to project diffraction limited arbitrary potentials that
correct for optical wavefront aberrations in the imag-
ing system [39]. We optically confine a single chain of
L = Lclean + Ldis lattice sites within the Mott insula-
tor’s unity-filling shell, and subsequently ramp down the
power of the optical lattice. We use a repulsive decon-
fining beam to eject all atoms outside the confinement
potential, while each atom within the projected confine-
ment potential remains pinned on its lattice site. We
then ramp the lattice back to 45Er and remove the con-
fining DMD potential. After post-selecting for the atom
number N = L, this procedure results in an initial state
of 99.1(2) % fidelity per site.
Quantum quench and state evolution. We use the

first DMD to project a “wall-potential” on the adjacent
sites around the one-dimensional system, which provides
a box-like confinement. This potential is registered to
the position of the optical lattice and defines the size of
the one-dimensional system. We simultaneously use the
second DMD to project a custom, quasi-periodic disorder
potential onto the disordered region of the system. The
disorder strength W is tuned by the intensity of the DMD
potential. The quantum quench is initiated by lowering
the lattice depth along the one-dimensional system from
45Er to 8Er. After a variable evolution time we freeze
the dynamics by ramping the lattice back to 45Er.

Full quantum state read out. We first let the atom
populations located on individual lattice sites expand
into independent tubes and use fluorescence imaging with
an optical molasses beam to perform a site-resolved atom
number measurement. The expansion step before the
imaging procedure is employed to avoid parity projec-
tion during the imaging process. We subsequently post-
select our data by excluding any images which do not
contain the correct total number of atoms. The error in
postselection, that is the fraction of falsely post-selected
snapshots due to the finite readout fidelity, is < 0.1 %
for all the experiments, small compared to the statistical
error in the data.

Calibration of Hamiltonian parameters

The calibration procedure for the Bose-Hubbard pa-
rameters is identical to the one described in [7]. We ob-
tain J = h× 37.5(1) Hz and U = h× 107(1) Hz.

Multi-point correlations

Generically, a nth order correlation function can be
measured from a set of operators Oi by their joint expec-

tation value 〈
∏n
i=1Oi〉 = 〈O1O2...On〉. However, this

joint expectation value captures two kinds of informa-
tion: “disconnected” correlations that exist at nth order
due to existing lower order correlations, and “connected”
correlations that only exist at order n and can’t be de-
scribed by factorization into correlations of lower order
[38].

In the two-point case, this would mean comparing the
measured value of 〈OiOj〉 to the product of their individ-
ual expectation values 〈Oi〉〈Oj〉. The “connected” part
of the correlation between i and j is defined as the cor-
relations that remain after removing the contributions
from factorization into smaller groups. This motivates
the definition of 〈OiOj〉c = 〈OiOj〉 − 〈Oi〉〈Oj〉.

For a three-point connected correlation function, we
must subtract out contributions that come from con-
nected two-point correlations that can look like three-
point correlations when randomly combined with a resid-
ual 1-point correlation. This is how the connected three-
point correlation function is defined in the main text for
the on-site number operator n̂i.

〈OiOjOk〉c =〈OiOjOk〉
−G(2)

c (i, j)〈Ok〉 −G(2)
c (i, k)〈Oj〉 −G(2)

c (j, k)〈Oi〉
−〈Oj〉〈Oj〉〈Ok〉

Higher order multi-point correlations can be con-
structed in a similar way [9].

Numerical calculations

The experimental studied system sizes have Hilbert
space dimensions of up to 1.3×106 (L = 12, N=12). Due
to the non-equilibrium evolution and the disorder, matrix
diagonalization for such systems is computationally chal-
lenging. Instead, we implement an exact numerical inte-

gration of Schrödinger’s equation |ψ(t)〉 = e−iĤt/~ |ψ0〉
based on the Krylov-subspace method [40]. This method
provides an memory- and CPU-run-time efficient way
to numerically compute the time evolution while achiev-
ing high, controlled precision. All numerical calculations
are averaged over 200 different realizations of the quasi-
periodic potential. The computations are performed on
the Harvard Odyssey computing cluster (for specifica-
tions see: https://www.rc.fas.harvard.edu/odyssey/).

Data Analysis

For all experiments we average over 197 patterns of
quasi-periodic potentials, each with a different phase φ
of the quasi-periodic potential. The data are taken from
a running average over those patterns by randomly sam-
pling a given number of realizations and treating them
as independent measurements of the same system.
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We extract the decay length ξd by computing the
first moment of the non-local density-density correlations
ξd =

∑
i i〈n̂in̂j〉c.

The single-site entropy in Fig. 3a is extracted from
the edge sites. The edge sites are most insensitive to the
dynamics at the clean-disorder interface and therefore
allow for a fair indicator for thermalization [27].

Error bars are computed by resampling the set of snap-
shots with replacement (bootstrapping).

The number of samples for each experiment is summa-
rized in the following table:

Figure Number of samples

2a,b 199 (0τ), 86 (1τ), 242 (3.1τ), 294 (10τ),
315 (31.9τ), 456 (100τ)

2c 456 (Lclean = 0), 835 (Lclean = 2), 134
(Lclean = 4), 456 (Lclean = 6)

3a 835 (100τ)

3b,c same samples as for Fig. 2a,b

4a,b 456

4c,d 85 (W = 2.9 J), 71 (W = 4.4 J), 553
(W = 5.5 J), 179 (W = 6.2 J), 198
(W = 7.0 J), 191 (W = 7.7 J), 200
(W = 8.4 J), 623 (W = 9.1 J), 237
(W = 9.6 J)
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