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Abstract
The zeroth law of thermodynamics involves a transitivity relation (pairwise between three objects) expressed

either in terms of ‘equal temperature’ (ET), or ‘in equilibrium’ (EQ) conditions. In conventional thermodynamics
conditional on vanishingly weak system-bath coupling these two conditions are commonly regarded as equivalent.
In this work we show that for thermodynamics at strong coupling they are inequivalent: namely, two systems can
be in equilibrium and yet have different effective temperatures. A recent result [26] for Gaussian quantum systems
shows that an effective temperature T ∗ can be defined at all times during a system’s nonequilibrium evolution,
but because of the inclusion of interaction energy, after equilibration the system’s T ∗ is slightly higher than the
bath temperature Tb, with the deviation depending on the coupling. A second object coupled with a different
strength with an identical bath at temperature Tb will not have the same equilibrated temperature as the first
object. Thus ET 6= EQ for strong coupling thermodynamics. We then investigate the conditions for dynamical
equilibration for two objects 1 and 2 strongly coupled with a common bath B, each with a different equilibrated
effective temperature. We show this is possible, and prove the existence of a generalized fluctuation-dissipation
relation under this configuration. This affirms that ‘in equilibrium’ is a valid and perhaps more fundamental
notion which the zeroth law for quantum thermodynamics at strong coupling should be based on. Only when
the system-bath coupling becomes vanishingly weak that ‘temperature’ appearing in thermodynamic relations
becomes universally defined and makes better physical sense.
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I. INTRODUCTION

The zeroth, first and second laws of thermodynamics are usually tied to the definitions of temperature,

energy and entropy, respectively [1]. In this paper we are interested in the conditions for the zeroth law.

What we know as the zeroth law of thermodynamics [2] involves a transitivity relation [3] (pairwise

between three objects A, B, C) expressed either in terms of ‘equal temperature’ (ET), or ‘in equilibrium’

(EQ) conditions. We shall use ‘ET’ to denote a relation between two objects read as, ‘has the same

temperature as’ and ‘EQ’ to denote ‘in equilibrium with’. The ‘equal temperature’ version of the zeroth

law, namely, “if A ET B and if B ET C, then A ET C” was used by Maxwell [4] and Sommerfeld [5].

The corresponding ‘in equilibrium’ or EQ version appeared in Planck1[7], Carathéodory2[9] and Born

[10].

A. The zeroth law: Temperature vs Equilibrium

a. Temperature defined under weak coupling with bath The concept of temperature associated with

a system in thermal equilibrium is as old as thermodynamics itself. There are many versions describing

this relation. E.g., the relation described by Carathéodory was made rigorous by Miller [11], who stated

it as a necessary and sufficient condition for the existence of temperature from the thermodynamic

laws. As we know the temperature of a physical object can be defined in many ways in conventional

thermodynamics. In microcanonical ensembles it is related to the internal energy of a system, in canonical

ensembles it is related to how the number of accessible states (measured by entropy) varies with energy.

Viewing temperature from the perspective of energy and entropy some authors find the zeroth law

redundant3. For strong coupling thermodynamics this remains to be seen4. What we can say now is

that already at this very basic level of the zeroth law there is ambiguity in the definition of a universal or

absolute temperature – ‘universal’ or ‘absolute’ (we don’t mean Kelvin temperature) in the sense that it

is independent of the specific features of the object, and this situation will pervade in all strong-coupling

thermodynamic laws invoking temperature.

An important underlying assumption of conventional thermodynamics is that the system is very weakly

coupled with the bath so that the system’s internal energy does not contain the interaction energy. Under

1 The relevant passage in the 6th Edition (1921) translated to English by Turner can be found in [6].
2 For a comprehensive description of his work on thermodynamics see the review of Redlich [8].
3 E.g., Buchdall [12] shows that the transitivity relation in the zeroth law,– i.e., “is in diathermic equilibrium with” – can

be deduced from the first law and the second law if the latter makes no reference to temperature. Kammerlander and
Renner [13], laying out the foundations of thermodynamics starting from the basic concepts of systems, processes and
states, show that the zeroth law can be derived from the first and the second laws.

4 We will be in a better position to comment on this claim after we examine the internal energy [14] and the entropy [15]
of (Gaussian) quantum systems.
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this assumption when a system is in contact with a thermal bath of temperature Tb = β−1b , under certain

thermodynamic limits and barring the exceptional cases (such as systems with negative heat capacity or

baths with logarithmic correlations mentioned below) it will evolve in time to a thermal state of the same

temperature. These assumptions underlie the notion of a universal temperature scale, independent of the

details of the specific system involved. We simply say that the system has a certain temperature β−1b . It

is universal and thus the relation is transitive in the sense that whatever system comes into contact with

the same thermal bath will reach the same temperature. However, when a system is strongly coupled

to a thermal bath, the notion of a universal, absolute temperature scale is lost. It has been known [16–

18] that if we prepare the combination C = S + B of a system S, made up of a quantum Brownian

oscillator, and a quantum thermal bath B, with C initially in a global equilibrium thermal state, then

the (reduced) density matrix operator of the oscillator in general does not assume the canonical form

when the system-bath coupling is finite, but not vanishingly small. This thwarts the attempt to identify

a bona fide temperature for the system.

When a system is strongly coupled to a thermal bath, the temperature of this system is no longer

a well-defined quantity – it depends on how much one includes their interaction energy in the system

versus the bath. Novel quantities like the Hamiltonian of mean force are introduced for this purpose.

This is one of the reasons why we want to revisit all the strong coupling thermodynamic laws, starting

with the zeroth law. For strong coupling at least two issues stand out: a) Can a temperature, or an

effective temperature T ∗ be defined? b) Suppose such an effective temperature can be defined, will

the transitive relation of isothermality (equal temperature) still hold – namely, let object 1 at effective

temperature T ∗1 be in equilibrium with a bath B and a different object 2 at temperature T ∗2 be in

equilibrium with an identical bath B, is it true that T ∗1 = T ∗2 , as is the case in conventional (weak

coupling) thermodynamics? From our recent work on Gaussian systems the answer to a) is yes: One can

define an effective temperature for a system in a nonequilibrium setting. We shall show in this paper

that the answer to b) is no: T ∗1 6= T ∗2 6= Tb even if each object is in equilibrium with an identical bath

at temperature Tb. The criterion for the zeroth law in strong coupling thermodynamics should be based

on the equilibrium condition, not equal temperature.

b. The zeroth law formulated under equilibrium conditions It is well known that there is no zeroth

law for systems which are not, or cannot be, in equilibrium. Examples are systems with long range

interactions [19] or systems with negative heat capacity, such as 2D Coulomb gas, gravitating systems

[20, 21], polymers, glassy systems, etc. They will be excluded from consideration here, namely, we assume

“the absence of appreciable long-range forces between different portions of all bodies” [22] under study.

We note that almost all of the discussions of classical thermodynamics theories in these earlier works

are in the context of a system very weakly coupled to a thermal bath, and taking a relatively short time

to relax to equilibrium. Strong coupling and baths with long correlation times can affect the equilibration
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time of the system significantly. For example, Patra and Bhattacharya [23] studied numerically the system

of one harmonic oscillator placed in different types of baths. In computationally achievable time, at low

to moderate coupling strengths, their results show a violation of the zeroth law of thermodynamics in the

scenarios involving logarithmic thermostat. Specifically, “(i) the kinetic and configurational temperatures

of the systems are different, (ii) momentum distribution of log thermostat is non-Gaussian, and (iii) a

temperature gradient is created between the kinetic and configurational variables of the log thermostat.”

B. Zeroth law for strongly coupled quantum thermodynamics

We have recently studied the nonequilibrium (NEq) thermodynamics of a quantum Brownian harmonic

oscillator, our system, which is strongly coupled to a quantum scalar field bath with bilinear coupling

[26]. Since the complete system is Gaussian we can solve this problem exactly and from it establish a

theory of quantum thermodynamics at strong coupling, at least for Gaussian systems. From the NEq

free energy of the system based on a coarse-grained effective action and from the von Neumann entropy

constructed from the reduced density matrix, we find that a nonequilibrium effective temperature T ∗ can

indeed be defined for the quantum system at every moment of time throughout the entire evolution. In

this paper we shall use this quantum NEq systematics to address some foundational issues of the zeroth

law in strong coupling quantum thermodynamics5.

We first state the main claims from the present work and then describe how we are led to them.

The notion of temperature is in general not well defined for a system strongly coupled to a thermal

bath [16, 17, 25]. However, an effective temperature can be defined at least for strongly coupled Gaussian

quantum systems, in fact, throughout its nonequilibrium evolution [26]. We will show in this paper that

two Gaussian quantum systems with different finite coupling strengths, thus having two different effective

temperatures, can be in equilibrium with a common bath. Thus a rudimentary message from this work

is: for strong coupling thermodynamics one needs to separate the notion of ‘equal temperature’ (ET)

from ‘in equilibrium’(EQ). EQ is a valid and, in our view, a more fundamental notion than ET, which

quantum thermodynamics at strong coupling, such as the zeroth law, should be based on. Only when the

system-bath coupling becomes vanishingly weak that temperature appearing in thermodynamic relations

becomes universally defined and makes better physical sense.

We substantiate this claim with a description of our methodology and rationale, as follows:

1) For strong coupling thermodynamics a nonequilibrium (NEq) effective temperature T ∗ can be

5 Evans et al [24] have also approached the zeroth law from a NEq viewpoint. In providing a proof of the zeroth law
for classical, deterministic, T -mixing systems, they derived an exact expression for the far-from-equilibrium thermal
conductivity of the material concerned.
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defined for Gaussian quantum systems [26]. However, at equilibration with a heat bath of temperature

Tb , the system’s effective temperature T ∗ is not equal to, but (for the oscillator-field model studied)

slightly higher than, that of the heat bath due to their non-negligible interaction.

2) Another identical system 2 with a different coupling strength albeit interacting with an identical

bath of the same bath temperature Tb will have a different effective temperature T ∗2 at its equilibration.

Thus even when two identical systems 1 and 2 have reached equilibration with identical baths, if their

coupling strengths are different, their effective temperatures will be different. This implies that the

zeroth law stated in terms of equal temperature does not hold for strong coupling thermodynamics.

3) Equilibrium condition can be defined for strongly coupled systems by examining the power transfer

between the system and the bath. Equilibrium condition is achieved when there is no net energy flow

between them such that power balance is reached.

(a) Using the power balance criterion we have proven in earlier work that a chain of quantum

harmonic oscillators when placed between two heat baths of different temperatures can indeed

at late times approach a nonequilibrium steady state (NESS) [27], and a fluctuation-dissipation

relation for NESS can be established [28].

(b) For a system of N quantum oscillators interacting strongly with and through a common quan-

tum thermal field via bilinear coupling, we have investigated the third law in terms of the heat

capacity’s temperature dependence near absolute zero of the initial bath temperature [29]. We

have also shown the existence of a generalized (tensorial) fluctuation-dissipation relation

for oscillators at rest [29] and for uniformly accelerating oscillators in the inertial vacuum [30, 31].

(c) For a nonlinear oscillator bilinearly coupled to the thermal bath [32], the existence of a unique,

stable equilibrium state implies a nonperturbative fluctuation-dissipation relation.

4) Present Work. In Scenario (b) above, we assume the same coupling strength between each oscillator

and the bath field. Here we shall focus on two quantum oscillators interacting strongly but with

different strengths with the same thermal field bath. What we need to do is to i) calculate their

effective temperatures upon equilibration with identical baths, and show that they are different,

and to ii) show that these two oscillators when placed in the same bath albeit at different effective

temperatures can indeed reach equilibrium.

5) Equilibration 6= Thermalization. Here in the context of thermodynamics one sees a clear dis-

tinction between in equilibrium and in thermal equilibrium. Thermalization demands more than

equilibration. When a systems is coupled to a thermal bath, it may reach equilibrium, but not nec-

essarily thermalize. Upon equilibration the reduced density matrix of the system does not have to

assume the canonical distribution (thermal) form [16, 33] unless the coupling constant is vanishingly
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small. Only in this limit would the system be in thermal equilibrium with the bath and thermalization

achieved. Without this added condition we can only say that the system is in equilibrium with the

bath.

To establish notations we give in Sec. II a short summary of the newly introduced nonequilibrium

effective temperature. Readers familiar with the results from [26] can skip over this section. In Sec. III

we delineate the implications from the dependence of the effective temperature on the system-bath

coupling and why the zeroth law should not be phrased in terms of ‘equal temperature’. In Sec. IV we

show how how two oscillators equilibrate when they are coupled to a common bath with unequal but

finite strengths. The existence of such dynamical equilibration allows us to show a set of generalized

fluctuation-dissipation relations between these two systems, based on power balance. In Sec. V, we show

why equilibrium condition is a more basic notion in the description of the zeroth law.

II. NONEQUILIBRIUM EFFECTIVE TEMPERATURE FOR A GAUSSIAN SYSTEM

The concept of temperature is ill-defined for dynamically evolving nonequilibrium systems. In our

recent work [26] where an effective temperature is defined, we did not force upon it. Rather, we at-

tempted to keep the definition of free energy Fs(t) = Us(t) − T ∗(t)SvN (t) intact for strong coupling

thermodynamics, and examine each quantity in this relation in the nonequilibrium context. All of them

have been studied and understood in varying degrees before, except one, the temperature. The nonequi-

librium free energy Fs of the system is related to the (closed-time-path) coarse-grained effective action,

the von Neumann entropy SvN is derived from the reduced density matrix of the system [34, 35] and the

internal energy Us from the Hamiltonian of mean force [14, 18, 33]. The sought-after quantity we call

NEq effective temperature T ∗(t) is a time-dependent function which varies with the coupling strength.

It assumes a familiar form only after the system equilibrates and acquires the proper physical meaning

of the temperature of conventional (ultra-weak coupling) equilibrium thermodynamics.

This designer scheme is pretty attractive, but is the actual implementation feasible or tractable? That

is the real challenge. Arranging the expression of the density matrix operator into a (quasi-) canonical

form [16, 17, 36] leading to an explicit expression for the effective temperature is not an easy task when

non-commutativity of quantum operators is involved. Depending on how we rewrite the density matrix,

there is no unique way to define an effective temperature. In addition, for a general system strongly

coupled to the bath, the explicit form of its density matrix is usually not available, let alone a closed

analytical form.

This seemingly impossible situation greatly improves for the case of Gaussian system linearly coupled

to a Gaussian thermal bath. The implementation of this scheme and the identification of the effective

temperature become feasible from these two observations: 1) If the initial states of the system and the
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bath are Gaussian, then the final (reduced) states of the system and the bath should also be Gaussian,

and 2) the analytical expressions of the reduced density matrices of the Gaussian states are readily

available. Thus, in the aforementioned example of a quantum Brownian oscillator strongly coupled to a

Gaussian quantum thermal bath, even though the reduced density matrix operator of the oscillator is

not of the Gibbsian form, its matrix elements are still Gaussian.

The effective temperature of the oscillator is then identified when we compare the expressions of the

density matrix elements in the coordinate representation with those for the thermal state of the oscillator.

The effective temperature extracted this way should explicitly depend on the parameters of the oscillator

system, in particular, the oscillator-bath coupling strength. Thus when two oscillators are in contact with

the same bath, if their coupling strengths are different, they have two different effective temperatures.

This negates the ‘universal’ nature, and invalidates the transitivity relation of temperature, as we have

gotten used to in conventional ultra-weak coupling thermodynamics. The adjective “effective” conveys

these senses (beware of effective temperatures defined in other contexts under different assumptions).

In what follows we will generalize the notion of effective temperature from an equilibrium setting to

fully nonequilibrium conditions. We will do this for a time-evolving Gaussian quantum system strongly

coupled to a Gaussian quantum thermal bath focusing on the consequences of finite system-bath coupling

for the zeroth law of thermodynamics.

For definiteness and mathematical simplicity, we consider a simple harmonic oscillator as an example

of a Gaussian system (S), initially in any Gaussian state, coupled to a quantum scalar field, initially in a

thermal state at temperature β−1b , acting as the thermal bath (B). Since such an initial configuration is

in general not in equilibrium, their mutual interaction will induce subsequent evolution of both parties

involved. The bath considered here has many more degrees of freedom and only a small fraction of the

bath modes are expected to effectively interact with the oscillator system even when the oscillator-bath

coupling is finite, not ultra-weak. The back-action from the system to the bath also tends to be negligible

at late times [37], thus we can assume that the bath practically remains in the same initial thermal state.

This will no longer be the case for a finite-size bath or if the numbers of degrees of freedom of the system

and of the bath are comparable. In the configuration we are considering, however, the corresponding

back-reaction to the system can induce a substantial change and forces the system to evolve away from its

initial configuration. The one important invariant is that throughout the evolution, the reduced density

matrix of the system, although time dependent, remains Gaussian. It can be parametrized by an inverse

temperature-like parameter ϑ, the coherence parameter α, the squeeze parameter ζ ∈ C and the rotation

angle θ ∈ R in a form like [38–44]

ρ̂s = D̂(α)Ŝ(ζ)R̂(θ) ρ̂ϑ R̂
†(θ)Ŝ†(ζ)D̂†(α) . (2.1)
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Here D̂(α), Ŝ(ζ) and R̂(θ) are respectively the displacement, squeeze and the rotation operators

D̂(α) = exp

[
α â† − α∗ â

]
, Ŝ(ζ) = exp

[
1

2
ζ∗â2 − 1

2
ζ â† 2

]
, R̂(θ) = exp

[
−i θ

(
â†â+

1

2

)]
,

with the annihilation and creation operators a, a† satisfying the standard canonical commutation relation

[â, â†] = 1. The operator ρ̂ϑ takes on the canonical form

ρ̂ϑ =
1

Zϑ
exp

[
−ϑ
(
â†â+

1

2

)]
, Zϑ = Tr exp

[
−ϑ
(
â†â+

1

2

)]
=

1

2 sinh ϑ
2

, (2.2)

but beware that the positive real parameter ϑ should not outright be identified as an inverse temperature.

The arbitrary parameters α, ζ, θ, and ϑ will be determined by the system dynamics at the specific

moments of time, expressible in terms the covariance matrix elements of the system. These parameters

are all functions of time.

We observe in (2.1) that by the cyclic property of the trace,

Tr

{
D̂(α)Ŝ(ζ)R̂(θ) exp

[
−ϑ
(
â†â+

1

2

)]
R̂†(θ)Ŝ†(ζ)D̂†(α)

}
(2.3)

is actually given by Zϑ. It thus implies that Zϑ will be our candidate for the nonequilibrium partition

function Zs for the reduced density matrix ρ̂s of the oscillator system at any arbitrary moment. After

some algebraic manipulations [26, 40, 41, 43, 44], we find this nonequilibrium partition function Zs can

be written as

Zs(t) =
1

2
csch

ϑ(t)

2
=
(
ab− c2 − 1

4

) 1
2

, (2.4)

with b(t) = 〈χ̂2(t)〉, a(t) = 〈p̂2(t)〉, and c(t) =
1

2
〈
{
χ̂(t), p̂(t)

}
〉, the covariance matrix elements of the

oscillator. These expectation values are taken with respect to the density matrix ρ̂s(t). The expression

inside the large parentheses is connected to the Robertson-Schrödinger uncertainty relation

〈χ̂2〉〈p̂2〉 − 1

4
〈
{
χ̂, p̂

}
〉2 ≥ 1

4
. (2.5)

It is interesting to note that the uncertainty principle was originally derived based on the general con-

sideration of non-commutativity of operators, so it does not specifically rely on the (non)equilibrium

property of the reduced (non)Gaussian quantum system. Its appearance may be linked to the fact that

the dynamics of a Gaussian system can be completely and uniquely determined by its covariance matrix

elements, and the uncertainty principle is embedded in them. The expression on the righthand side of

(2.4) will play a significant role in the nonequilibrium thermodynamics of the Gaussian systems.

Eq. (2.4) has identical appearance to the equilibrium partition function we are familiar with in the

conventional, weak-coupling thermodynamics, except for the time dependence. This opens the way for us

to identify the effective temperature T ∗(t) = β−1eff(t) of the system in the duration of the nonequilibrium

evolution by

ϑ(t) = βeff(t)ωr , (2.6)
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FIG. 1: The dependence of the effective temperature T ∗ = β−1
eff of the system on the initial temperature Tb = β−1

b

of the bath. The parameters are normalized with respect to the resonance frequency Ω =
√
ω2
r − γ2 such that

m = 1 Ω, and the cutoff frequency Λ = 1000 Ω. We choose the damping constant γ = 0.3 for the blue solid curve,
γ = 0.1 for the red solid curve, and γ = 0.03 for the green solid curve. The evolution time t is long enough
with γ t = 3.6, such that the dynamics is sufficiently relaxed. Thus the curves become independent of the initial
conditions of the system. The dashed line is a reference line representing the bath’s initial temperature.

where ωr is the physical frequency of the oscillator. In terms of the covariance matrix elements a, b and

c, this effective inverse temperature is given by

βeff(t) =
2

ωr
ln

1 +
√

1 + 4S(t)

2
√
S(t)

, (2.7)

where

S(t) = a(t)b(t)− c2(t)− 1

4
≥ 0 , (2.8)

gives the the Robertson-Schrödinger uncertainty relation at any moment. Although the covariance matrix

elements are defined with respect to the reduced density matrix operator ρ̂s(t), they can alternatively be

found with the help of the quantum Langevin equation [26] that describes the reduced dynamics of the

oscillator system under the influence of the bath.

It is known that, independent of its initial state, the reduced system we consider here will eventually

relax to an equilibrium state at time scale much greater than γ−1, the damping constant, which contains

the coupling strength between the oscillator system and the thermal bath and quantifies its dissipative

back-reaction on the system dynamics. In this final equilibrium state all the physical observables of

the system, in particular, the covariance matrix elements, will become time-independent, but the cor-

responding density matrix operator does not take on the thermal form unless γ approaches zero. We

expect the effective temperature defined in (2.7) to have similar dynamical features as any other system

observables, and will relax to a constant upon equilibration. An effective temperature defined in this

way thus reflects more the dynamical characteristics of the system than its statistical nature. When the

system relaxes to an equilibrium state it will begin to acquire the statistical properties passed on from
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FIG. 2: The dependence of the effective temperature T ∗ = β−1
eff of the reduced system in the final equilibrium

state on the system-bath coupling constant γ. We focus on the case where the initial temperature of the bath is
zero. Here we choose m = 1ωr, and the cutoff frequency Λ = 1000ωr. Note how the curve rapidly returns to
T ∗ → 0 in the neighborhood of γ ' 0.

the thermal bath, but is skewed by the finite system-bath coupling strength. This also explains why in

the limit of vanishing coupling, the system adheres to the thermal statistics at the bath’s temperature.

III. ZEROTH LAW NOT IN TERMS OF EQUAL TEMPERATURE

The effective temperature introduced in the previous section in general is real and non-negative in the

final equilibrium state due to the Robertson-Schrödinger uncertainty principle. In fact it is always greater

than zero. Specially engineered states of the system may take exceptions, such as a zero-temperature

thermal state. However this is highly unlikely if the system can be let go through unrestrained nonequi-

librium relaxation allowing only interaction with the bath. Even if the bath is initially set at zero

temperature, the resulting effective temperature in the final equilibrium state is still positive and the

deviation from the bath temperature grows with the coupling strength, as shown in Fig. 2. Generically,

the effective temperature will be higher than the initial bath temperature, if the Gaussian system couples

more strongly to the thermal bath. Only in the limiting cases that 1) the system-bath coupling is van-

ishingly small, or 2) the initial temperature of the bath is sufficiently high, will the effective temperature

of the system approach the bath temperature, acquiring the status of the absolute temperature. The

greatest deviation of the effective temperature from the initial bath temperature will appear at the low

bath temperature and strong coupling regimes, as shown in Fig. 1. This is a particularly important

property of the effective temperature in the context of the zeroth law.

Consider that we prepare two identical harmonic oscillators 1, 2 with the same physical parameters

like mass and oscillating frequency except for their coupling strengths, which we denote as γ1 6= γ2. We

also prepare two separate but macroscopically identical thermal baths B, with the same temperature
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Tb = β−1b . Next we let oscillator 1 couple to its bath B and wait for a sufficiently long time until

they reach equilibration. From the final reduced density matrix operator, we can identify the effective

temperature of oscillator 1 to be T ∗1 . We carry out the same protocol for oscillator 2. Wait for oscillator 2

to equilibrate with its bath B. Because of the different coupling strength, it will have a different relaxation

time scale, and after equilibration we will find that oscillator 2 has a different effective temperature T ∗2 .

From Figs. 1, 2 and the previous discussions, we establish that

T ∗1 6= T ∗2 . (3.1)

Furthermore neither of them is equal to Tb, even though in the end oscillator 1 is in equilibrium with its

bath B, and oscillator 2 is in equilibrium with its identical bath B. The final state of oscillator 1 will

be different from that of oscillator 2 while the states of the two identical baths B’s are practically the

same, as their initial states are equal by our preparation, and by virtue of their status as a bath, having

an overwhelmingly larger number of degrees of freedom than either oscillator [37].

Two comments about finding the effective temperature of a system: 1) As discussed earlier, the values

of the effective temperatures of oscillators 1, 2 at equilibration will be independent of their initial states,

so in principle we do not need to prepare oscillators 1 and 2 in the same initial state. 2) Since the

effective temperature is expressed in terms of expectation values, i.e., the covariance matrix elements

a, b and c, it is understood as an averaged value. It does not correspond to a particular value for a

specific realization of the system-bath configuration permissible by the governing quantum probability

distribution. Like finding the expectation value of any system observable, we only need to prepare a

sufficiently large ensemble of such open systems. This protocol applies to the effective temperature of

the system.

With this explanation we begin to see the looming trouble of casting the zero law at strong coupling

in terms of equal temperature. When subsystem 1 is in contact with its bath B, after they reach

equilibration, its effective temperature T ∗1 is different from the effective temperature T ∗2 of subsystems 2

after it has reached equilibration with its identical bath B. Moreover, even within each subsystem and

its bath, their temperatures at equilibrium T ∗1 , Tb are different. Thus equal temperature is not a good

criterion for the zeroth law of thermodynamics at strong coupling.

IV. ZEROTH LAW IN TERMS OF EQUILIBRIUM CONDITIONS

We now explore the “in equilibrium” conditions more closely. Let subsystems 1 and 2 be simultane-

ously coupled to a common subsystem B with different but finite coupling strengths, assuming no direct

interaction between subsystems 1 and 2. The special cases of equal coupling strength have been inves-

tigated in [29–31, 45, 46] in the context of thermal entanglement and equilibration of nonequilibrium

evolutions. It has been shown that if subsystem B is initially in its thermal state, but subsystems 1
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and 2 are in any Gaussian state, then even though the entire system starts out with a nonequilibrium

configuration, each subsystem will equilibrate at later times when there is no net energy flow between

each pair of subsystems, as dictated by the fluctuation-dissipation and the correlation-propagation rela-

tions [29–31]. The only prerequisites are that subsystem 1 and 2 are not too close in proximity and their

coupling strengths with subsystem B are not too large [46] because these cases tend to induced dynamical

instability to the assumed configuration. Thus subsystems 1 and 2 and B will come in equilibrium at

late times. Since the degrees of freedom of subsystem B are infinitely larger the degrees of freedom of

subsystem 1 and 2 then, following the arguments in [37], subsystem B practically remains at its initial

temperature. But, due to the finite coupling between 1 − B and 2 − B, it is reasonable to project that

the subsystems 1 and 2 will not reach an effective temperature that has the same value as the initial

temperature of subsystem B.

A. Two uncoupled oscillators with unequal oscillator-bath couplings

We now consider the more general configuration of unequal oscillator-bath couplings. We will show

that they can still equilibrate at sufficiently late times, and after equilibration, these three subsystems

in general can have three distinct effective temperatures.

To be specific, we consider two mutually uncoupled harmonic oscillators 1, 2, whose displacements

are denoted by operators χ̂1, χ̂2. They are simultaneously coupled to a common quantum field φ̂ with

different coupling strengths g1, g2 respectively. The field is initially prepared in a thermal state at

temperature β−1b , and acts as the thermal bath. The equations of motion for the oscillator system take

the form

m
¨̂
Ξ(t) +mΩ2

b Ξ̂(t)−
∫ t

0

ds gT ·G(φ)
R,0(t− s) · g · Ξ̂(s) = gT · Φ̂h(t) , (4.1)

with t > 0. Here Ξ̂ = (χ̂1, χ̂2)T is the column vector, representing the displacement operators of two

oscillators. The superscript T denotes a matrix transpose. The diagonal matrix

Ω2
b =

[
ω2
b1

0
0 ω2

b2

]
(4.2)

gives the bare frequencies of two oscillators. They take on different values, but after frequency renor-

malization, they will be assumed to have the same physical frequency ωr. The diagonal elements of the

matrix g = diag(g1, g2) give the respective coupling strengths of the oscillators with the bath. The noise

force from the bath is described by the column vector Φ̂h,

Φ̂h(t) =

[
φ̂h(z1, t)

φ̂h(z2, t)

]
, (4.3)

where φ̂h(x, t) is the free massless scalar Klein-Gordon field operator, and zi is the spatial location of

oscillator i = 1, 2. Thus the amplitudes of the driving forces on the two oscillators are different but
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correlated. The retarded Green function matrix G
(φ)
R,0(t − s) of the free scalar field inside the nonlocal

expression of the equation of motion is defined by

G
(φ)
R,0(t− s) = i θ(t− s) Trφ

(
ρ̂
(φ)
βb

[
Φ̂h(t), Φ̂T

h (s)
])
, (4.4)

such that [G
(φ)
R,0(t − s)]ij = G

(φ)
R,0(zi, t; zj , s). The density matrix ρ̂

(φ)
βb

is the initial thermal state of the

free field at temperature β−1b .

The solution to the equations of motion can be obtained by applying the Laplace transformation to

Eq. (4.1) {
m
(
z2I + Ω2

b

)
− gT · G̃(φ)

R,0(z) · g
}
· ˆ̃
Ξ(z) = mz Ξ̂(0) +m

˙̂
Ξ(0) + gT · ˆ̃

Φh(z) , (4.5)

where the Laplace transformation of a function f(t) is defined by

f̃(z) =

∫ ∞
0

dt f(t) e−zt , (4.6)

with Re z > 0. Solving for
ˆ̃
Ξ(z) gives

ˆ̃
Ξ(z) = G̃

(χ)
R (z) ·

[
mz Ξ̂(0) +m

˙̂
Ξ(0)

]
+ G̃

(χ)
R (z) · gT · ˆ̃

Φh(z) , (4.7)

where G̃
(χ)
R (z) is the Laplace transform of the retarded Green’s function of the interacting oscillators

G̃
(χ)
R (z) =

{
m
(
z2I + Ω2

b

)
− gT · G̃(φ)

R,0(z) · g
}−1

. (4.8)

The solution Ξ̂(t) to Eq. (4.1) is then given by performing the inverse Laplace transformation

Ξ̂(t) =

∫
C

dz

2πi
Ξ̃(z) ezt , (4.9)

where the closed contour C encloses all the poles of G̃
(χ)
R (z) on the complex z plane.

Suppose the poles occur at zp, then we want Re zp < 0 to ensure that G
(χ)
R (t) exponentially decays

with time and the late-time dynamics of the system will be independent of the initial conditions. To see

what conditions will fulfill this requirement, we explicitly examine one of the components of (4.1). We

have, say for oscillator 1, the secular equation whose zeroes will tell the locations of the poles, given by

z2 + 2γ1z + ω2
r −

g1g2
4πm

e−zd

d
= 0 , (4.10)

where d = |z1 − z2| is the fixed separation between the two oscillators, and the damping constant

γ1 = g21/8πm for oscillator 1 will determine its relaxation time scale. The fourth term in (4.10) depicts

the non-Markovian effects between the two oscillators mediated by the common bath field. The symmetric

arrangement of g1, g2 shows that both oscillators will experience the same mutual effect, and the presence

of e−zd indicates that this non-Markovian effect is not instantaneous; it will take finite time to propagate

13



from one oscillator to the other. A similar but more complicated structure also appears when the bath

field is described by a quantized electromagnetic field [47]. The renormalized frequency ωr is related to

the bare frequency ωb1 of oscillator 1 by

ω2
r = ω2

b1
− g21

2π2mε
, (4.11)

where ε is the shortest length scale in the model, and is usually determined by the cutoff frequency Λ by

ε ∼ Λ−1. As mentioned earlier, we choose the bare frequency ωb1,2
and γ1,2 such that both oscillators

have the same renormalized, physical frequency ωr.

Let us examine the large separation and short range behaviors. For large d, the term that accounts

for the non-Markovian effect is subdominant, so we can safely say Re zp < 0 for this case. For small d,

we may approximate (4.10) as

z2 + 2γ1z + ω2
r −

g1g2
4πmd

(
1− zd

)
= z2 +

( g21
4πm

+
g1g2
4πm

)
z +

(
ω2
r −

g1g2
4πmd

)
= 0 . (4.12)

This shows that when the oscillators’ separation d is too small, or g1g2 is too large, the effective oscillating

frequency squared, the last pair of parentheses in (4.12), can be negative. It may turn a harmonic

oscillator into an inverted oscillator with possible dynamic instability. From the solution to (4.12),

zp = −
( g21

4πm
+
g1g2
8πm

)
± i
[(
ω2
r −

g1g2
4πmd

)
−
( g21

4πm
+
g1g2
8πm

)] 1
2

, (4.13)

we immediately see that if

ω2
r −

g1g2
4πmd

> 0 , (4.14)

then Re zp is always negative, and the oscillator will have an attractive fixed point. Otherwise, we may

find that Re zp can be positive, so we have unstable, runaway dynamics. From this, to ensure well

behaved oscillator dynamics, we require that the separation between the two oscillators should not be

too small, and that the product of the coupling constants g1g2 should not be too large, so that the square

of the effective oscillating frequency to have a positive value. This will allow the oscillators-field system

to reach equilibrium at late times.

B. Energy balance and steady state at equilibration

Next we turn to the energy balance in the system-bath upon the system’s equilibration. The exis-

tence of a final equilibrium steady state guarantees that there is neither net energy exchanges between

oscillators, nor between each oscillator and the bath field. This condition makes way for a generalized

fluctuation-dissipation relation (FDR) to exist. The existence proofs for N quantum oscillators inter-

acting with a common quantum field with equal coupling strengths have been given in our earlier work
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[29–31]. Here, to answer the questions posed earlier concerning the zeroth law at strong coupling we need

to examine whether the generalized fluctuation-dissipation relation still holds if the two oscillators are

coupled to the thermal bath with different strengths. Here we only use two oscillators for illustration.

But our arguments can be generalized to any number of oscillators. This is an extension of previous

results in [29].

We first decompose the equation of motion for oscillator 1 into

m ¨̂χ1(t) +mω2
r χ̂1(t) + g21Γ(φ)(t) χ̂1(0) (4.15)

= g1φ̂h(z1, t)− g21
∫ t

0

ds Γ(φ)(t− s) ˙̂χ1(s) + g1g2

∫ t

0

ds G
(φ)
R,0(z1, t; z2, s)χ̂2(s) .

where we have introduced G
(φ)
R,0(z1, t; z1, s) = −dΓ(φ)(t− s)/dt,

ω2
r = ω2

b1
− g21
m

Γ(φ)(0) . (4.16)

For the scalar field bath, the function Γ(φ)(t) is proportional to a delta function δ(t). When we introduce

a cutoff length scale ε, Eq. (4.16) will be written into (4.11). Eq. (4.15) contains a sudden kick at the

initial position of the oscillator. This is a consequence that there is no appropriate length scale in the

initial configuration we assume [48]. In more realistic settings, there always exists some initial correlation

between the system and the bath, or that the system-bath coupling takes a finite time to take effect.

Thus the sudden kick is not so drastic. It will be replaced by a smoother transition over some time

scale of the aforementioned processes. Either way, its effect will not be relevant to our system’s late-time

dynamics, so we will ignore it in the following discussion.

From the righthand side of (4.15), we observe that there are three channels through which a given

oscillator will exchange energy with its surrounding, including its neighboring oscillator. 1) The local

quantum field fluctuations will drive the oscillator, pumping energy from the field, in the same way as

a driven oscillator by an external force. The main difference is that the noise associated with the field

fluctuations will introduce random motion to the oscillator, and pass on their statistical characteristics

to it. 2) The quantum dissipative motion of the oscillator, as a consequence of the driving noise, will

dissipate energy back to the surrounding field [49]. These two channels explicitly depend only on the

coupling constant g1 of oscillator 1, and are local in nature. Finally, 3) The energy transfer between

the two oscillators through the field which propagates their mutual influences. The appearance of g1,

g2 highlights its nonlocal character. In addition, this part depends on the system’s evolutionary history,

and is thus non-Markovian, and yet most important of all, causal.

Take the example of oscillator 1. The power Pξ pumped in by the bath field, the power lost by dissi-

pation Pγ , and the energy exchange rate Pc via the field-mediated non-Markovian effect are respectively

expressed by [28, 29]

P
(1)
ξ (t) = g1

∫ t

0

ds
∂

∂t

[
G

(χ)
R (t− s)

]
1i gij

[
G

(φ)
H,0(s, t)

]
j1 , (4.17)
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P (1)
γ (t) = −g21

∫ t

0

ds Γ(φ)(t− s) ∂2

∂t ∂s

[
G

(χ)
H (s, t)

]
11 , (4.18)

P (1)
c (t) = g1g2

∫ t

0

ds
[
G

(φ)
R,0(t− s)

]
12

∂

∂t

[
G

(χ)
H (s, t)

]
21 , (4.19)

where at times greater than the relaxation time γ−11 , the contribution from the initial conditions are

exponentially suppressed. Here G
(φ)
H,0(t, t′), G

(χ)
H (t, t′) are the Hadamard functions respectively of the

free field and the oscillator. For example, the former is defined by

G
(φ)
H,0(t, t′) =

1

2
Trφ

(
ρ̂
(φ)
βb

{
Φ̂h(t), Φ̂T

h (s)
})

. (4.20)

Since for the linear, Gaussian system under study it has been shown [29] that at late times the contri-

butions from the nonstationary part of the Hadamard function will be exponentially smaller than those

from the stationary part, we can write the Hadamard function, say, G
(χ)
H (s, t) in (4.18) and (4.19) in a

stationary form G
(χ)
H (s − t) = G

(χ)
H (t − s). Considering the retarded nature of G

(χ)
R (t − s), Γ(φ)(t − s),

and G
(χ)
R (t− s), we thus find in the limit t→∞, (4.17)–(4.19) can be written as [29, 31]

P
(1)
ξ (∞) = g1

∫ ∞
−∞

dκ

2π
κ
[
Im G

(χ)

R (κ)
]
1i

gij

[
G

(φ)

H,0(κ)
]
j1
, (4.21)

P (1)
γ (∞) = −g21

∫ ∞
−∞

dκ

2π
κ
[
Im G

(φ)

R,0(κ)
]
11

[
G

(χ)

H (κ)
]
11 , (4.22)

P (1)
γ (∞) = −g1g2

∫ ∞
−∞

dκ

2π
κ
[
Im G

(φ)

R,0(κ)
]
12

[
G

(χ)

H (κ)
]
21 , (4.23)

where we have used the facts that 1) Im GR(κ) is an odd function of κ, 2) GH(κ) is an even function of

κ, and 3) G
(φ)

R,0(κ) = iκΓ
(φ)

(κ). The Fourier transformation f(κ) of a function f(t) is defined by

f(κ) =

∫ ∞
−∞

dt f(t) eiκt . (4.24)

In the steady state at late times, there is no net energy exchange between the subsystems, that is,

P
(1)
ξ (∞) + P (1)

γ (∞) + P (1)
γ (∞) = 0 , (4.25)

which in turn requires∫ ∞
−∞

dκ

2π
κ

{[
Im G

(χ)

R (κ)
]
1i

gij

[
G

(φ)

H,0(κ)
]
j1
−
[
Im G

(φ)

R,0(κ)
]
1i gij

[
G

(χ)

H (κ)
]
j1

}
= 0 . (4.26)

C. generalized fluctuation-dissipation relation between the oscillators

The fluctuation-dissipation relation of the bath field can be straightforwardly shown to hold from the

definitions of the relevant Green’s functions

G
(φ)

H,0(κ) = coth
βbκ

2
Im G

(φ)

R,0(κ) . (4.27)

16



The consequence of (4.26), together with the fluctuation-dissipation relation of the bath field (4.27),

implies the fluctuation-dissipation relation of the oscillators, coupled to the bath,

G
(χ)

H (κ) = coth
βbκ

2
Im G

(χ)

R (κ) , (4.28)

with the same proportionality factor cothβbκ/2, which is a function of the initial bath temperature β−1b .

Thus we conclude that even the two oscillators are coupled to the common bath field with different

strengths, it does not affect the equilibrium condition – the coupling constants do not appear in the

formal expression of the generalized fluctuation-dissipation relation of the oscillators. However, unequal

coupling does modify the expressions of the relevant kernel functions in (4.28), as can be seen in (4.8),

which introduces an asymmetry in the energy flow into and out of each oscillator. In other words, for the

linear systems we have investigated, the generalized fluctuation-dissipation relation is a manifestation of

dynamical equilibration. This relation is of a categorical nature: it does not depend on the rate of energy

exchange of each individual subsystem with its surrounding, not on the rate each subsystem approaches

equilibrium, but acts as a guarantor of the global balance of power.

V. IN EQUILIBRIUM, WITH UNEQUAL TEMPERATURES

In the last section, we have shown the two oscillators with different couplings to a common bath can

settle in equilibrium by proving the existence of a steady state and a generalized fluctuation-dissipation

relation between the oscillators. Here, we shall show that each oscillator with a different coupling with

the bath can still be characterized by its own effective temperature which is different from the other.

A. Different effective temperatures of the two oscillators

We have argued in [26] that the effective temperature (2.7) of a single oscillator, coupled to the bath

field initially at temperature β−1b , is a monotonic function of the parameter S

S(t) = 〈χ̂2(t)〉〈p̂2(t)〉 − 1

4
〈
{
χ̂(t), p̂(t)

}
〉2 − 1

4
, (5.1)

which is also related to the determinant of the covariance matrix for the oscillator. Hence we can also

address the effective temperature of each oscillator when we have two oscillators coupled to a common

bath, with the observation that 〈χ̂2
1〉 = Tr12{χ̂2

1ρ̂12} = Tr1{χ̂2
1%̂1}, where ρ̂12 is the reduced density

matrix of the combined system that contains oscillator 1 and 2, while %̂1 = Tr2 ρ̂12 is the reduced density

matrix of oscillator 1 alone.

After each oscillator is relaxed to its equilibrium state, we have

1

2
〈
{
χ̂i(t), p̂i(t)

}
〉 = 0 , (5.2)
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with i = 1, 2. Thus the effective temperature of each oscillator will depend on the parameter Si, which

now is reduced to

Si(t) = 〈χ̂2
i (t)〉〈p̂2i (t)〉 −

1

4
. (5.3)

From the discussion in Sec. IV A, it is straightforward to see that in the final equilibrium state of two

oscillators, we have

σχχ(∞) =

∫ ∞
−∞

dκ

2π
G

(χ)

R (κ) · g ·G(φ)

H,0(κ) · gT ·G(χ)†
R (κ) , (5.4)

σpp(∞) =

∫ ∞
−∞

dκ

2π
κ2G

(χ)

R (κ) · g ·G(φ)

H,0(κ) · gT ·G(χ)†
R (κ) , (5.5)

where σχχ is defined as

σχχ(t) =
1

2
〈
{
Ξ(t), ΞT (t)

}
〉 . (5.6)

The same applies to σpp. Hence the diagonal elements of σχχ and σpp will provide the ingredients to

construct Si in the equilibrium state. Note that Eqs. (5.4) and (5.5) are rather formal. In particular,

the integral in (5.5) is divergent, so we need to introduce a regularization scheme to render the integral

well defined.

Let us compare the explicit expressions of 〈χ̂2
1(t)〉 and 〈χ̂2

2(t)〉,

〈χ̂2
1(t)〉 =

∫ ∞
−∞

dκ

2π

{
g21
[
G

(χ)
R

]
11

[
G

(φ)
H,0

]
11

[
G

(χ)∗
R

]
11

+ g22
[
G

(χ)
R

]
12

[
G

(φ)
H,0

]
11

[
G

(χ)∗
R

]
12

+ 2g1g2 Re
([

G
(χ)
R

]
11

[
G

(φ)
H,0

]
12

[
G

(χ)∗
R

]
12

)}
, (5.7)

〈χ̂2
2(t)〉 =

∫ ∞
−∞

dκ

2π

{
g22
[
G

(χ)
R

]
22

[
G

(φ)
H,0

]
22

[
G

(χ)∗
R

]
22

+ g21
[
G

(χ)
R

]
12

[
G

(φ)
H,0

]
11

[
G

(χ)∗
R

]
12

+ 2g1g2 Re
([

G
(χ)
R

]
22

[
G

(φ)
H,0

]
12

[
G

(χ)∗
R

]
12

)}
, (5.8)

where we have suppressed the functional argument and used

[
G

(φ)
H,0(κ)

]
11

=
[
G

(φ)
H,0(κ)

]
22

=
κ

4π
coth

βbκ

2
. (5.9)

Observe that similar structures also appear in 〈p̂21(t)〉 and 〈p̂22(t)〉. In general they are different for an

arbitrary choice of g1, g2. For example, we can make an extreme choice g1 � g2. Thus S1 differs from

S2, and we expect that in general both oscillators have different effective temperatures even though

both of them are simultaneously coupled to the common thermal bath, and altogether they have come

to equilibrium.

The fact that two oscillators with different couplings with the same bath can i) come to equilibrium

with each other and yet ii) each can be assigned a different effective temperature shows something in-

teresting and fundamental. Property i) attests to their mutual influence and ii) attests to their relative
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independence. This suggests that the effective temperature of each oscillator must contain some infor-

mation about the other, e.g., their spatial separation. Let us look into this question. On surface, from

(5.7) and (5.8), we may conclude that this information is only hidden in the corrections to the covari-

ance matrix elements of a given oscillator due to the presence of the other oscillator. For example, the

second and the third terms of the integrand in (5.7), depend on the off-diagonal elements of the Green’s

function matrix, which in turn depend on the separation of the two oscillators. This spatial information

will then be passed on to the effective temperature of each oscillator (its consequence will be discussed

in a subsequent paper). However, in fact, the first term of the integrand in (5.7) also has dependence

on the oscillator separation. To make this observation more explicit, we rewrite (4.8) in the frequency

space as

G
(χ)

R (κ) =

[
m(ω2

r − κ2 − i 2γ1κ) −g1g2G
(φ)

R,0(κ; d)

−g1g2G
(φ)

R,0(κ; d) m(ω2
r − κ2 − i 2γ2κ)

]−1
, (5.10)

where d = |z1 − z2|, and

G
(φ)

R,0(κ; d) =

∫ ∞
−∞

dτ eiκτ G
(φ)
R,0(z1, t; z2, t− τ) =

eiκd

4πd
, (5.11)

since G
(φ)
R,0(z1, t; z2, s) is stationary and thus a function of t− s. We immediately see that[

G
(χ)

R (κ)
]
11

= G
(χ1)

R (κ)
[
1− g21g22 G

(χ1)

R (κ)G
(φ)

R,0(κ; d)G
(χ2)

R (κ)G
(φ)

R,0(κ; d)
]−1

, (5.12)

where

G
(χ1)

R (κ) =
1

m(ω2
r − κ2 − i 2γ1κ)

, (5.13)

are the retarded Green’s function of the oscillator 1 alone, coupled to the thermal bath field. The

same applies to G
(χ2)

R (κ). Therefore
[
G

(χ)

R (κ)
]
11

already implicitly contains a correction due to the non-

Markovian field-mediation effect, that is, information about the separation between the two oscillators.

This little demonstration highlights a fundamental principle we wish to emphasize in closing: the

importance of complete self-consistency. The treatment of each component of a combined system must

take into account of what happens to, and what is received from, all other parties involved, i.e., com-

pleteness and self-consistency. The fact that the FDR can play the role of a guarantor for overall balance

is precisely because of this stringent requirement.

B. Conclusion

We conclude with the following summary based on the arguments we have presented for the Gaussian

quantum systems we have analyzed:
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1. Zeroth Law based on equilibrium condition. For quantum systems strongly coupled to a bath, a

zeroth law of thermodynamics can be formulated based on the equilibrium condition, not based on

equal temperature.

2. Equilibration, not thermalization. A system may equilibrate, but not necessarily thermalize. a)

Equilibrium is defined by a system maintaining a steady state. We use multi-channel power balance

to check on this condition. b) Thermal equilibrium is a stronger condition: it requires that the

system obeys a Gibbsian distribution.

3. Temperature cannot be used to define or describe equilibrium state. a) Temperature is no longer

a useful signifier for, nor can it be used as a common currency in, systems in equilibrium. b) An

effective temperature can be defined for strong coupling [26], as described in Sec. II. Although it

returns to the conventional temperature when the coupling is vanishingly weak, its properties are

very different from those in conventional thermodynamics.

4. The effective temperature changes with time and varies with the coupling strength. a) In equilib-

rium, two subsystems may not have the same effective temperature, b) two subsystems with the

same effective temperature may not be in equilibrium.

5. Importance of complete self-consistency in treating strong-coupling thermodynamics, the mutual

influences of each component of a complex system on every other component need be fully accounted

for.

Acknowledgments The development of our research projects on strong coupling quantum thermody-

namics is aided by recent visits of J.-T. H. to the Maryland Center for Fundamental Physics at the

University of Maryland, USA, and of B. L. H. to the National Center for Theoretical Sciences and the

Institute of Physics, Academia Sinica, Taiwan, ROC.
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