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We construct a tensor network representation of the 3d toric code ground state that is stable to
a generating set of uniform local tensor perturbations, including those that do not map to local
operators on the physical Hilbert space. The stability is established by mapping the phase diagram
of the perturbed tensor network to that of the 3d Ising gauge theory, which has a non-zero finite
temperature transition. More generally, we find that the stability of a topological tensor network
state is determined by the form of its virtual symmetries and the topological excitations created by
virtual operators that break those symmetries. In particular, a dual representation of the 3d toric
code ground state, as well as representations of the X-cube and cubic code ground states, for which
point-like excitations are created by such operators, are found to be unstable.

I. INTRODUCTION

Tensor network states provide a comprehensive frame-
work for the analytic and numerical study of strongly cor-
related many-body systems. In recent years, this frame-
work has been successfully applied to topological phases
of matter [1–4]. For instance, matrix product states
(MPS) [5, 6] with projective virtual symmetries, which
act on the entanglement degrees of freedom, have been
utilised to classify one-dimensional symmetry-protected
topological phases in terms of their fractionalized bound-
ary modes [7, 8], while projected entangled-pair states
(PEPS) [9] with matrix product operator virtual sym-
metries were shown to encode intrinsic topological orders
and their anyonic excitations [10–16].

From a numerical standpoint MPS perform exception-
ally well, underlying the famous density matrix renormal-
ization group algorithm [5]. In contrast, the use of PEPS
as an ansatz for 2d topological phases is marred by the
instability of the topological order to arbitrary perturba-
tions of the tensors [17–20]. This instability is somewhat
counter-intuitive since gapped topological phases are sta-
ble under local perturbations of the Hamiltonian [21].
But local perturbations to the tensors that break the vir-
tual symmetry correspond to non-trivial superselection
sectors, and hence cannot be mapped to local physical
operators. As a matter of fact, a uniform distribution
of such perturbations induces a condensation of the cor-
responding type of excitations, driving the system into
the trivial phase [22, 23]. This is in contrast to virtual
symmetry-respecting perturbations which require finite
non-zero strength to drive such a phase transition [24–
26].

This instability against deviations from symmetric ten-
sors is particularly problematic in numerical simulations,
as it implies that one is aiming for a zero-measure set,
and thus variational methods can realize topological or-
der at best approximately [18]. Moreover, to obtain a

faithful approximation of such a zero-measure set, the
choice of suitable initial conditions is typically impor-
tant. Alternatively, one can restrict the simulation to
symmetric tensors [27, 28], or try to a posteriori extract
the symmetry from the optimized tensors [29, 30]. These
approaches therefore require a suitable initial guess of the
type of topological order, and potentially carry the risk
of biasing the system through the initial conditions or
the symmetries imposed. Thus, intrinsically stable ten-
sor network representations are particularly desirable for
the purpose of simulation.

In this work, we construct a tensor network representa-
tion for the 3d toric code that is stable under a generating
set of uniform local perturbations to the tensors, includ-
ing those that break the virtual symmetry. We prove this
statement by relating the quantum phase diagram of the
perturbed tensor network to the finite temperature phase
diagram of a classical spin system—this is similar to re-
versing the mapping used in Ref. [31]. More specifically,
we map the norm of the perturbed tensor network to the
quantum partition function of the plaquette components
of the toric code Hamiltonian, which is proportional to
the partition function of the classical 3d Ising gauge the-
ory [32, 33]. The stability of our representation then fol-
lows from the fact that this model has a non-zero finite
temperature phase transition. This strategy is very gen-
eral and can be applied to various tensor network repre-
sentations of all Calderbank-Shor-Steane (CSS) stabilizer
codes [34, 35]. Recent results regarding the stability of
these models at finite temperature [33, 36, 37] allow us to
conjecture a relation between stability and virtual sym-
metries for a given tensor network representation. This
provides promising evidence that 3d topological tensor
networks form a set of positive measure and hence cer-
tain 3d topological phases can be simulated via tensor
networks without the introduction of bias or fine-tuning.
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II. TENSOR NETWORK REPRESENTATIONS
OF THE 3D TORIC CODE

Let us consider the three-torus T3 equipped with a cubic
cellulation T3

�, whose cubes, plaquettes, edges and ver-
tices are denoted by c, p, e and v, respectively. Qubit
degrees of freedom are assigned to the edges e ⊂ T3

� and
governed by the lattice Hamiltonian [38, 39]

HTC[T3
�] := −

∑
v

∏
e⊃v

Ze −
∑
p

∏
e⊂∂p

Xe , (1)

where Z and X are the standard Pauli matrices. We
are interested in (exact) tensor network representations
of the ground state subspace of this model. We shall
distinguish two representations that are characterised by
different virtual symmetry conditions (see also Ref. [40]).
The first representation we consider is provided by the
tensor network with unit cell

:= , (2)

where we introduced the tensors

an

a1

a2

a3

a4

:=

n−1∏
i=1

δ(ai + ai+1) ,

an

a1

a2

a3

a4

:= δ
( n∑
i=1

ai

)
,

referred to as δ and δ⊕ tensors, respectively, where all
addition is modulo 2. In Eq. (2), solid straight lines cor-
respond to virtual indices, while squiggly lines correspond
to physical indices (this is a commonly used tensor net-
work notation, see Ref. [41] for a review, but differs from
that used in Ref. [40]). The dotted lines depict edges of
the cubic cellulation T3

�, and are included for reference.
The tensor network state specified by placing copies of
the tensor (2) on every unit cell of T3

� and contracting
the coincident virtual indices of neighboring tensors is
described by the equation

|ψ〉 = tr
(⊗

e

Te
⊗
p

Tp
)
, (3)

where the local tensors are

Tp :=
( ∏

e,e′⊂∂p
δ(ae,p + ae′,p)

)
|{ae,p}e⊂∂p〉 ,

Te := δ
(
be +

∑
p⊃e

ae,p

)
|be〉〈{ae,p}p⊃e| ,

(4)

such that repeated indices are implicitly summed over.
In the formulae above, {be = 0, 1}e correspond to the

physical indices, whereas {ae,p = 0, 1}p,e⊂∂p are the vir-
tual indices. It follows from the definitions of the δ and
δ⊕ tensors that contracting together multiple δ tensors
produces a single δ with the appropriate number of legs,
and similarly for δ⊕, while

X

XX

=
Z

Z

=
ZZ

=
1

2
1
2

H

HH

= ,

with H the Hadamard matrix. These defining proper-
ties imply that the tensor network (3) indeed defines a
ground state of the toric code model and hence has topo-
logical order [32, 38, 39]. Additionally, we find that the
tensor network remains invariant under the action of X
operators on the virtual indices along a closed loop in the
lattice, where X operators may act on any of the virtual
indices adjacent to a lattice edge due to the symmetries
of δ⊕. This symmetry is freely deformable and hence is
of a topological nature. Since it is codimension-2, it is
known as a 2-form symmetry [42], and as such, we refer
to this tensor network as the 2-form representation.

The second representation is obtained by contracting
local tensors associated with the edges and the vertices
of T3

� such that a unit cell reads

∝
H

H

H

, (5)

where the nomenclature is the same as before. The equa-
tion above relies on the duality relation between the δ and
δ⊕ tensors. In contrast to the 2-form representation, this
tensor network has a symmetry generated by products
of Z operators on the virtual indices that intersect the
surface of a cube in the dual lattice, i.e. a deformable
codimension-1 virtual symmetry. As such we refer to
Eq. (5) as the 1-form representation.

A. Tensor and physical perturbations

We now consider adding perturbations to the tensor net-
work and ask whether the topological order is stable un-
der such perturbations. Let us first focus on the 1-form
representation, which was last introduced. A preliminary
question is, which local perturbations of the tensors can
be mapped to local physical perturbations? Any virtual
perturbation generated by Z operators can be moved lo-
cally to the physical indices. But the tensor network is
stable under such physical perturbations since the toric
code lies in a non-trivial topological phase [21]. What
about perturbations generated by X operators, which
break the virtual symmetry? A single virtual X opera-
tor corresponds to a point-like topological charge, which
cannot be mapped to a local physical operation as it lies
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in a nontrivial superselection sector [17]. Given periodic
boundary conditions, the relation satisfied by the product
of the virtual symmetries over every dual cube imposes
that the number of virtual X operators must be even.
Therefore, only a pair of such operators can be mapped
to a string-like physical operator. As a matter of fact, a
uniform X perturbation causes the point-like topological
charges to proliferate and condense, driving the system
into a trivial phase [19]. The 1-form representation is
thus expected to be unstable, which we confirm below.

Repeating the above analysis for the 2-form represen-
tation, we find that the tensor network is stable under
any perturbation generated by X operators as they can
be lifted to the physical level. What about Z pertur-
bations? The local relation satisfied by the product of
virtual symmetries over the faces of each cube imposes
that virtual Z operators can only be inserted in closed
(dual) loops, which correspond to topologically nontriv-
ial fluxes, otherwise the tensor network evaluates to zero.
It follows that a single virtual Z operator simply annihi-
lates the state, while a closed loop of virtual Z operators
maps to a membrane-like physical operator that creates
a loop-like flux [39]. Due to the topology of these ex-
citations, the condensation mechanism that immediately
took place in the 1-form representation does not apply
here, it is instead exponentially suppressed in the length
of the loops. It is thus a priori unclear whether the ten-
sor network is stable under such Z perturbations, and
a fortiori under any (uniform) perturbations. We focus
below on Z perturbations as they generate all topolog-
ical charge sectors under the virtual symmetries, hence
stability to such perturbations is indicative of stability to
general local perturbations to the tensors.

B. Classical partition function and stability under
perturbations

In order to determine the stability of the 2-form rep-
resentation, we shall demonstrate that the norm of the
perturbed tensor network can be mapped to the partition
function of a classical spin system, such that the quantum
phase diagram of the perturbed tensor network reduces to
the finite temperate phase diagram of the classical model.
Let us consider the following uniform Z perturbation of
all the Tp tensors:

Tp 7→ µTp + νT̃p , (6)

where T̃p denotes Tp multiplied by a single Z operator
and µ, ν ∈ C. Denoting the perturbed tensor network
state by |µ, ν〉, we are interested in the norm of this state
obtained by contracting two copies of the tensor network
along its physical indices. Using basic properties of the
δ and δ⊕ tensors mentioned above, together with the

following formula

Za

Zb

= δ(a+ b) Za , (7)

the norm of the perturbed tensor network state reads

〈µ, ν|µ, ν〉 ∝
⊗
e

(
〈0|Te

) ⊗
p

(
|µ|2Tp + |ν|2T̃p

)
.

By shifting the overall normalization of the state by a fac-
tor 1/√µ√ν for each p ⊂ T3

�, we can consider instead the
norm of the state |µ̃, 1/µ̃〉 ≡ |√µ/√ν,

√
ν/√µ〉. Identifying

|µ̃|2 = eβ , we obtain〈
µ̃,

1

µ̃

∣∣∣µ̃, 1

µ̃

〉
∝
∑
{a=0,1}

∏
e

δ
(∑

p⊃e
ap

)∏
p

(eβ + (−1)ape−β) .

Utilising the Fourier transform

δ
(∑

p⊃e
ap

)
=

1

2

∑
σe=±1

∏
p⊃e

σ
ap
e , (8)

we finally obtain〈
µ̃,

1

µ̃

∣∣∣µ̃, 1

µ̃

〉
∝
∑
{σ=±1}

∏
p

(∑
ap

(eβ + (−1)ape−β)
∏
e⊂∂p

σ
ap
e

)
∝
∑
{σ=±1}

∏
p

exp
(
β
∏
e⊂∂p

σe

)
= Zgauge[β] ,

which we recognize as the partition function of the clas-
sical 3d Ising gauge theory [1] at inverse temperature
β = 2 log |µ̃|. The proportionality constant above is sim-
ply a power of 2 that does not appear in physical ex-
pectation values and hence we need not keep track of it.
Crucially, a loop of physical X operators for the quantum
model, which serves as a generalized order parameter for
the Z perturbation driven quantum phase transition [42],
is directly mapped to a Wilson loop operator for the sta-
tistical model, i.e.〈

µ̃,
1

µ̃

∣∣∣∏
e⊂C

Xe

∣∣∣µ̃, 1

µ̃

〉/〈
µ̃,

1

µ̃

∣∣∣µ̃, 1

µ̃

〉
=
〈∏

e⊂C
σe

〉
β
, (9)

where C denotes a closed planar loop along the edges of
the lattice. It follows that a finite temperature phase
transition, measured by the loop order parameter above,
occurs in the classical model if and only if a phase tran-
sition occurs in the quantum tensor network, w.r.t. the
X loop order parameter above. Since the 3d Ising gauge
theory is known to have a finite temperature phase transi-
tion, the quantum tensor network has a phase transition
at finite perturbation strength. Moreover, the β → ∞
limit of the partition function corresponds to the norm
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of the unperturbed tensor network and can be shown to
reduce to the partition function of Z2-BF theory [43], i.e.

Zgauge[∞] =
∑
{σ=±1}

∏
p

δ
( ∏

e⊂∂p
σe

)
, (10)

where the expectation value of the loop operator is one.
Therefore, for sufficiently small perturbation strength
|ν| � |µ| (or |µ̃| � 1), the resulting 3d Ising gauge the-
ory lies in the deconfined/topological phase, where the
Wilson loop operator satisfies a perimeter law [1, 44],
and thus the representation is stable. As we increase the
perturbation strength, the system undergoes a second or-
der phase transition towards the confining phase of the
gauge theory, where the Wilson loop operator satisfies
an area law due to an increase in fluctuations of the pla-
quette fluxes [1, 44], at which point the representation
is no longer stable. Alternatively, this phase transition
can be described as spontaneous higher-form symmetry
breaking [42], with respect to the 1-form symmetry gen-
erated by the vertex terms

∏
e⊃v Ze, such that the sym-

metry broken ordered phase corresponds to the topolog-
ical deconfined one. Similarly, given that Y = iXZ, we
can show that this representation is stable to a uniform
Y perturbation as the corresponding classical partition
function is the same as for a Z perturbation. Indeed,
in the computation of the norm, the Y operators must
appear at the same position in bra and ket layers for a
non-zero overlap, in which case a pair X operators can
be moved to the physical level and cancelled. Stability
to general single site perturbations is discussed App. B.

Following a similar approach, we can confirm that the
other basis is unstable because the norm of the perturbed
tensor network maps to a classical statistical model with
a zero temperature phase transition. Using the alterna-
tive form of the tensor network given on the r.h.s of (5)
and mimicking the previous computation, we find that
the norm of the tensor network for a perturbation of the
vertex tensors reads〈

µ̃,
1

µ̃

∣∣∣µ̃, 1

µ̃

〉
∝
∑
{σ=±1}

∏
v

exp
(
β
∏
e⊃v

σe

)
, (11)

for which (see App. A)〈 ∏
e⊂∂R

σe

〉
β
∼ tanh(β)|R| , (12)

where ∂R is a closed surface along the plaquettes of the
dual lattice, and |R| denotes the number of vertices en-
closed within R. Since the generalized order parameter
obeys a volume law for any finite β, the classical model
has a zero temperature phase transition, hence the insta-
bility of the 1-form representation.

III. TENSOR NETWORK REPRESENTATIONS
AND STABILITY OF THE X-CUBE MODEL

In this section, we study the stability of the tensor net-
work representations of the X-cube model, which is a

type-I fracton model. Qubit degrees of freedom are as-
signed to the edges of T3

� governed by the Hamiltonian
[45]

HX[T3
�] = −

∑
v

(∏
e⊃v
e⊥x̂

Ze +
∏
e⊃v
e⊥ŷ

Ze

)
−
∑
c

∏
e∈∂c

Xe , (13)

where x̂ and ŷ are two orthogonal vectors that go along
the edges of T3

�. Applying the same approach as for the
toric code model, we find two tensors network representa-
tions of the ground state sector. The first representation
is in terms of local tensors associated with the edges and
the cubes of T3

�, whereas the second one is in terms of
pairs of local tensors associated with the vertices and ten-
sors associated with the edges. Using the same notation
as above, the unit cells of these representations are

and , (14)

respectively, where the δ⊕ tensors on the r.h.s are both
associated with the same vertex of T3

�.
Let us focus for now on the representation depicted on

the l.h.s of (14). The tensor network state is stable under
perturbations of the δ⊕ tensors generated by X opera-
tors, since these can be lifted to physical indices. What
about Z perturbations? Since the network remains in-
variant under the action of X operators that form ‘cages’
along the virtual indices [46], implied by the X-stabilizers
in Eq. (13), the number of Z operators must be even on
all dual lattice planes, otherwise the tensor network eval-
uates to zero. This implies that a given Z perturbation,
which corresponds to a fracton excitation [45], cannot
be mapped to a local physical operator. Similar to the
1-form representation of the toric code, a uniform Z per-
turbation induces a condensation of the fractons causing
the tensor network to enter the trivial phase, even for
arbitrarily small perturbation strength. These can be
confirmed by computing the norm of the perturbed ten-
sor: 〈

µ̃,
1

µ̃

∣∣∣µ̃, 1

µ̃

〉
∝

∑
{σ=±1}

∏
c

exp
(
β
∏
e⊂∂c

σe

)
, (15)

along with the fact that X operators are mapped to clas-
sical spin operators. We identify this norm as the quan-
tum partition function associated with the X stabilizers
of the X-cube model (see App. C). It follows from the
analysis carried out in [33, 36, 37] that the resulting clas-
sical spin model has a zero temperature phase transition
to the trivial phase, consistent with the phase transition
of the tensor network due to fracton condensation.
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Similarly, the representation depicted on the r.h.s. of
(14) is stable under perturbations of the δ tensors gener-
ated by Z operators. Moreover, for every plane of T3

�, the
network has a virtual symmetry generated by products
of Z operators along closed loops of the dual 2d lattice
associated with this plane. This implies that the number
of X perturbations on every plane must be even, so that
a single X operator, which correspond to a lineon excita-
tion [45], cannot be lifted locally to a physical operator.
A uniform Z perturbation thus induces a condensation
of the lineons, making this representation unstable. Cor-
respondingly, the norm of the perturbed tensor network
again maps to a 3d classical generalized Ising model [45]
(with Z operators mapping to classical spin operators)〈

µ̃,
1

µ̃

∣∣∣µ̃, 1

µ̃

〉
∝
∑
{σ=±1}

∏
v

exp
(
β
∏
e⊃v
e⊥ŷ

σe + β
∏
e⊃v
e⊥ŷ

σe

)
, (16)

which has a zero temperature phase transition to the triv-
ial phase [33, 36, 37]. In sharp contrast with the 3d toric
code model, both representations turn out to be unstable
for the X-cube model.

IV. TENSOR NETWORK REPRESENTATIONS
AND STABILITY OF HAAH’S CUBIC CODE

In this section, we study the stability of the tensor net-
work representations of Haah’s cubic code, which is a
type-II fracton model. Pairs of qubit degrees of freedom
are assigned to the vertices of T3

� governed by the lattice
Hamiltonian [47]

HHaah[T3
�] = −

∑
c

X(c)−
∑
c

Z(c) , (17)

such that

X(c) =
∏

v∈N+
c

(IX)v
∏

v∈Ñ+
c

(XI)v (18)

Z(c) =
∏

v∈N−c

(ZI)v
∏

v∈Ñ−c

(IZ)v , (19)

where N±c = {v±c , v±c ± x̂, v±c ± ŷ, v±c ± ẑ} and Ñ±c =
{v±c , v±c ± x̂± ŷ, v±c ± ŷ ± ẑ, v±c ± x̂± ẑ} for v+c (v−c ) the
corner of c with minimal (maximal) (x, y, z) coordinates.
Since the X and Z stabilizers of cubic code are related
by a duality, we only need consider the tensor network
representation of the ground state sector obtained by con-
tracting the following local tensors:

Tv := δ
(
bv +

∑
c∈Nv

av,c

)
|bv〉〈{av,c}c∈Nv | ,

T̃v := δ
(
b̃v +

∑
c∈Ñv

ãv,c

)
|̃bv〉〈{ãv,c}c∈Ñv

| ,

Tc :=
( ∏
v,v′∈N+

c ∪Ñ+
c

δ(av,c + av′,c)
)
|{av,c}v∈N+

c
, {ãv,c}v∈Ñ+

c
〉 ,

such that Nv = {cv, cv − x̂, cv − ŷ, cv − ẑ} and Ñv =
{cv, cv − x̂ − ŷ, cv − ŷ − ẑ, cv − x̂ − ẑ} for cv the cube at
coordinate v+ 1

2 (x̂+ ŷ+ ẑ). This tensor network has unit
cell

(20)

and virtual symmetries that are obtained from the X-
stabilizers of the cubic code. On periodic boundary con-
ditions, these virtual symmetries lead to a number of
fractal-like global relations (products that yield the iden-
tity), whose exact number sensitively depends on the
precise system size, but is bounded by ecL for the lin-
ear extent L and a constant c. The number of virtual
Z operators must be even over the tensors involved in
all such relations, leading to the immobility of a fracton
excitation.

Virtual X perturbations map to physical operators,
while Z perturbations induce a condensation of fractons
that instantly drives a phase transition to the trivial
phase. The norm of the perturbed tensor network maps
to a 3d classical fractal Ising model [45, 48] (along with
X operators mapping to classical spin operators)〈

µ̃,
1

µ̃

∣∣∣µ̃, 1

µ̃

〉
=

∑
{σ,σ′=±1}

∏
c

exp
(
β
∏

v∈N+
c

σv
∏

v∈Ñ+
c

σ′v
)
,

(21)

which has a zero temperature phase transition to the triv-
ial phase [33, 36, 37], hence the instability of the tensor
network state.

V. GENERALIZATION AND DISCUSSION

We have demonstrated that the toric code model admits
two tensor network representations, which behave dif-
ferently under perturbations. More generally, any CSS
stabilizer code Hamiltonian has the form

HCSS = λAHA(Z) + λBHB(X) , (22)

where HA(Z) and HB(X) are local commuting projector
Hamiltonians expressed solely in terms of Pauli Z and X
operators, respectively. For such a Hamiltonian we can
always define two canonical tensor network representa-
tions of its ground state sector. These are found by first
enforcing either the X or Z stabilizers, via a choice of ini-
tial product state in the corresponding basis, followed by
projection with respect to the remaining stabilizers. We
can then ask which of these representations—if any—are
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stable. In 2d all topological stabilizer codes are equiva-
lent to copies of the toric code [49–51], and so we expect
them to be unstable. In 3d there is however a wide va-
riety of inequivalent stabilizer codes due to the existence
of fracton topological order [52, 53] (see the appendix of
Ref. [54] for a collection of codes).

Generally, in order to determine the stability of a given
tensor network state under arbitrary local perturbations,
we exploit the fact that the norm of the perturbed tensor
network can be mapped to that of the quantum parti-
tion function of the stabilizer Hamiltonian for λA = 0 or
λB = 0, depending on the representation. This partition
function can in turn be rewritten as that of a classical
spin model, for which the existence of a non-zero finite
temperature phase transition translates into the stability
of the representation (see App. B & C). This raises the
question, do (un)stable representations share distinctive
features?

Given a classical spin model, a zero-temperature phase
transition will occur if the spins are essentially free, i.e.
the number of relations satisfied by the spins does not
grow according to the volume of the lattice. But these
relations descend from the constraints that the operators
of the underlying stabilizer Hamiltonian obey. At the
level of the tensor network, we recover these constraints
in the form of redundancies of the virtual symmetries.
These redundancies in turn dictate the topology of the
virtual charges, i.e. operator insertions breaking virtual
symmetry conditions that correspond to non-trivial topo-
logical excitations on the physical level. As long as the
virtual charges are point-like, which is the case for all the
3d tensor network states we considered apart from the 2-
form representation of the toric code, the number of in-
dependent redundancies can grow at most linearly with

the linear extent of the system. This signifies that the
spins of the corresponding classical model must fulfil a
number of constraints whose number becomes negligible
in the thermodynamic limit, hence a zero-temperature
phase transition. Conversely, the existence of non-trivial
independent local relations whose number scales with the
volume of the lattice, which implies the existence of ex-
tended virtual charges, should guarantee a non-zero finite
temperature phase transition. For instance, the 4d 2-
form Z2 gauge model, which hosts electric and magnetic
loop-like excitations, admits two tensor network repre-
sentations that turn out to be stable to perturbations.
Putting everything together, we conjecture that a CSS
topological tensor network state that supports strictly ex-
tended virtual charges is stable under arbitrary (infinites-
imal) perturbations. This would immediately imply that
the ground spaces of all 2d and 3d topological stabilizer
Hamiltonians admit an unstable tensor network represen-
tation as they are known to support point-like topological
charges [55].
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Appendix A: 1-form representation of the d-dimensional toric code

In this section we show that the 1-form representation of the d-dimensional toric code is always unstable. We consider
the d-torus Td equipped with a d-dimensional hypercubic cellulation Td�. Qubit degrees of freedom are still assigned

to edges e ⊂ Td� and they are governed by a lattice Hamiltonian of the same form as in the main text with stabilizer
generators acting on vertices and plaquettes, respectively.

As in 3d, the 1-form representation of the ground state is obtained by contracting δ and δ⊕ tensors associated
with the edges and the vertices of Td�, respectively, according to a pattern that is the obvious generalization of that
presented in the main text. The resulting tensor network state has a virtual symmetry generated by product of Z
operators on virtual indices that intersect the surface of a d-cube in the dual hypercubic lattice.

Perturbations of the local tensors generated by Z operators can be lifted locally to the physical sector, and as such
the tensor network state is stable under such perturbations. Let us now consider a uniform X perturbation of the δ
tensors. Using the duality relation between δ and δ⊕ tensors, and adapting in an obvious way the derivation in the
main text, we find that the norm of the perturbed tensor network state reads〈

µ̃,
1

µ̃

∣∣∣µ̃, 1

µ̃

〉
∝
∑
{σ=±1}

∏
v

exp
(
β
∏
e⊃v

σe

)
(A1)

such that the expectation value of the relevant generalized order parameter satisfies〈
µ̃,

1

µ̃

∣∣∣ ∏
e⊂∂R

Ze

∣∣∣µ̃, 1

µ̃

〉/〈
µ̃,

1

µ̃

∣∣∣µ̃, 1

µ̃

〉
=
〈 ∏

e⊂∂R
σe

〉
β
, (A2)

where ∂R is a closed surface along the edges of the dual lattice. We now would like to show that the resulting classical
model has a zero temperature phase transition, which in turn implies that the tensor network state is unstable. To
proceed, it is convenient to use an alternative expression for (A1), which we obtain once again by analogy with the
derivation presented in the main text:〈

µ̃,
1

µ̃

∣∣∣µ̃, 1

µ̃

〉
∝
∑
{a=0,1}

∏
e

δ
( ∑

v⊂∂e
av

)∏
v

(eβ + (−1)ave−β) , (A3)

where |µ̃|2 = eβ . This partition function is easy to evaluate explicitly and we find〈
µ̃,

1

µ̃

∣∣∣µ̃, 1

µ̃

〉
∝ (eβ + e−β)|T

d
�| + (eβ − e−β)|T

d
�| , (A4)

where |Td�| equals the number of vertices in Td�. It is now apparent that the partition function (A1) can be mapped
to that of a 1d classical Ising model, which is known to have a zero temperature phase transition. This can be
appreciated by considering the expectation value of the generalized order parameter. Given that all the configuration
variables are implicitly identified in (A3), we should interpret 〈µ̃, 1/µ̃|

∏
e⊂∂R Ze|µ̃, 1/µ̃〉 as the partition function of the

classical model with a domain wall that coincides with ∂R so that〈
µ̃,

1

µ̃

∣∣∣ ∏
e⊂∂R

Ze

∣∣∣µ̃, 1

µ̃

〉/〈
µ̃,

1

µ̃

∣∣∣µ̃, 1

µ̃

〉
=

(eβ − e−β)|R|(eβ + e−β)|T
d
�|−|R| + (eβ + e−β)|R|(eβ − e−β)|T

d
�|−|R|

(eβ + e−β)|T
d
�| + (eβ − e−β)|T

d
�|

= tanh(β)|R|
1 + tanh(β)|T

d
�|−2|R|

1 + tanh(β)|T
d
�|

∼ tanh(β)|R| for |R| � |Td�| , (A5)

where |R| equals the number of vertices in Td� that are enclosed by ∂R. The expectation value is exponentially
decaying with the volume of the region R for any finite value of β, and is equal to 1 at β → ∞. This confirms that
any non-trivial uniform X perturbation induces a phase transition, and as such the 1-form representation of the toric
code model is always unstable.

Appendix B: Topological stabilizer tensor networks

In this section, we explain how, given a CSS stabilizer code, we can construct a canonical tensor network representation
of its ground state subspace. Furthermore, we describe how to construct an isometric tensor associated with a region
of the network and specify how topological excitations can be encoded within this framework in terms of virtual
operators.
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1. Definition of the tensor network

Before specializing to CSS stabilizer codes, let us consider a model with microscopic degrees of freedom associated to
sites s ∈ S governed by a general frustration-free local commuting projector Hamiltonian

H = −
∑
i∈I

Pi with P†i = Pi and [Pi,Pi′ ] = 0 ∀ i, i′ ∈ I , (B1)

where I denotes the set of interactions. Given that all the local projectors commute with one another, this Hamiltonian
admits a ground state projector

∏
i∈I Pi, which can be naturally interpreted as a tensor network. In order to derive

such a tensor network, we consider a tensor rank decomposition of each projector

Pi =

rank(Pi)∑
k=1

m(k)
⊗
s∈Ni

M(k)
s , (B2)

where Ni denotes the set of sites s acted upon by Pi, and Ms are single site operators. This decomposition can be
interpreted as the following tensor network obtained by contracting local tensors associated with the interaction i and
sites s ∈ Ni:

Pi = tr
(
Ti
⊗
s∈Ni

T i
s

)
with T i

s = M(ks,i)
s ⊗ 〈ks,i| and Ti =

( ∏
s,s′∈Ni

δ(ks,i + ks′,i)
)
m(ks,i) |{ks,i}〉s∈Ni

, (B3)

where repeated k-indices are contracted. Contracting the small tensor network given above for each projector Pi

yields a tensor network representation of the ground state projector
∏

i∈I Pi. Given a product state
⊗

s∈S |ψs〉 such
that 〈

∏
i∈I Pi〉 6= 0 with respect to

⊗
s∈S |ψs〉, we finally obtain an unnormalized tensor network representation for a

ground state |ψ〉 by applying the ground state projector to it:

|ψ〉 =
(∏

i∈I
Pi

)⊗
s∈S
|ψs〉 . (B4)

Let us now focus on Pauli stabilizer models, for which the physical degrees of freedom are qubits and the commuting
projectors Pi can be conveniently expressed in terms of Pauli operators that generate the stabilizer group. For
simplicity, we further restrict to a class of stabilizer models known as CSS codes [34, 35]. In this case, the operators
can be partitioned into Pauli-X terms {Bi(X)}i∈IX and Pauli-Z terms {Ai(Z)}i∈IZ such that

H = −
∑
i∈IZ

Ai(Z)−
∑
i∈IX

Bi(X) with Ai(Z) =
∏
s∈Ni

Zs and Bi(X) =
∏
s∈Ni

Xs , (B5)

where as before Ni denotes the set of sites/qubits acted upon by the corresponding operator. Since the projectors
1
2 (id + Ai(Z)) act trivially on |0〉⊗|S|, the ground state admits a particularly simple tensor network representation,
namely

|ψ〉 =
( ∏

i∈IX

1

2

(
id + Bi(X)

))
|0〉⊗|S| , (B6)

where |S| equals the number of sites/qubits in the system. We note that in this case 〈0|⊗|S|
∏

i(id + Bi) |0〉⊗|S| ≥ 1
provides the number of X stabilizer constraints, i.e., products of distinct Bi(X) operators that are equal to the identity
map (including the empty product). We further remark that the log2 of this number equals the number of independent
stabilizer constraints. The above tensor network can be written, up to an overall normalization, as

|ψ〉 = tr
(⊗

s∈S
Ts
⊗
i∈IX

Ti
)

(B7)

in terms of the local tensors

Ts = δ
(
bs +

∑
i∈Ns

as,i

)
|bs〉〈{as,i}i∈Ns | and Ti =

( ∏
s,s′∈Ni

δ(as,i + as′,i)
)
|{as,i}s∈Ni〉 , (B8)
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such that repeated indices are contracted, where Ns denotes the set of Bi(X) operators that act on the qubit s and
{a, b = 0, 1} are Z2 variables in the Pauli-Z basis. These tensors are contracted according to the bipartite interaction
graph associated with the Bi(X) operators, i.e. the graph with vertices for the interactions i and qubits s that are
linked by an edge when the generator Bi(X) acts non-trivially on the qubit s. We further define the bipartite adjacency
matrix of the interaction graph that is given by the stabilizer map ςX : Z2[IX ] → Z2[S] with columns given by the
Z2-vector representation of the {Bi(X)}i∈IX operators [56]. In this language, the number of independent constraints
amongst the X stabilizer generators is given by the dimension of the vector space ker ςX . Furthermore, the tensor
network ground state can be conveniently expressed in terms of the δ and δ⊕ tensors introduced in the main text
such that we assign a δ tensor to each interaction vertex and a δ⊕ tensor, with an extra physical leg, to each qubit
vertex, the contraction pattern being dictated by the interaction graph, e.g.

with ςX =

1 1 0
1 1 1
1 0 1
0 1 1

 .

The dual representation, i.e. the representation obtained by enforcing the X stabilizer constraints initially, can be
conveniently obtained by applying the exact same recipe after performing the change of basis Z ↔ X to the original
model.

Operators on the virtual level of the tensor network are generated by products of X and Z operators along the
edges of the network. It is convenient to move all X operators onto the qubit vertices, and all Z operators onto the
interaction vertices. The tensor product of X operators on an even number of legs of a qubit vertex tensor Ts, or Z
operators on an even number of legs of an interaction tensor Ti, are elementary symmetries of the tensor network [57].
This implies that only the parity of the number of X operators pushed onto a qubit vertex, and the parity of the
number of Z operators pushed onto an interaction vertex, need to be accounted for. Moreover, any product of X
operators on qubit vertices in the image of the bipartite adjacency matrix ςX is a virtual symmetry. In fact these
operators can be moved to the physical legs of the tensor network, where they form operators of the stabilizer group.

Starting from the tensor network defined above, a spanning set of ground state tensor networks can be generated

by moving X logical operators given by representatives of equivalence classes ker ς†Z/im ςX to the virtual level, where
ςZ : Z2[IZ ] → Z2[S] is defined similarly to ςX . These tensor networks having topological order, they are locally
indistinguishable, i.e. none of the logical operators can be supported within a ball. Finally, note that no virtual Z
operator on an interaction vertex is a virtual symmetry. Indeed, all such operators generate orthogonal tensor network
states, as they correspond to flipping the eigenvalue of an operator Bi(X) from +1 to −1.

2. Topological isometry condition

We shall now discuss a characteristic property of the topological tensor network states defined in the previous part,
namely the isometry condition. We begin with a minimal example. Every tensors Ts associated with a site s satisfies

T †s Ts = δ
(∑

i∈Ns

as,i

)⊗
i∈Ns

X
as,i
s,i , (B9)

where as before repeated indices are contracted. It follows that the tensor Ts are isometric—and a fortiori injective—on
the support subspace of the unnormalized projector T †s Ts. Given a topological stabilizer tensor network as previously
defined, we always have the possibility of concatenating to Ts adjacent δ tensors, providing to the state a more
conventional PEPS structure, where non-trivial tensors only sit at the sites s. This has the simple effect of introducing
further redundant virtual legs that are enforced to be in a common state, modifying in a trivial way the injectivity
condition.

Although the symmetry and injectivity subspace of a single Ts tensor is very simple, for larger regions, the connec-
tivity of the tensor network can lead to very non-trivial constraints capable of describing any topological stabilizer
code. Given a topological tensor network, let us consider a large region R, and its complement Rc, containing many
qubit sites s. We partition the set of interaction vertices i into those in IXR or IXRc that satisfy Ni ⊆ R or Ni ⊆ Rc,
respectively, and those on the boundary in IX∂R that satisfy Ni 6⊆ R and Ni 6⊆ Rc. By definition, the interaction
vertices in IX∂R are connected both with qubits in R and in the complement Rc. For these boundary interaction
vertices, we define the interaction tensor restricted to R as

Ti|R =
( ∏

s∈Ni∩R
δ(ai + as,i)

)
|{as,i}s∈Ni∩R〉〈ai| . (B10)
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so that the tensor network associated with R reads

TR = tr
(⊗

s∈R
Ts
⊗
i∈IXR

Ti
⊗

i∈IX∂R

Ti|R
)
. (B11)

In other words, we construct the tensor network associated with the whole interaction graph proceeding as previously,
and then split all the Ti tensors with i ∈ IX∂R between two tensors Ti|R and Ti|Rc , e.g.

IX
RIX

∂R IX
∂R

R

,

such that contracting all the tensors in the gray area yields TR.
The tensor TR is a map from the boundary Hilbert space, which has one qubit per interaction vertex i ∈ IX∂R on

the boundary, to the bulk Hilbert space, which consists of the bulk qubits {s ∈ R}. The virtual symmetries that leave
the tensor TR invariant are given by elements in ker(ςX |R), where ςX |R is the bipartite adjacency matrix ςX with
the input restricted to interaction vertices {i ∈ IXR ∪ IX∂R} and the output restricted to qubits {s ∈ R}. We further
partition the virtual symmetries into the set of local relations given by ker(ςX |R∪∂R), where ςX |R∪∂R denotes ςX with
input restricted to IXR ∪ IX∂R and no output restrictions, and the boundary symmetries

BR =
ker(ςX |R)

ker(ςX |R∪∂R)
, (B12)

which are defined up to local relations. The elements of BR are boundary symmetry operators that are labelled by
vectors b ∈ Z2[IX∂R]

X(b) =
⊗

i∈IX∂R

Xbi

i , (B13)

that satisfy TRb = TR. The tensor TR is then isometric on the symmetric subspace of BR

T †RTR =
∑
b∈BR

X(b) . (B14)

An example of the procedure described above is as follows: Given the 2-form representation of the 3d toric code
discussed in the main text, we consider the region R that includes the six qubits—to which are associated δ⊕

tensors—surrounding a vertex of the underlying cubic cellulation. The twelve δ tensors associated with the surrounding
plaquettes are associated with interaction vertices on the boundary of R. Let us split these four-valent δ tensors into
pairs of three-valent ones, such that one tensor in every pair is connected to two δ⊕ tensors within R. The δ tensors
satisfying this criterion correspond to the boundary interaction tensors restricted to R introduced above. Contracting
these twelve boundary tensors with the six δ⊕ tensors in R results in a twelve-valent isometric tensor, whose properties
are discussed in detail in [40].

3. Topological excitations

States containing topological charge excitations can be built from the ground state tensor network by including virtual
operators. These come in two types. The first one arises when including a truncated virtual symmetry btrunc, which
creates some excitations along the boundary where the symmetry has been truncated. These excitations may appear
along the whole boundary, such as a loop excitation in the 3d toric code, or along a collection of points within the
boundary, such as in a fracton model. Any truncated virtual symmetry can be directly lifted to the physical level and
hence reflects the physical operator that creates the same excitation pattern. We remark that the distinct ground
state tensor networks obtained by moving the logical X operators to the virtual level can be interpreted as nucleating
such an excitation pattern over a non-contractible cycle. The second type of excitations is obtained by inserting Z
operators on the virtual level. Only products of Z operators on a set of interaction vertices in the image of the adjoint

bipartite adjacency matrix im ς†X can be lifted to the physical level. Products of Z operators orthogonal to this image,
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i.e. in (im ς†X)⊥, correspond to non-trivial topological charges. On a region R, the topological super-selection sectors

of these charges are given by {i ∈ IXR ∪ IX∂R}/ im ς†X , which are one-to-one with the irreducible representations of the
boundary symmetries BR. These operators can be thought of as measuring the flux through the boundary due to
the charges in the bulk via a generalized Gauß’s law. Due to the form of BR, any allowed charge configuration (see
below) in R can be neutralized via a charge configuration on the boundary.

There are further constraints on the allowed charge configurations that do not force the tensor network to vanish.
These are derived from constraints, or materialized symmetries [38], captured by ker ςX , whose elements leave not
just the ground state, but the exact form of the tensor network itself invariant. Allowed charge configurations must
be even under all relations, otherwise they result in a vanishing state. The relations can be decomposed into local
relations ker(ςX |R∪∂R) contained within topologically trivial regions R and global relations ker ςX/{local relations}
that appear once the boundary conditions have been fixed, possibly forming a non-trivial topology. For example, the
3d toric code has local constraints forcing the string-like excitations to appear in closed loops, it also has a global
constraint for closed boundary conditions that forces the number of point-like charges to be even. Fracton models in
3d, on the other hand, possess only global constraints.

4. Tensor perturbations

Perturbations to the tensor network are generated by X and Z operators on the Ts and Ti tensors, respectively,
as mentioned above. Given the properties of the δ⊕ tensors, a uniform X perturbation is identical to a uniform
X perturbation on the physical level, and hence any tensor network in a gapped topological phase is stable to
these perturbations. However, we explained that Z perturbations correspond to non-trivial topological charges, and
similarly for uniform Y perturbations, as noted in the main text. Therefore, a uniform Z tensor perturbation is not
equivalent to a uniform local perturbation on the physical spins, and so there is no guarantee of stability against
such perturbations. In fact, such perturbations induce fluctuation of the topological charges represented by virtual Z
operators, which can lead to instability. For example, all 2d MPO-injective tensor networks are unstable to generic
uniform tensor perturbations as they induce anyon condensation phase transitions. As argued in the main text, the
robustness of a tensor network to perturbations depends crucially on the type of charges fluctuated as well as the
corresponding constraints, or materialized symmetries, they satisfy. We shall now demonstrate this proposal for a
general CSS tensor network state.

We focus on a uniform Z perturbation to all Ti tensors, writing the unnormalized perturbed tensor as

Ti 7→ µTi + νT̃i , (B15)

where T̃i denotes Ti multiplied by a single Z operator, and |ν| � |µ| for a small perturbation. Denoting the perturbed
tensor network state by |µ, ν〉, we can use the properties of the δ and δ⊕ tensors outlined in the main text to show
that its norm depends only on the real parameters |µ|2 and |ν2|:

〈µ, ν|µ, ν〉 ∝
⊗
s∈S

(
〈0|Ts

) ⊗
i∈IX

(
|µ|2Ti + |ν|2T̃i

)
, (B16)

up to an overall normalization. Shifting the overall normalization of the state by 1/
√
c for each interaction vertex, we

obtain |µ/√c, ν/√c〉, whose norm can be mapped to the partitition function of a generalized classical Ising model with
disorder. To this end, we take the overall normalization factor c to satisfy the equations

|µ|2

c
= (1− p)eβ + pe−β and

|ν|2

c
= (1− p)e−β + peβ . (B17)

Shifting c moves the norm, as a function of |µ|2 and |ν|2, with fixed µ and ν along the line in the (β, p) plane that
satisfies

|µ|2 − |ν|2

|µ|2 + |ν|2
= (1− 2p) tanh(β) . (B18)

Such lines are parameterized by c as follows (see Fig. 1):

|µ|2 + |ν|2

c
= eβ + e−β ,

|µ|2|ν|2 − c2

(|µ|2 + |ν|2)2 − 4c2
= p(1− p) . (B19)
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This allows us to pick a normalization factor c corresponding to the most convenient mix of temperature and disorder
for our purposes, in particular we restrict to zero disorder below.

Performing a Fourier transform via the introduction of Hadamard matrices, we obtain〈 µ√
c
,
ν√
c

∣∣∣ µ√
c
,
ν√
c

〉
∝
⊗
s∈S

(
〈0|TsH⊗|Ns|) ⊗

i∈IX

((
(1− p)eβ + pe−β

)
H⊗|Ni|Ti +

(
(1− p)e−β + peβ

)
H⊗|Ni|T̃i

)
∝

∑
{σ=±1}

∑
{η=±1}

∏
i∈IX

p
1−ηi

2 (1− p)
1+ηi

2

(
eβδ
(
ηi
∏
s∈Ni

σs = 1
)

+ e−βδ
(
ηi
∏
s∈Ni

σs = −1
))

∝
∑
η

Prob(η)Z[β, η] = Z[β, p] , (B20)

where η ≡ {ηi}i∈IX is a set of independent and identically distributed random variables with probability
Prob(ηi = −1) = p and Prob(ηi = +1) = 1− p, and the partition function with fixed disorder is given by

Z[β, η] =
∑
{σ=±1}

exp
(
β
∑
i∈IX

ηi
∏
s∈Ni

σs

)
. (B21)

In addition to a change of basis on the internal indices of the tensor network, we used in the above that 〈0|TsH⊗|Ns|

and H⊗|Ni|Ti are proportional to a δ and δ⊕ tensor, respectively. Moreover, the classical spin variables are given
by X-basis states σs = ±1. The partition function corresponds to a generalized classical Ising model with disorder
strength p, at inverse temperature β [58]. In particular, the two dimensional phase diagram of this disordered model,
as a function of inverse temperature and disorder strength, contains the Nishimori line along which e−2β = p

1−p [59].

Futhermore, we remark that

Z[β, η + ζ] = Z[β, η] , (B22)

for a disorder configuration ζ corresponding to a neutral cluster of charges. A cluster of charges within a ball-like
region R is neutral if it is symmetric under all virtual symmetries on the boundary of the region ∂R. A neutral cluster
can be created by a local operator within R on the physical level. For the CSS tensor networks we consider, this
operator is a product of Pauli-Z matrices, without loss of generality. Since CSS tensor networks containing different
excitations are orthogonal, the same neutral cluster must appear in the bra and ket layers of the norm. Both can be
moved to operators on the physical level, which multiply to give a stabilizer that is a symmetry of the state. Hence, a
disorder configuration ζ corresponding to a neutral cluster is a symmetry of the partition function in the sense above.
This implies that the value of the partition function depends only on equivalence classes of disorder [η] = {η + ζ}ζ
and so we can write Z[β, [η]]. Therefore, one has

Z[β, p] =
∑
[η]

Prob([η])Z[β, [η]] , (B23)

where Prob([η]) =
∑
η′∈[η] Prob(η′). We further notice that Z[∞, η] = 0 if η violates any local materialized symmetries,

which are independent of the boundary conditions, and also if η violates some global materialized symmetry once
boundary conditions have been fixed. In other words, Z[∞, η] = 0 whenever [η] 6= 1.

Importantly, Pauli-X operators on the quantum spins map directly to classical spin operators〈
µ√
c
, ν√

c

∣∣∣∏s∈C Xs

∣∣∣ µ√c , ν√
c

〉
〈
µ√
c
, ν√

c

∣∣∣ µ√c , ν√
c

〉 =

〈〈∏
s∈C

σs

〉
β

〉
p

, (B24)

where C denotes here a collection of spins, whereas Pauli-Z operators map to classical spin flip operators

Z(a) : σs 7→ (−1)asσs , (B25)

where a ∈ Z2[S]. The zero temperature and zero disorder limit, i.e. β → ∞ and p → 0, of the partititon function
corresponds to the norm of the unperturbed tensor network. This simply results in an equal weighted sum of allowed
spin configurations

Z[∞, 0] ∝
∑
{σs}

∏
i∈IX

δ
( ∏

s∈Ni

σs = 1
)
, (B26)
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FIG. 1. A contour plot showing lines in the temperature 1/β, disorder probability p, plane that satisfy Eq. (B18) for fixed µ
and ν. Varying the normalization c moves the model along such a line.

up to an overall normalization. In this limit the virtual symmetries (equivalently the X stabilizers) map to symmetries
of the classical model 〈〈∏

s∈b
σs

〉
β

〉
p

= 1 , (B27)

for b ∈ im ςX . At non-zero temperature and disorder strength, these symmetries are broken by the tensor perturbations
as they carry non-trivial topological charges. On the other hand, the Pauli-Z stabilizers (and logical operators)

Z(a), a ∈ ker ς†X , map to spin flip symmetries of the classical model

exp
(
β
∑
i∈IX

∏
s∈Ni

(−1)asσs

)
= exp

(
β
∑
i∈IX

∏
s∈Ni

σs

)
, (B28)

which persist to arbitrary p and β. Relations on the Z stabilizers lead to relations on the classical spin flip symmetries,
i.e. nontrivial products of spin flips that act trivially on the classical spins. Hence the classical partition function

can be viewed as a generalized disordered Ising model with spin flip symmetries given by ker ς†X . The non-conserved
operators from Eq. (B27) in fact become order parameters for a phase transition of the classical model.

Due to the concavity of log, the order parameter with finite disorder only provides an upper bound on the value of
the true quantum order parameter

− log
〈∏

s∈C
Xs

〉
µ√
c
, ν√
c

≤
〈
− log

〈∏
s∈C

σs

〉
β

〉
p

, (B29)

for p > 0. Hence the phase boundaries of the quantum and classical models need not match at finite disorder strength,
rather the phase transition line for the disordered classical model falls within the quantum phase that originates at
zero temperature. For this reason we focus on the p = 0 case below and in the main text.

With no disorder p = 0 we see that the quantum phase diagram of the perturbed tensor network representation
reduces to the finite temperature phase diagram of a generalized classical Ising model. Hence if the classical model
has a zero temperature phase transition, the tensor network is not stable to perturbations. On the other hand,
if the classical model has no zero temperature phase transition, the tensor network is stable to sufficiently small
perturbations, provided the tensor network state has a gapped parent Hamiltonian with topological order to also
guarantee stability to perturbations that can be locally lifted to the physical level. Tensor networks that lead to
classical models with a zero temperature phase transition, such as 3d fracton topological orders, or a toric code tensor
network with 1-form virtual symmetry, are unstable. While tensor networks that lead to classical models with non-
zero temperature phase transition, such as toric code tensor networks with 2-form (and higher) virtual symmetries,
are stable.



16

The stability criteria obtained above extends to general local perturbations, as they can be decomposed into
virtual components given by X and Z operators, respectively. We have already established that the tensor network
state is stable to X perturbations due to the inherent topological robustness of the phase. If the tensor network
state is additionally stable to Z perturbations, as per the above procedure, we expect stability to general uniform
perturbations. For instance, as explained in the main text in the context of the toric code, a uniform Y perturbation
on the virtual level leads to the same classical partition function as a uniform virtual Z perturbation. Therefore,
(in)stability to Z perturbations extends to Y perturbations. More generally, a perturbation of the form

Ti → µTi + νT̃i + ξXTi + ζXT̃i , (B30)

can be written as a physical perturbation applied to the perturbed tensor network that results from the modification
considered in Eq. (B15). In this case, the physical perturbation applies either a (µ11 + ξX) or (11 + ζ/νX) operator
controlled by the absence or presence of a string excitation segment at that point, respectively. This argument requires
|ζ| � |ξ|, |ν| � |µ|, but we suspect |ζ|, |ξ|, |ν| � |µ| suffices as in the case of a uniform Y perturbation. We remark
that the perturbation considered above involves a generating set for the full algebra of virtual operators. We expect
that stability to such uniform perturbations is indicative of stability to arbitrary local perturbations, i.e. those with
exponentially decaying correlations in space.

In the discussion of the main text, we established a conjectural correspondence between the stability of tensor network
representations and the topology of the corresponding virtual charges. We expect this correspondence to hold for
more general topological quantum liquids, i.e. those that depend only on the topology of the manifold. Akin to the
1- and 2-form representations of the toric code, we should be able to define two tensor network representations that
satisfy virtual symmetries with respect to membrane-like and string-like projected entangled-pair operators (PEPO),
respectively. The latter representation whose virtual charges are mapped to the loop-like physical excitations is
expected to be stable in general. However, the proof of the stability in this more general scenario is more subtle.
In particular, the identification between bra and ket layers that occurs when considering the norm of the perturbed
tensor network of a CSS model will not hold. Instead, in the simple case where distinct excited states built on top of
the tensor network are taken to be orthogonal, the product of a given symmetry operator in the bra and ket is again
a symmetry of the perturbed tensor network. This effectively leaves only a single independent copy of the virtual
symmetry, similar to the stabilizer examples, which is then explicitly broken by tensor perturbations.

In higher dimension there exist topological quantum liquid tensor network states with higher form virtual symmetries
from 1- up to (d−1)-form. We anticipate that all those with 2-form or higher virtual symmetry should be stable. For
instance, the 4d 2-form Z2 gauge theory (sometimes referred to as the 4d toric code, see e.g. [58]) admits two tensor
network representations with 2-form virtual symmetry that are both stable to perturbations. We further remark
that these higher form symmetric topological quantum liquid tensor networks should fall under the generalized tensor
network injectivity formalism based on state-sum topological quantum field theories, but it is possible to develop the
theory of specific higher form symmetry cases beyond this general formalism. Finally, it would also be interesting to
study the virtual symmetries of more general non-liquid fracton topological orders, including those with non-abelian
particles.

5. A non-topological example: the 2d quantum Ising model

We presented above a general recipe to assess the stability of a given topological tensor network state under arbitrary
perturbations. In order to illustrate the fact that our stability criterion is specific to tensor network states that have
gapped parent Hamiltonians with topological order, we shall now consider a non-topological example, namely the 2d
quantum Ising model. This model is defined in terms of spin variables on the vertices of a square lattice that are
governed by the Hamiltonian

HIsing = −
∑
〈u v〉

XuXv , (B31)

where 〈u v〉 denotes nearest neighbouring vertices. Note that we have chosen the basis that is consistent with the
presentation above. The tensor network for the ground state is obtained by contracting local tensors associated with
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every vertex v and every pair 〈u v〉 such that the unit cell reads

. (B32)

This tensor network actually has a 2-form virtual symmetry, which in this case corresponds to the fact that any pair
of X operators on virtual indices leaves the state invariant. Creating a pair of virtual X operators, running them over
a closed loop, and annihilating them, generates a 1-form relation. Additionally, X perturbations on the virtual level
map directly to physical perturbations, while Z perturbations must satisfy the 1-form relation by appearing in closed
loops on the dual lattice, otherwise the perturbed tensor network evaluates to zero. Unsurprisingly, the norm of the

tensor network with Z perturbations, i.e. T〈uv〉 7→ T〈uv〉 + T̃〈uv〉, reproduces the disordered 2d classical Ising model

〈µ, ν|µ, ν〉 ∝
∑
η

∏
e

p
1−ηe

2 (1− p)
1+ηe

2

∑
{σ=±1}

exp
(
β
∑
〈u v〉

η〈u v〉σuσv
)
, (B33)

up to an overall normalization constant, where µ and ν are related to β and p via Eq. (B18). For |ν| � |µ|, this
corresponds to the ordered phase of the classical Ising model i.e.

〈µ, ν|XvXv+x̂ |µ, ν〉 =
〈
〈σvσv+x̂〉β

〉
p
−−−−→
|x̂|→∞

const. . (B34)

However, this does not mean that this tensor network is stable to perturbations. Indeed, virtual X perturbations that
map directly to physical perturbations can cause a phase transition at infinitesimal strength since the Ising model
does not have topological order and the X perturbation explicitly breaks the global Z2 symmetry of the model. This
is in sharp contrast to the tensor networks with topological order considered in the main text.

Appendix C: Finite temperature quantum phase mapping

In this section, we consider the quantum partition function of a general CSS code of the form

H[T3
�] = λAHA(Z) + λBHB(X) . (C1)

We begin by showing that the quantum partition function of H[T3
�] factorizes into the product of two terms associated

with the quantum partition functions of H[T3
�] for λA = 0 and λB = 0, respectively. We then demonstrate that the

norm of a perturbed tensor network state under local (uniform) perturbations can always be mapped to that of the
quantum partition function of a CSS Hamiltonian of the form (C1) for λA = 0 or λB = 0.

Let us consider the quantum partition function Z[β] = tr(e−βH[T3
�]) of the CSS Hamiltonian. Denoting by

|{a = 0, 1}〉 and |{σ = ±}〉 microscopic states, where {a} and {σ} are configurations for all the spins of the lattice
expressed in the Pauli-Z and -X bases, respectively, we have

e−βH[T3
�] =

∑
{a=0,1}
{σ=±}

|{a}〉e−βλA〈{a}|HA(Z)|{a}〉〈{a}|{σ}〉e−βλB〈{σ}|HB(X)|{σ}〉〈{σ}| , (C2)

where we used the fact that HA(Z) and HB(X) are diagonal in the Pauli-Z and -X bases, respectively. Since 〈{a}|{σ}〉2
is independent of both {a} and {σ}, we obtain that the quantum partition function factorizes as

Z[β] =
∑
{a=0,1}
{σ=±}

e−βλA〈{a}|HA(Z)|{a}〉〈{a}|{σ}〉2e−βλB〈{σ}|HB(X)|{σ}〉 ∝ ZA[β] · ZB[β] , (C3)

such that ZA[β] = tr(e−βλAHA(Z)), ZB[β] = tr(e−βλBHB(X)) and the proportionality constant is independent of β.
Given a CSS Hamiltonian (C1) with

HB(X) = −
∑
i∈IX

Bi(X) with Bi(X) =
∏
s∈Ni

Xs , (C4)
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we constructed in App. B a tensor network representation of the ground state( ∏
i∈IX

1

2

(
id + Bi(X)

))
|0〉⊗|S| (C5)

such that the norm of the perturbed tensor network can be mapped to the following classical partition function:∑
{σ=±1}

∏
i∈IX

exp
(
β
∏
s∈Ni

σs

)
, (C6)

namely a generalized classical Ising model without disorder (p → 0). It turns out that the classical partition above
corresponds to the quantum partition function of H[T3

�] for λA = 0 and λB = 1. Indeed, since [Bi,Bi′ ] = 0 for every
i, i′, we have

ZB[β] =
∑
{σ=±}

e−β〈{σ}|HB(X)|{σ}〉 =
∑
{σ=±}

∏
i∈IX

eβ〈{σ}|Bi(X)|{σ}〉 . (C7)

Writing 〈{σ}|Bi(X)|{σ}〉 explicitly, it follows that

ZB[β] =
∑
{σ=±}

∏
i∈IX

exp
(
β
〈
{σs}s∈Ni

∣∣ ∏
s∈Ni

Xs

∣∣{σs}s∈Ni

〉)
=

∑
{σ=±1}

∏
i∈IX

exp
(
β
∏
s∈Ni

σs

)
(C8)

as expected. Similarly, we can show that X operators are mapped to classical spin operators. Working with the
dual representation, i.e. the representation obtained by enforcing the X stabilizer constraints initially, we would have
obtained that the norm of the perturbed tensor network maps to ZA[β] instead. Since Bi(X)2 = id, for every i ∈ IX ,
a more explicit formula for ZB[β] can be obtained as follows:

ZB[β] = tr(e−βHB(X)) = tr
( ∏

i∈IX
eβBi(X)

)
= tr

( ∏
i∈IX

[cosh(β) id + sinh(β)Bi]
)

= tr
(

cosh(β)|I
X | ∏

i∈IX
[id + tanh(β)Bi]

)
= tr

(
cosh(β)|I

X |
[
id + tanh(β)

∑
i∈IX

Bi + tanh(β)2
∑

i1<i2∈IX
Bi1Bi2 + . . .+ tanh(β)|I

X |Bi1 · · ·Bi|IX |

])
= tr(id) cosh(β)|I

X |
( ∑
`∈ker ςX

tanh(β)|`|
)

= 2|S|
( ∑
`∈ker ςX

cosh(β)|I
X |−|`| sinh(β)|`|

)
,

where we have used the linearity of the trace together with tr(id) = 2|S|. We remark that the term 2|S| cosh(β)|I
X |

amounts to the partition function of a free model. Hence we deduce from the formula above that there are as many
non-trivial contributions to the partition function ZB[β] as the number of non-trivial constraints in ker ςX satisfied
by the operators of the underlying stabilizer Hamiltonian, i.e. products of operators that act trivially on the physical
spins. If the number of such constraints does not grow according to the volume of the lattice, we are computing the
partition function of a classical model that is essentially free in the thermodynamic limit, and as such it is expected to
have a zero temperature phase transition. Hence we expect topological tensor network states with global symmetries
to be unstable to uniform local perturbations to the tensors.
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