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The introduction of non-Hermiticity has greatly enriched the research field of traditional con-
densed matter physics, and eventually led to a series of discoveries of exotic phenomena. We inves-
tigate the effect of non-Hermitian imaginary hoppings on the attractive Hubbard model. The exact
bound-pair solution shows that the electron-electron correlation suppresses the non-Hermiticity, re-
sulting in off-diagonal long-range order (ODLRO) ground state. In a large negative U limit, the
ODLRO ground state corresponds to η-spin ferromagnetic states. We also study the system with
mixed hopping configuration. The numerical result indicates the existence of the transition from
normal to η-pairing ground states by increasing the imaginary hopping strength. Our results provide
a promising approach for the non-Hermitian strongly correlated system.

I. INTRODUCTION

Non-Hermitian systems that can only be described
by non-Hermitian Hamiltonians are ubiquitous in na-
ture. Many open systems, which are not fully isolated
from the rest of world, belong to this class. Comparing
to the Hermitian systems, the probability of the non-
Hermitian system effectively becomes nonconserving due
to the exchange of energy, particles, and information
with external degrees of freedom that are out of the
Hilbert space. Mainly driven by experimental progress
in atomic physics1,2, the last two decades have witnessed
remarkable developments in studies of out-of-equilibrium
dynamics in isolated quantum many-body systems. It
has become possible to study open many-body physics
in a highly controlled manner3–9. Within this burgeon-
ing field, the treasure hunt is sprouting into fascinating
new directions ranging from non-Hermitian extensions of
Kondo effect10,11, many-body localization12, to fermionic
superfluidity13,14.

Recent advances in quantum simulations of the Hub-
bard model with ultracold atoms have offered a multi-
functional platform to unveil low-temperature proper-
ties of the strongly correlated system15–20. A series of
cornerstone works have reshaped our understanding of
the dissipative strongly correlated system3,21–33. One
of the most tantalizing findings is the possible super-
conductivity in which η-pairing state plays a vital role.
This stimulates a plethora of non-equilibrium proto-
cols including photodoping schemes34–44 and dissipation-
induced schemes45–49 to selectively generate such
superconducting-like states. However, few people discuss
the impact of non-Hermiticity on the low-lying energy
spectrum and quantum magnetism of the strongly cor-
related system from the level of non-Hermitian quantum
mechanics50.

It is the aim of this paper to investigate the effect of
non-Hermiticity on the strongly correlated system in the
context of the non-Hermitian quantum mechanics. We
show that the non-Hermitian imaginary hopping can in-
deed induce a robust η-pairing ground state for a wide
range of parameters U (particle-particle interaction) and

t (hopping strength), by considering the bipartite non-
Hermitian Hubbard system. An exact solution of the
bound pair is employed to elucidate the underlying paring
mechanism and pave the way to extend the results to di-
lute gas. In physics, the particle-particle interaction sup-
presses the non-Hermiticity leading to the off-diagonal
long-range order (ODLRO) ground state with real en-
ergy, and the non-Hermitian imaginary hopping, in turn,
suppresses the antiferromagnetic correlation, thus ensur-
ing the system has a η-spin ferromagnetic ground state.
Numerical results of 1D and 2D systems with corruga-
tion patterns indicate that such property is insensitive
to the disorder and the strength of the interaction even
though the on-site interaction breaks the SO(4) symme-
try, which suggests a promising scheme in a real exper-
iment. We further demonstrate that there can exist a
transition from normal to η-pairing ground state asso-
ciating with the sudden change of the doublon-doublon
correlation.

The paper is organized as follows. Sec. II discusses
the non-Hermitian Hubbard model, the non-Hermiticity
of which originates from the imaginary hopping. Sec.
III introduces the exactly two-particle solution providing
the mechanism of the formation of the η-pairing ground
state. Sec. IV gives the effective magnetic Hamilto-
nian under the large negative U limit. Sec. V shows the
numerical results and the analytical understanding of su-
perconductive η-pairing ground state. Sec. VI demon-
strates the transition from a normal to superconductive
ground state. Sec. VII concludes this paper. Some
details of our calculations are placed in the Appendixes.

II. MODEL

We consider a non-Hermitian Hubbard model on a bi-
partite lattice

H = i
∑
j,l

∑
σ=↑,↓

tjl(c
†
j,σcl,σ + c†l,σcj,σ)

+U
∑
j

nj,↑nj,↓, (1)
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with the following notation: the operator cj,σ (c†j,σ) is

the usual annihilation (creation) operator of a fermion

with spin σ ∈ {↑, ↓} at site j, and nj,σ = c†j,σcj,σ is the
number operator for a particle of spin σ on site j; the
symbol i =

√
−1 represents an imaginary number; U

and tjl are required to be real and play the role of inter-
action and kinetic energy scales, respectively; the system
can be divided into two sublattices A and B such that
tjl = 0 whenever j ∈ {A} and l ∈ {A} or j ∈ {B} and
l ∈ {B}. The non-Hermiticity of H stems from the imag-
inary hopping itjl that can be realized by the judicious
design of the loss and the magnetic flux51,52 which are
within the reach of cold atom experiments53,54. Notice
that such non-Hermiticity is distinct from the complex
particle-particle interaction adopted to describe the in-
elastic collision of two particles50,55. When the uniform
Hermitian hopping is taken, the Hamiltonian can fea-
ture a Mott insulating ground state with a strong an-
tiferromagnetic correlation that is generically nonsuper-
conducting. Evidently, the imaginary hopping inevitably
competes with the interaction leading to the unique prop-
erties of the considered system. It can be expected that
the introducing of such non-Hermiticity will significantly
alter the magnetic correlation of the system.

In this paper, we focus on whether the system can fa-
vor the ground state with superconductivity in this non-
Hermitian setting. To gain physical insight into this sys-
tem, we first investigate the symmetry of the considered
model. It has two sets of commuting SU(2) symmetries.
The first is the spin symmetry characterized by the gen-
erators

s+ =
(
s−
)†

=
∑
j

s+
j , (2)

sz =
∑
j

szj , (3)

where the local operators s+
j = c†j,↑cj,↓ and szj =

(nj,↑ − nj,↓) /2 obey the Lie algebra, i.e., [s+
j , s

−
j ] = 2szj ,

and [szj , s
±
j ] = ±s±j . Large values of the spin quantum

number s corresponds to ferromagnetism. The second
often referred to as η symmetry has the generators

η+ =
(
η−
)†

=
∑
j

η+
j , (4)

ηz =
∑
j

ηzj , (5)

with η+
j = λc†j,↑cj,↓ and ηzj = (nj,↑ + nj,↓ − 1) /2 sat-

isfying commutation relation, i.e., [η+
j , η

−
j ] = 2ηzj , and

[ηzj , η
±
j ] = ±η±j . Here we assume a bipartite lattice and

λ = 1 for j ∈ {A} and −1 for j ∈ {B}. Notice that

under a particle-hole transformation, cj,↓ → λc†j,↓, which
maps the attractive Hubbard model to a repulsive one
in the parent Hermitian Hamiltonian (1), the role of the
two sets of SU(2) generators is interchanged. Straight-

forward algebra shows that[
H, η±

]
= ±Uη±, (6)

[H, ηz] = 0, (7)

which indicates that one can construct many exact eigen-

states H (η+)
N |Vac〉 = NU (η+)

N |Vac〉 with |Vac〉 be-
ing the vacuum state of fermion cj,σ. Correspondingly,
the large values of the η quantum number are related to
a staggered ODLRO and superconductivity56,57.

III. η-PAIRING STATE IN TWO-PARTICLE
SUBSPACE

Based on the symmetry of the system, we first eluci-
date the paring mechanism through the exact solution
within the two-particle subspace. Supposing that the
Hamiltonian (1) describes a 1D homogeneous ring system
in which itjl = it. Owing to the translation symmetry,
the basis of such invariant subspace can be constructed
as follow∣∣φ−0 (K)

〉
=

1√
N

∑
j

eiKjc†j,↑c
†
j,↓ |Vac〉 , (8)

∣∣φ±r (K)
〉

=
1√
2N

eiKr/2
∑
j

eiKj(c†j,↑c
†
j+r,↓ (9)

±c†j,↓c
†
j+r,↑) |Vac〉 , (10)

and

s±√
2

∣∣φ+
r (K)

〉
=

1√
N
eiKr/2

∑
j

eiKjc†j,±↑c
†
j+r,±↑ |Vac〉 ,

(11)
where N is an even number and K = 2nπ/N is the mo-
mentum vector indexing the subspace. r represents the
relative distance between the two particles. These bases
are eigenvectors of the operators s2 and sz, which satisfies

s2
∣∣φ−r (K)

〉
= 0, (12)

sz
∣∣φ−r (K)

〉
= 0, (13)

s2
∣∣φ+
r (K)

〉
= 2

∣∣φ+
r (K)

〉
, (14)

sz
∣∣φ+
r (K)

〉
=
∣∣φ+
r (K)

〉
. (15)

Evidently, each subspace labeled by K can be further
decomposed into four subspaces with (s, sz) = (0, 0),
(1, 0) and (1, ±1) in term of spin symmetry. Aiding by
the detailed calculation in the Appendix, the bound pair
emerges in the (0, 0) subspace with eigen energy being

εK = sgn (U)
√
U2 + 4λ2

K in which λK = 2it cos (K/2).

The bound pair state is
∣∣ϕb
K

〉
=
∑
r f
−
K (r) |φ−r (K)〉 with

f−K (j) =

{
1/
√

2, j = 0
e−βj , j 6= 0

, (16)

where β = ln[(−U ±
√
U2 + 4λ2

K)/2λK ]. Here ± denotes
negative and positive U , respectively. We concentrate on
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FIG. 1: Comparison of the two-particle spectrum within the subspace (0, 0) between the non-Hermitian setting and its parent
Hermitian system for (a) U = −0.8t, (b) U = −2t, and (c) U = −4.5t, respectively. The upper and lower panels present the
spectrum of the Hermitian and non-Hermitian system, respectively. The red circle and gray shading denote the bound pair
and scattering state. The parent Hermitian system can be obtained by assuming it→ t. For the Hermitian system, the bound
pair with the lowest energy lies in the K = 0 subspace while the ground state of two-particle non-Hermitian setting locates on
the subspace indexed by K = π. It is shown that the presence of the imaginary hopping not only makes all scattering energy
bands imaginary but also reverses the whole bound band. In the condition of small U , there can exist an EP characterized by
the divergence of ∂εK/∂K. Such non-Hermiticity alters significantly the paring mechanism and hence favors superconductivity.

the negative U in the following unless stated otherwise.
In the absence of on-site interaction U , only the scatter-
ing eigenstate with imaginary eigenenergy presents and
the system does not accommodate the bound pair state.
The nonzero interaction U leads to the emergence of the
bound pair. When |U | > |4t|, the system possesses the
full real bound pair spectrum. However, a small U re-
sults in the appearance of the imaginary bound pair en-
ergy. The corresponding eigenstate is in the form of an
oscillation damping wave rather than a monotonic damp-
ing wave of the Hermitian parent system. Notice that if
|U | 6 |4t|, then an exceptional point (EP) |U | = |2λKc

|
presents, at which the coalescent eigenstate approaches
to a unidirectional plane wave with β = 0 or π cor-
responding to K = 0 or 2π. In this sense, the non-
Hermiticity of the system is suppressed through the pair-
ing mechanism. The emergence of real energy is the con-
sequence of the competition between the on-site inter-
action and imaginary hopping. Furthermore, the lowest
real eigenenergy appears in the K = π subspace no mat-
ter whether the system possesses the full real spectrum.
The corresponding ground state is η-pairing state with
the form

∣∣φ−0 (K)
〉

=
(
η+
)
/
√
N |Vac〉, (17)

and thus it favors superconductivity. This is in stark dif-
ference from the Hermitian system, i.e., it → t. In that
case, the ground state of the two-particle system locates
on the K = 0 rather than K = π subspace such that
the η-pairing state has the highest eigenenergy than the
other bound pair state. Fig. 1 shows the typical energy
spectrum of subspace (0, 0). It demonstrates that the
imaginary hopping flips the bound pair spectrum of the
parent Hermitian spectrum so that η-pairing state be-
comes the ground state of the system. It is worthy point-
ing out that if we consider the dilute Fermi gas formed
by many bound pairs in which the pair-pair interaction
is neglected, then the mechanism for a single bound pair
can be extended to this type of dilute gas.

IV. η-PAIRING STATE IN THE LARGE U LIMIT

Now we turn to investigate the situation with arbitrary
filling but in the large U limit. system. Following the
standard step of quantum mechanics, the system can be
divided into the kinetic part H ′ and interaction part H0,
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FIG. 2: Plots of the overlap F and correlator Cj as a function of the strength of interaction disorder b for (a) t = 1, a = 0.1t,
U = −0.5t (b) t = 1, a = 0.3t, U = −1.5t (c) t = 1, a = 0, U = −4t, and (d) t = 1, a = 0.2t, U = −4t. The numerical
simulation is performed for the 6 site 1D Hubbard model at half filling and sz = 0. Here the strength of the hopping disorder a
is set to be constant for each subfigure and the correlator Cj is averaged over all sites separated by a distance j. When b = 0,
no matter what value a takes, as long as U is non-zero, one can always get a perfect η-pairing ground state. The variation
of Cj indicates that the increase of b will not result in the significant change of the η-pairing ground state; the presence of
the hopping disorder can suppress the fluctuation of Cj compared to the disorder free case, which can be seen from (c)-(d).
Therefore, the value of the correlator is the consequence of the interplay between two such disorders, which provides a scheme
to prepare η-pairing ground state in the experiment.

where

H ′ = i
∑
j,l

∑
σ=↑,↓

tjl(c
†
j,σcl,σ + c†l,σcj,σ), (18)

H0 = U
∑
j

nj,↑nj,↓. (19)

Here the imaginary hopping is assumed to be homoge-
neous itjl = it. In the strongly correlated regime |U | � t,
the kinetic term H ′ can be treated as a perturbation and
one can derive an effective Hamiltonian for the degener-
ate space. To second order in perturbation theory, the
effective Hamiltonian is given by

Heff = P0H0P0 + P0H
′P1

1

E0 −H0
P1H

′P0 +O

(
t3

U2

)
,

(20)

where P0 is a projector onto the Hilbert subspace in
which there are M lattice sites occupied by two parti-
cles with opposite spin orientation, and P1 = 1 − P0 is
the complementary projection. Here the energy E0 of the
unperturbed state is set to E0 = MU where M denotes
the number of doublons. Since H ′ acting on states in
P0 annihilates only one double occupied site, all states
in P1H

′P0 have exactly N − 1 doubly occupied sites.
Therefore, the effective Hamiltonian regarding doublon-
hole creation and recombination process is given as

Heff = MU +
4t2

U

∑
j

(
ηj · ηj+1 −

1

4

)
, (21)

where ηj = (ηxj , η
y
j , η

z
j ). In the Appendix, a simple

two-site case is provided to elucidate this mechanism.
This indicates that the non-Hermitian virtual exchange
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FIG. 3: Numerical simulation of 2D corrugation pattern for (a1) 8 site Hubbard model with 4 filled particles, (b1) 9 site
Hubbard model with 6 filled particles, and (c1) 13 site Hubbard model with 2 filled particles. The different sizes of solid circles
and different lengths of red edges denote the disorder of the interaction strength Uj and hopping strength tj of Eq. (23).
(a2)-(c2) Plots of F and C1 as function of disorder strength b. The system parameters are (a) t = 1, a = 0, U = −0.8t (b)
t = 1, a = 0.2t, U = −0.8t and (c) t = 1, a = 0.2t, U = −0.5t. Similar with 1D system, the induced fluctuation of C1 is
minor in comparison with disorder free case (b = 0) indicating that the existing result of 1D can be extended to 2D or higher
dimensional system.

mediates an interaction between the pseudo spins. It is
similar to the Heisenberg interaction in the Hermitian
Hubbard model in the way that the doubly occupied and
vacuum sites correspond to spin up and spin down states,
respectively. Owing to the fact that 4t2/U < 0, the ef-
fective Hamiltonian is ferromagnetic Heisenberg model of
pseudo spins. The eigenstate of the lowest eigenenergy
within each doublon subspace is the η-pairing state with
different pair number. As such the ground state of Heff is

(η+)
N |Vac〉 dubbed as η-spin ferromagnetic state. Note

in passing that for the case of repulsive Hubbard model
(U > 0) at half filling, the extra minus sign induced by
the non-Hermitian virtual exchange leads to an effective
ferromagnetic rather than an antiferromagnetic Heisen-
berg Hamiltonian

H l
eff = −4t2

U

∑
j

(
sj · sj+1 −

1

4

)
(22)

describing the behavior of the ground state and low en-
ergy excitations. The eigenenergy of the ground state
is zero. Notably, the interplay between the imaginary
hopping and particle-particle interaction fundamentally
alters the magnetism of the Hubbard model leading to
sign reversal of magnetic correlation.

V. η-PAIRING STATE IN SYSTEM WITH
MIXED HOPPINGS

In the aforementioned sections, we have demonstrated
that the η-pairing state can be either the ground state of
the system under the large U limit, or the ground state
of the two-particle subspace with non-zero U . Then a
natural question arises: (i) For any nonzero U , is the η-
pairing state still the ground state of the system in the
subspace of other particle numbers? (ii) If yes, can the
existing 1D results be extended to 2D or higher dimen-
sional system? (iii) If the disorder is introduced, does the
property of ground state be changed? To answer these
questions, we first investigate the 1D non-Hermitian sys-
tem with disordered imaginary hoppings and interaction
since the system parameter does not hold the uniform in
real experiments. The corresponding disordered Hamil-
tonian can be obtained by taking two sets of random
numbers {tj} and {Uj} around t and U in Eq. (1). The
random number parameter can be taken as

tj = t+ rand(−a, a), Uj = U + rand(−b, b), (23)

where rand(−a, a) denotes a uniform random number
within (−a, a). It is too cumbersome to obtain an analyt-
ical result. Hence, we perform the numerical simulation
to check the fidelity between the ground state and target
η-pairing state, which can be given as

F = |〈ψg (m)|ψc (m)〉|, (24)
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FIG. 4: Transition of the ground state driven by the imagi-
nary hopping. (a)-(b) depict the variation of the energy spec-
trum with respect to hopping strength t, and (c) presents the
switch of the correlator C3. The numerical simulation is per-
formed for the 6 site Hubbard model with 4 filled particles.
The other system parameters are t0 = 1, and U = −1.5t0.
The hopping strength t is in units of t0. The red line de-
notes the η- pairing state. C3 experiences an evident jump at
the critical point indicating a dramatic change of the ground
state. Such a first-order transition may associate with quan-
tum phase transition to some extent.

with m being an even number representing filled particle
number of the system. Here |ψg (m)〉 is the ground state
of such subspace and the target η-pairing state is

|ψc (m)〉 = Ω−1
(
η+
)m/2 |Vac〉, (25)

with renormalization coefficient Ω =

√
C
m/2
N . Fig. 2

shows that if U is homogeneous (b = 0) then the ground
state is the η-pairing state in the subspace with particle
numbers m = 2, 4, and 6. The corresponding energies
are U , 2U , and 3U respectively. Such a result indicates
that the formation of the η-pairing ground state does
not depend on the values of U and is immune to the hop-
ping disorder. However, the introduction of disordered
U will cause the ground state of the system to deviate
from the η-pairing state. The underlying mechanism is
clear, that is, the system fulfills the η symmetry even
in the presence of the hopping disorder, but if one in-
troduce disorder into the interaction, this symmetry will
be destroyed leading to such deviation. One may think
that the disorder of interaction scrambles the background
spin configuration and disturb the spin correlation. Then
a question arises: to what extent does the ground state
maintain the superconductivity? To capture supercon-

ductivity, the doublon-doublon correlator

Cj =
∑
i

〈η+
i η
−
i+j〉/N (26)

is introduced. It is averaged over all sites separated by
a distance j. The nonzero value of such quantity implies
both the Meissner effect and flux quantization and hence
provides a possible definition of superconductivity.56,58

For the target state |ψc (m)〉, the expectation value can
be given as

〈ψc (m) |η+
i η
−
i+j |ψc (m)〉 =

{
M(N−M)
N(N−1) , for j 6= 0

M
N , for j = 0

,

(27)
where M = m/2. Notice that it is irrelative to the dis-
tance j and hence the correlator Cj obeys the same law
such that Cj = M(N − M)/[N(N − 1)] for j 6= 0 or
Cj = M/N for j = 0. Fig. 2 shows that the value
of correlator and the overlap between the ground state
and target state. It indicates that F is around 0.9 and
the correlator Cj stays at a non-zero value ensuring the
ground state of the system possesses the superconductiv-
ity even though the strong inhomogeneity of interaction
presents.

Now we switch gears to the cases of the 2D system. In
Fig. 3, the disordered 2D system is sketched. For sim-
plicity, we fix the strength of the hopping disorder a and
examine two quantities F and C2. It is shown that the
system still possesses the η-pairing state even though the
small homogeneous U and the disordered imaginary hop-
ping present, which is similar to that of the 1D system.
Although the disorder U affects the correlation of ground
state, the correlator C2 has a small fluctuation around
the value of uniform case supporting the superconduc-
tivity of the ground state. Therefore, one can conclude
that all the results of 1D can be extended to 2D lattice
system. It can be expected that this conclusion is still
valid for the higher dimensional bipartite system.

VI. TRANSITION FROM NORMAL TO
η-PAIRING GROUND STATES

In this section, we focus on how does the ground state
transits from normal to superconductive state. To ob-
serve such a transition, we consider a 1D Hubbard sys-
tem with only two nearest neighbour (NN) sites coupled
through Hermitian hopping t. The corresponding Hamil-
tonian can be given as

H = −
∑

j,σ=↑,↓

tj(c
†
j,σcj+1,σ + c†j+1,σcj,σ)

+U
∑
j

nj,↑nj,↓, (28)

where homogeneous U is supposed and t1 = t0 otherwise
tj = 0. The Hamiltonian still possesses the η symme-
try and hence supports the η-pairing eigenstate. How-
ever, such a state is not the ground state of the system.
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Now we switch on the other coupling of the NN sites,
which are the imaginary hoppings rather than Hermitian
hoppings, that is tj = it for j 6= 1. Fig. 4 shows the
variation of the low-lying energy spectrum with respect
to it. The η-pairing state is denoted by the red line,
which is suppressed to the ground state by the increase
of imaginary hopping. There exists a transition window
in which the ground state is transformed from a normal
state to a superconducting state. We perform the numer-
ical simulation to demonstrate this process through the
correlator C3. Evidently, C3 undergoes a leap around
the critical point which leads to the divergence of the
first order of derivative ∂C3/∂t. It witnesses the for-
mation of the η-pairing ground state. Notice that all
the conclusions can be extended to a higher dimension.
Before ending this section, we want to point out that
the imaginary hopping plays the key to achieve the su-
perconducting ground state, however, it does not mean
that the system must have the η-pairing ground state as
long as the imaginary hopping is applied. The transi-
tion of the ground state always requires a process such
that there is a threshold beyond which the system favors
the superconductivity. Such property is reminiscent of
quantum phase transition, that is, the ground state will
experience a dramatic change when the system crosses
the quantum phase transition point. This findings paves
the way to understand the η-spin ferromagnetic state of
the non-Hermitian strongly correlated system.

VII. SUMMARY

In summary, we have systematically studied the ef-
fect of the non-Hermitian imaginary hopping on the low-
lying energy spectrum of the Hubbard model. The an-
alytical solution within the two-particle subspace shows
that the introduction of the imaginary hopping results
in a full imaginary scattering spectrum and a flip of the
bound pair spectrum comparing to its Hermitian par-
ent model. It indicates that the particle-particle correla-
tion suppresses the non-Hermiticity making the ground
state to be η-pairing state with ODLRO. The η symme-
try plays the vital role in this mechanism. In the large
negative U limit, the magnetism of the Hubbard model
is altered fundamentally due to the interplay between
the particle-particle interaction and non-Hermitian imag-
inary hopping. The ground state experiences a transition
from normal to η-spin ferromagnetic states. Such a tran-
sition holds for any pair filled, that is, the ground state

in each invariant subspace is (η+)
M |Vac〉 with M being

the pairs of particles. Through numerical simulation of
1D and 2D non-Hermitian Hubbard system, we demon-
strate that the η-pairing ground state can still survival al-
beit a small negative U presents. This evidence is robust
against disorder even if the system does not fulfill the
SO(4) symmetry. Our results open a new avenue toward
populating a η-pairing ground state and suppressing an-
tiferromagnetic correlation of η spins in the attractive

Hubbard model.
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Appendix A: Two-particle solutions

In this section, we show the detailed caculation for the
two-particle solution in each invariant subspace. For the
simplicity, we only focus on the solutions in subspaces
(0, 0) and (1, 0), since the solution in subspace (1, ± 1)
can be obtained directly from that in subspace (1, 0) by
operator s±. A two-particle state can be given as∣∣ϕ±K〉 =

∑
r

f±K,k (r)
∣∣φ±r (K)

〉
,
(
f+
K (0) = f−K,k (−1) = 0

)
,

(A1)
where r denotes the relative distance between the two
particles and the wave function f±K,k (r) obeys the
Schrödinger equations

QKr f
+
K,k (r + 1) +QKr−1f

+
K,k (r − 1) +

[(−1)
n
QKr δr,N0

− εK ]f+
K,k (r) = 0, (A2)

and

QKr f
−
K,k (r + 1) +QKr−1f

−
K,k (r − 1) +

[Uδr,0 + (−1)
n
QKr δr,N0 − εK ]f−K,k (r) = 0, (A3)

with N0 = (N − 1) /2 and the eigen energy εK in the
invariant subspace indexed by K. Here factor QKr =

−2
√

2it cos (K/2) for r = 0 and −2it cos (K/2) for r 6=
0, respectively. U appears in the (0, 0) subspace and
therefore admits the bound pair solution. In the large
N limit, we can neglect the effect of on-site potential
(−1)

n+1
2it cos (K/2) at N0th site. The solution of (A3)

is equivalent to that of the single-particle semi-infinite
tight-binding chain system with nearest-neighbour (NN)
hopping amplitude QKj , and on-site potentials U at 0th
site, respectively. Moreover the solution of (A2) corre-
sponds to the same chain with infinite U . In this scenario,
the bound state solution

∣∣ϕb
K

〉
=
∑
r f
−
K (r) |φ−r (K)〉 can

be determined by substituting the ansatz

f−K (j) =

{
1/
√

2, j = 0
e−βj , j 6= 0

(A4)

into the following equivalent Hamiltonian

HK
eq = U |0〉 〈0|+

∞∑
i=0

(
QKi |i〉 〈i+ 1|+ H.c.

)
. (A5)
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Straightforward algebra shows that β = ln[(−U ±√
U2 + 4λ2

K)/2λK ] where λK = 2it cos (K/2) and ± de-
notes negative and positive U , respectively. Correspond-
ingly, the energy of the bound pair is

εK = sgn (U)
√
U2 − 16t2 cos2 (K/2). (A6)

For the case of negative U , the lowest energy of bound
pair is επ = −U locating on the subspace with K = π.
As such the corresponding eigenstate is

∣∣φ−0 (K)
〉

that
represents a η-pairing state in the coordinate space with
the form of (η+) /

√
N |Vac〉.

Appendix B: Simple example of two-site case for the
effective Hamiltonian Heff

In this subsection, we provide a detailed calculation
of the two-site case for the effective Hamiltonian Heff

which may shed light to obtain the effective Hamiltonian
(21). In the simplest two-site case, P0 =

∑
α∈d.o. |α〉〈α| is

the projection operator to the doublon subspace spanned
by the configuration {|x0〉, |0x〉}, and P1 = 1 − P0 =∑
a/∈d.o. |a〉〈a| is the complementary projection. Here the

abbreviation d.o. means the doubly occupied subspace

and |x0〉 = c†1,↑c
†
1,↓|Vac〉, |0x〉 = c†2,↑c

†
2,↓|Vac〉. The first

term of Eq. (21) clear gives P0H0P0 = U . The second
term can be simplified by noting: (i) the unperturbed en-
ergy E0 is U ; (ii) P1H

′P0 annihilates the doubly occupied

site. Then Heff can be written as

Heff = U +
∑

α,β∈d.o.

∑
a,b/∈d.o.

|α〉〈α|H ′|a〉〈a|

× 1

U −H0
|b〉〈b|H ′|β〉〈β|

= U +
1

U

∑
α,β∈d.o.

〈α| (H ′)2 |β〉|α〉〈β|. (B1)

The second term describes the virtual exchange of the
fermions. The non-Hermitian imaginary hopping brings
about an additional sign to this process yielding that

Heff = U−2t2

U
(|x0〉〈0x|+ |0x〉〈x0|+ |x0〉〈x0|+ |0x〉〈0x|) .

(B2)
Combining the cases in the subspaces of |xx〉 and |Vac〉,
the pseudo spin Hamiltonian can be given by the non-
Hermitian Heisenberg-like model

Heff = MU +
4t2

U

(
η1 · η2 −

1

4

)
, (B3)

where M can be 0, 1, and 2 denoting the number of pairs
of the doublon subspace. Evidently, the ground state of
Heff is the η-spin ferromagnetic state with the form of

(η+)
2 |Vac〉.
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