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In this work, the required algebra to employ the resolution of the identity approximation within
Piris Natural Orbital Functional (PNOF) is developed, leading to an implementation named
DoNOF-RI. The arithmetic scaling is reduced from fifth-order to fourth-order, and the memory
scaling is reduced from fourth-order to third-order, allowing significant computational time savings.
After the DoNOF-RI calculation has fully converged, a restart with four-center electron repulsion
integrals can be performed to remove the effect of the auxiliary basis set incompleteness, quickly
converging to the exact result. The proposed approach has been tested on cycloalkanes and other
molecules of general interest to study the numerical results as well as the speed-ups achieved by
PNOF7-RI when compared with PNOF7.
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I. INTRODUCTION

Recently [1], an open-source implementation of natu-
ral orbital functional (NOF) based methods has been
made available to the scientific community. The asso-
ciated computer program DoNOF is designed to solve
the energy minimization problem of an approximate NOF
which describes the ground-state of an N-electron system
in terms of the natural orbitals (NOs) and their occupa-
tion numbers (ONs). Approximate NOFs have demon-
strated [2] to be more accurate than density functionals
for highly multi-configurational systems, and scale better
with the number of basis functions than correlated wave-
function methods. A detailed account of the state of the
art of the NOF-based methods can be found elsewhere
[3–7].

A route [8] for the construction of an approximate NOF
involves the employment of necessary N-representability
conditions [9] for the two-particle reduced density ma-
trix (2RDM) reconstructed in terms of the one-particle
reduced density matrix (1RDM). Appropriate 2RDM
reconstructions have led to different implementations
known in the literature as PNOFi (i=1-7) [10–17]. This
family of functionals provide an efficient way of including
dynamic and static correlation with chemical accuracy in
many cases [18, 19]. It has recently been shown [20, 21]
that PNOF7 is an efficient method for strongly correlated
electrons in one and two dimensions. In addition, the use
of perturbative corrections allow to improve the dynamic
correlation in order to achieve a complete method to de-
scribe electron correlated systems [22, 23].

∗Electronic address: mario.piris@ehu.eus, jmdelc@unam.mx

In the current implementation, DoNOF computer code
needs to transform the atomic orbital (AO) electron re-
pulsion integrals (AO-ERIs) into molecular orbital (MO)
electron repulsion integrals (MO-ERIs) in order to eval-
uate the Coulomb and exchange integrals required in
PNOF. The optimization process involves searching for
ONs, which requires the computation of Coulomb and
exchange matrices in MO representation, and for NOs,
which requires computing Coulomb and exchange matri-
ces in AO representation for each MO. These procedures
have overall fifth-order arithmetic scaling factor. While
this scaling factor is lower compared to other procedures
such as those based on configuration interaction and cou-
pled cluster approaches, there is still room for improve-
ment.

Resolution of the identity (RI), also known as density
fitting [24–26], approximates the product of basis func-
tions as a linear combination of an auxiliary basis set
[27]. It usually reduces the arithmetic and memory scal-
ing factors, and produces intermediate easy-to-handle ar-
rays, as has been reported in other methodologies [28–
39] such as RI-MP2 [34, 40–44], DF-MP2 [45, 45], DF-
MP2.5 [46, 47], DF-MP3 [46, 47], DF-LCCD [48],DF-
CCSD [33, 49, 50], and DF-CCSD(T) [50, 51]. In particu-
lar, the use of the RI approximation in v2RDM-CASSCF
calculations [52, 53] has been shown, leading to energy
expressions and handling of the MO-ERIs in the opti-
mization procedure different from those necessary in the
PNOF family of functionals. Applying the RI approx-
imation in PNOF correlation calculations allows faster
calculations, decreasing the arithmetic scale factor of the
integral transformation of AO-ERIs to MO-ERIs from
fifth order to fourth order, as shown in this work.

The text is structured as follows. In the second section,
the elemental theory of PNOF formulation is shown and
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the use of the RI approximation in the ONs and NOs
optimization process is analyzed. In the third section,
the details about the implementation are given. In the
fourth section, the time savings due to the use of the RI
approximation as well as the energy results in standard
cycloalkanes test set up to nine carbon atoms are pre-
sented, another relevant molecules such as oxazole, bo-
razine, coumarin, cyanuryc chloride, benzene, thiepine,
and thieno[2,3-b]thiophene are also presented. Finally,
conclusions are given in the fifth section.

II. THEORY

The ground-state electronic energy of an approximate
NOF is given by the expression

E = 2
∑

p

npHpp +
∑

pqrs

D[np, nq, nr, ns](pq|rs) (1)

where Hpp denotes the one-electron matrix elements
of the kinetic energy and outer potential operators,
(pq|rs) are the MO-ERIs in chemists’ notation, and
D[np, nq, nr, ns] represents the reconstructed 2RDM
from the ONs {np}. Restrictions on the ONs to the range
0 ≤ np ≤ 1 represent the necessary and sufficient condi-
tions for ensemble N-representability of the 1RDM under
the normalization condition, 2

∑

p np = N.

It is worth noting that any explicit dependence of D on
the NOs {φp} themselves is neglected. Accordingly, NOs
are the MOs that diagonalize the 1RDM of an approx-
imate ground-state energy, so it is more appropriate to
speak of a NOF rather than a functional of 1RDM due
to the explicit dependence on the 2RDM [54].

It is clear that the construction of an N-representable
functional given by Eq. (1) is related to the N-
representability problem of D. Using its ensemble N-
representability conditions to generate a reconstruction
functional leads to PNOF [8]. This particular reconstruc-
tion is based on the introduction of two auxiliary matrices
∆ and Π expressed in terms of the ONs to reconstruct
the cumulant part of the 2RDM [55]. For the sake of
simplicity, let us address only singlet states in this work.
The generalization of our results to spin-multiplet states
[23] is straightforward. Consequently, energy expression
of Eq. (1) becomes

E = 2
∑

p
npHpp +

∑

qp
ΠqpLpq

+
∑

qp
(nqnp −∆qp) (2Jpq −Kpq)

(2)

where Jpq, Kpq, and Lpq are Coulomb, exchange, and
exchange-time-inversion integrals [56]. Note that Lpq =
Kpq for real MOs as developed in this work. There-
fore, only two-index Jpq and Kpq integrals are neces-
sary due to our approximation for the 2RDM. Appro-
priate forms of matrices ∆ and Π lead to different im-
plementations known as PNOFi (i=1-7). Remarkable is

the case of PNOF5 which turned out to be strictly pure
N-representable [57].

In the current implementation, minimization of the en-
ergy E [{np} , {φp}] is performed under orthonormality
requirement for real NOs, whereas ONs conform to the
ensemble N-representability conditions. The solution is
established by optimizing the functional of Eq. (2) with
respect to the ONs and to the NOs, separately [58].

In DoNOF [1], the Coulomb integrals are built according
to the equation

Jpq =
∑

µν

P p
µνJ

q
µν (3)

=
∑

µ

Cµp

∑

ν

Cνp

∑

σ

Cσq

∑

λ

Cλq(µν|σλ)

where the indices µ, ν, σ, λ label AOs of dimension Nb,
and (µν|σλ) is an AO-ERI. Hence, J

q is the Coulomb
matrix in AO basis for the MO φq, and P

p is computed
by means of the MO coefficient matrix, C, as

P p
µν = CµpCνp . (4)

Similarly, the integrals are defined as

Kpq =
∑

µσ

P p
µσK

q
µσ (5)

=
∑

µ

Cµp

∑

σ

Cσp

∑

ν

Cνq

∑

λ

Cλq(µν|σλ)

where Kq is the exchange matrix in AO basis for the MO
φq.

From Eqs. (3) - (5), we observe that the four-index trans-
formation of the ERIs generally scales as N5

b . In the oc-
cupancy optimization, this operation is carried out once
for fixed orbitals, however, in the orbital optimization it
is necessary to perform this transformation every time
orbitals change, which is a time-consuming process.

It is worth noting that the last members of the PNOF
family, namely PNOF5-PNOF7, use electron-pairing
constraints [7]. Until now, only these NOFs can pro-
vide the correct number of electrons in the fragments
after a homolytic dissociation [19, 59]. Moreover, the
constrained nonlinear programming problem for the ONs
can be transformed into an unconstrained optimization
with the corresponding saving of computational time. In
the case of electron-pairing approaches, we can addition-
ally reduce the number of orbitals in calculations, and use
just orbitals in the pairing scheme, which we will repre-
sent as NΩ (NΩ ≤ Nb). From now on we will focus on
the electron-pairing-based PNOFs.

In Table I, we show the conventional algorithm used to
compute the Coulomb (J) and exchange (K) integrals in
MO representation, and the Coulomb (Jq) and exchange
(Kq) matrices in AO representation for each orbital φq.
In the last columns, the memory and arithmetic scaling
of the steps are reported. We see that the evaluation of

http://github.com/DoNOF/DoNOFsw
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Table I: Algorithm used to compute J and K in the occu-
pancy optimization, and J

q and K
q in the orbital optimiza-

tion.

Step Operation
Scaling

Memory Arithmetic

Common
0 Evaluation of (µν|σλ) N4

b N4

b

1 P p
µν = CµpCνp N2

b NΩ N2

b NΩ

Jpq
2 Jq

µν =
∑

σλ
P

q
σλ(µν|σλ) N2

b NΩ N4

b NΩ

3 Jpq =
∑

µν
P p
µνJ

q
µν N2

Ω N2

b N
2

Ω

Kpq
2 Kq

µσ =
∑

νλ
P

q
νλ(µν|σλ) N2

b NΩ N4

b NΩ

3 Kpq =
∑

µσ
P p
µσK

q
µσ N2

Ω N2

b N
2

Ω

the AO-ERIs (µν|σλ), labeled as step zero, has an arith-
metic scaling of N4

b . In the current implementation, they
are evaluated and stored at the beginning, consequently,
this step does not contribute significantly to the compu-
tational time. However, its storage represents the highest
memory demand with a memory scaling of N4

b .

The first step corresponds to the evaluation of P ma-
trix, as shown in Eq. (4), which has low arithmetic and
memory scaling factors of N2

bNΩ. The second step corre-
sponds to the evaluation of Jq and K

q matrices for each
MO in AO basis. This is the bottleneck of the current im-
plementation with an arithmetic scaling factor of N4

bNΩ

and memory scaling of N2

bNΩ. Finally, in the third step,
J and K integrals in MO representation are computed
with an arithmetic scaling factor of N2

bN
2

Ω
. The mem-

ory scaling of this step is N2

Ω
, which is not significant

compared to the other steps.

As mentioned above, energy minimization is made up of
two independent optimization procedures, an outer one
that involves the optimization of the ONs for fixed or-
bitals, and an inner one that involves the optimization of
the NOs for fixed occupancies, as shown in Fig. 1. Both
optimizations are iterative procedures in which many in-
ner iterations are performed per each outer iteration un-
til convergence. In the next subsections, the introduction
of the RI approximation in each optimization procedure
applied to PNOFi (i=5-7) is analyzed. For further refer-
ence, to emphasize the specific functional used, the calcu-
lations within this approach will be labeled as PNOFi-RI
(i=5-7), while the global implementation will be named
DoNOF-RI.

Occupancy Optimization with RI

In DoNOF [1], bounds on {np} are imposed automati-
cally by expressing the ONs through new auxiliary vari-

Figure 1: General scheme of the energy optimization. A guess
for ONs and NOs is considered, then an iterative procedure
composed of two independent optimizations, with respect to
ONs and NOs respectively, is performed. For a more detailed
description, see the reference [1].

ables {γp}. In this way, the constrained minimization
problem with respect to ONs for a fixed set of NOs is
transformed into an unconstrained minimization prob-
lem with respect to auxiliary γ-variables.

Since the orbitals do not change, J and K can be com-
puted once and stored along the occupancy optimiza-
tion process of an outer iteration. The RI approximation
can be used to reduce the arithmetic scaling factors of J
and K integrals. In this approximation, the four-center
AO-ERI, (µν|σλ), is expressed using three-center ERIs,
(µν|k), and two-center ERIs, (k|l), according to the equa-
tion

(µν|σλ) =
∑

k

(µν|k)
∑

l

G
−1

kl (l|σλ) , (6)

where k, l represent functions of the auxiliary basis of
dimension Naux, and G is a metric matrix defined as
Gkl = (k|l). In a symmetric approach, G−1/2 would be
computed through eigenvalue decomposition or singular
value decomposition, and multiplied by the three-center
AO-ERIs, however, the metric matrix may be numer-
ically ill conditioned [38], having small or even nega-
tive eigenvalues. Although this problem might be sur-
passed truncating eigenvalues below a certain tolerance,
the overall process is slow and may affect the numerical
stability. Recently, a modified Cholesky decomposition
has been applied to factorize the metric matrix and cor-
rect the numerical problems if required [38, 60]. In this
approach, the metric matrix is expressed as [61]

G = PLDL
T
P

T , (7)

where P is a permutation matrix, L is a lower triangular
matrix, and D is a block diagonal matrix with blocks of
dimension 1× 1 and 2× 2 [62]. The eigenvalue spectrum

http://github.com/DoNOF/DoNOFsw
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of the D matrix is analyzed block by block to correct
negative and very small eigenvalues, giving a corrected
matrix, D̃ [63]. In PNOF correlation calculations a sym-
metric approach results convenient, thus the G matrix is
expressed as

G = PLD̃
1/2

D̃
1/2

L
T
P

T , (8)

the process of decomposing the D matrix in its eigenvec-
tors and eigenvalues is fast due to the small dimension of
its blocks. Once the eigenvalues have been corrected, its
square root can be evaluated directly. Then, a b tensor
is found by solving the following linear equation system

PLD̃
1/2

b
T = (µν|k) . (9)

Using RI, the Coulomb and exchange integrals can be
expressed as

Jpq =
∑

l

blppb
l
qq , (10)

Kpq =
∑

l

blpqb
l
pq , (11)

where the change of indices in b denotes contractions
from AOs (µ, ν) to MOs (p, q) according to

blpν =
∑

µ

Cµpb
l
µν , (12)

blpq =
∑

ν

Cνqb
l
pν . (13)

An equivalent b tensor is employed in RI implementa-
tions that use G

−1/2, particularly, the equations are sim-
ilar to those used in RI-MP2 [34, 40–44] to build other
MO-ERIs.

The memory and arithmetic scaling factors of the Eqs.
(6)-(13) with the RI approximation are shown in Table II.
The zero step corresponds to the evaluation of the (µν|k)
AO-ERIs, and the first step corresponds to solve the lin-
ear equation system for the b tensor with a memory scal-
ing factor of N2

bNaux and arithmetic scaling factor of
N2

bN
2
aux. Assuming that enough memory is available to

store the b tensor in AO representation, this step can be
performed only once at the beginning of the calculation;
hence, although the first step has the largest memory
scaling, it does not pose a problem through the itera-
tive process. The second step is the contraction of an
index of the b tensor from AO to MO with memory scal-
ing of NbNauxNΩ and arithmetic scaling of N2

bNauxNΩ,
being the most demanding step per outer iteration; in
the third step the remaining atomic orbital is contracted
with arithmetic scaling of NbNauxN

2

Ω
and memory scal-

ing of NauxN
2

Ω
respectively. Finally, in step four, the b

tensor is used to build the Coulomb and exchange in-
tegrals with arithmetic scaling of NauxN

2

Ω
and memory

scaling of NΩ. The overall procedure has a fourth-order
arithmetic scaling of N2

bNauxNΩ.

Table II: Algorithm used to compute J and K in the occu-
pancy optimization with RI. Formal memory scaling is shown.
However, to optimize memory usage, the contraction of b ten-
sor for J and K (steps 2, 3, and 4) are carried out simulta-
neously for each l, such that the dimension of the auxiliary
basis does not affect the memory scaling.

Step Operation
Scaling

Memory Arithmetic

Common

0 Evaluation of (µν|k) N2

b Naux N2

b Naux

1 Solve PLD̃
1/2

b
T N2

b Naux N2

b N
2
aux

2 blpν =
∑

µ
Cµpb

l
µν NbNauxNΩ N2

b NauxNΩ

3 blpq =
∑

ν
Cνqb

l
pν NauxN

2

Ω NbNauxN
2

Ω

Jpq 4 Jpq =
∑

l
blppb

l
qq N2

Ω NauxN
2

Ω

Kpq 4 Kpq =
∑

l
blpqb

l
pq N2

Ω NauxN
2

Ω

Orbital Optimization with RI

In the inner optimization procedure of the current imple-
mentation (see Fig. 1), the energy minimization is per-
formed with respect to real MOs under the requirement
of orthonormality, and considering a fixed set of ONs.
In general, an approximate NOF is not invariant with
respect to an orthogonal transformation of the orbitals.
Consequently, orbital optimization cannot be reduced to
a pseudo-eigenvalue problem like in the Hartree-Fock ap-
proximation.

In DoNOF [1], the optimal NOs are obtained by iter-
ative diagonalizations of a symmetric matrix F

λ deter-
mined by the Lagrange multipliers {λpq} associated to
the orthonormality conditions. A remarkable advantage
of this procedure is that the orthonormality constraints
are automatically satisfied. Unfortunately, the diagonal
elements cannot be determined from the symmetry prop-
erty of λ, so this procedure does not provide a generalized
Fockian in the conventional sense. Nevertheless,

{

Fλ
pp

}

may be determined with the help of an aufbau principle
[58].

Thus, the orbital optimization requires to calculate {λpq}
in each step of the inner iterations in order to determine
the symmetric matrix F

λ. Since orbitals change in each
step, Jq and K

q must be recomputed in each inner it-
eration. Many inner iterations are performed per outer
iteration, so the computation of these matrices in the or-
bital optimization is the most important contribution to
the computational time of the present algorithm.

The RI approximation can also be applied in this case,
using the procedure shown in Table III. The zero and
first steps evaluate the (µν|k) AO-ERIs and the b tensor
in AO basis, both are common steps shared with the oc-

http://github.com/DoNOF/DoNOFsw
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Table III: Algorithm used to compute J
q and K

q in the or-
bital optimization with RI. Formal memory scaling is shown.
However, to optimize memory usage, the contraction of b ten-
sor for J

q (steps 2, 3, and 4) and K
q (steps 2 and 3) are car-

ried out simultaneously for each l, such that the dimension of
the auxiliary basis does not affect the memory scaling.

Step Operation
Scaling

Memory Arithmetic

0 Evaluation of (µν|k) N2

b Naux N2

b Naux

Common 1 Solve PLD̃
1/2

b
T N2

b Naux N2

b N
2
aux

2 blqν =
∑

µ
Cµqb

l
µν NbNauxNΩ N2

b NauxNΩ

Jq
µν

3 blqq =
∑

ν
Cνqb

l
qν NauxNΩ NbNauxNΩ

4 Jq
µν =

∑

l
blqqb

l
µν N2

b NΩ N2

b NauxNΩ

Kq
µν 3 Kq

µν =
∑

l
blqµb

l
qν N2

b NΩ N2

b NauxNΩ

cupancy optimization and performed at the beginning of
the calculation. In the second step, an index of the b ten-
sor is contracted from AO to MO with arithmetic scaling
of N2

bNauxNΩ. In the third step of the Coulomb pro-
cedure, an additional contraction is performed for the b

tensor. Finally, in the last steps of both the Coulomb and
exchange procedures, the intermediate tensors are mul-
tiplied to compute J

q and K
q. The algorithm reduces

the arithmetic scaling factor of orbital optimization to
the fourth-order (N2

b NauxNΩ), as in the previous case.
Hence, an overall reduction of the arithmetic scaling fac-
tor from fifth-order to the fourth-order, and of the mem-
ory scaling factor from fourth-order to the third-order is
achieved due to the RI approximation.

Table IV: Comparison of the energies (Hartrees) obtained
with PNOF7, PNOF7-RI using aug-cc-pVDZ/GEN-A2* for
the cycloalkanes test. Mean diff: 2.2× 10−4

Molecule EPNOF7 ∆EPNOF7−RI
a

Cyclopropane (C3H6) -117.228991 1.5× 10−4

Cyclobutane (C4H8) -156.328758 1.9× 10−4

Cyclopentane (C5H10) -195.449913 2.5× 10−4

Cyclohexane (C6H12) -234.549938 2.2× 10−4

Cycloheptane (C7H14) -273.630436 2.3× 10−4

Cyclooctane (C8H16) -312.714209 2.4× 10−4

Cyclononane (C9H18) -351.799073 2.9× 10−4

aPositive differences mean that PNOF7-RI energy is above than

the PNOF7 energy.

III. COMPUTATIONAL DETAILS

The proposed PNOFi-RI (i=5-7) algorithm was imple-
mented in a modified version of the DoNOF software [1]
using Cartesian Gaussian basis functions and MPI par-
allelization, leading to a new implementation labeled as
DoNOF-RI.

We assume that there is enough memory available to
compute at the beginning all the required AO-ERIs as
well as the b tensor on the atomic basis, and store them
for use along the calculation. Operations of optimization
procedures correspond only to arithmetic manipulations
and not to AO-ERI evaluations. Four-center AO-ERIs,
(µν|σλ), have been screened to discard those lower than
10−9. This approach has been taken to reduce the arith-
metic scaling when four center ERIs are used [24, 64–
66]. All results shown in this article were calculated us-
ing 24 threads of an Intel Xeon Gold 5118 CPU. Ba-
sis sets were taken from the basis set exchange [67–69]
www.basissetexchange.org website.

IV. RESULTS

Single point energy calculations were performed to study
the numerical stability and speed-up achieved with the
DoNOF-RI implementation. The structures were opti-
mized with Psi4 software [70] using M06-2X [71] and aug-
cc-pVDZ/aug-cc-pVDZ-jkfit [72] basis set. Initial auxil-
iary variables

{

γ0
p

}

corresponding to a Fermi–Dirac dis-

tribution of
{

n0
p

}

were employed. For NOs, the guess
MOs were taken from a Hartree-Fock calculation.

Figure 2 presents the computational times of an outer
iteration for occupancy optimization (top panel) as well
as for orbital optimization (bottom panel) from cyclo-
propane to cyclononane employing aug-cc-pVDZ basis
set [73, 74] and GEN-A2* auxiliary basis set [75–77],
which generates auxiliary basis functions according to
the basis set. In both plots, blue bars represent the
elapsed time obtained with PNOF7 and yellow bars cor-
respond to computed time with PNOF7-RI, the speed-up
achieved by PNOF7-RI with respect to PNOF7 is pre-
sented over each pair of bars. The different sizes of the
blue bars compared to the yellow bars makes evident the
different arithmetic scaling factors between PNOF7 and
PNOF7-RI. For the smallest cycloalkane tested, C3H6, an
outer iteration of PNOF7-RI is 12 times faster than the
equivalent iteration in PNOF7, in the other hand, for the
largest cycloalkane tested, C9H18, PNOF7-RI is 83 and
37 times faster for occupancy and orbital optimization
respectively. Speed-ups for occupancy and orbital opti-
mization behave accordingly to the described arithmetic
scaling factors, since the final steps of the integral eval-
uation for the orbital optimization shown in Table III
have slightly higher arithmetic scaling factors than the
final steps of the integral evaluation in the occupancy
optimization described in Table II.
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Table V: Comparison of the energies (Hartrees) obtained with PNOF7, PNOF7-RI using cc-pVTZ/GEN-A2* for molecules of
general interest. Mean diff: 3.1× 10−3

Molecule EPNOF7 ∆EPNOF7−RI
a Speed-upb

Oxazole (C3H3NO) -244.980370 8.8×10−4 23

Borazine (B3H3N3) -241.487944 7.0×10−4 19

Coumarin (C9H6O2) -494.724761 1.7×10−3 19

Cyanuric Chloride (C3Cl3N3) -1655.966373 8.0×10−3 23

Benzene (C6H6) -231.058747 6.7×10−4 28

Thiepine (C6H6S) -628.585882 2.4×10−3 37

Thieno[2,3-b]thiophene (C6H4S2) -1239.953451 7.1×10−3 27

aPositive differences mean that the PNOF7-RI energy is above

than the PNOF7 energy.
bGlobal speed-up per outer iteration

Figure 2: Analysis of occupancy (top panel) and orbital op-
timizations (bottom panel) for PNOF7 and PNOF7-RI com-
puting time using aug-cc-pVDZ/GEN-A2*. Achieved speed-
up is presented over each pair of bars.

Although a significant reduction of computational time
has been achieved, it is important to analyze the numeri-
cal impact of the RI approximation applied to PNOF7 on
the final energy values. For this purpose, the NO’s and
ON’s of the converged PNOF7-RI calculation have been
used to restart the calculation using four center ERIs,
namely, a PNOF7 calculation. The results are presented
in Table IV, where the PNOF7 energy and PNOF7-RI
energy difference for each cycloalkane is tabulated. It
can be seen that PNOF7-RI allows achieving a general
accuracy between three and four decimal places, with a
mean difference of 2.2 × 10−4 Hartrees. In all cases a
restart of the PNOF7-RI calculation converged to the
PNOF7 energy in at most two outer iterations, allowing
for a PNOF7 result in a reduced amount of time.

The described restarting procedure using cc-
pVTZ/GEN-A2* basis sets for molecules of general
interest has been performed. The results are shown
in Table V, where the PNOF7 energy is shown with
the corresponding deviation of the PNOF7-RI result.
The minimum error of 6.7 × 10−4 corresponds to the
benzene molecule, and the maximum error of 1.7× 10−3

corresponds to the coumarin molecule. The global times
of an outer iteration of PNOF7-RI and PNOF7 were
compared and the result can be seen in the column
labeled as speed-up, where it is shown that PNOF7-RI
is 37 times faster than PNOF7 for the case of the
thiepine, as well as important speed-ups for the other
cases. Overall, the results prove that DoNOF-RI allows
to compute medium size molecules of general interest.

V. CONCLUSIONS

The resolution of the identity approximation has proved
to be significant to decrease the arithmetic and memory
scaling factors of the PNOFi (i=5-7) functionals, lead-
ing to the DoNOF-RI implementation. The generality
of the algorithm proposed here makes it applicable to
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all approximate natural orbital functionals known so far.
While having an acceptable deviation of the final energy
value, the solution for the natural orbitals and occupation
numbers can be used as a start guess for a regular PNOF
calculation with convergence in few iterations. Conse-
quently, DoNOF-RI provides a way of reaching accurate
results in a reduced amount of time, allowing PNOFi
(i=5-7) functionals to be used to study systems of gen-
eral interest.
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