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Benôıt Douçot∗
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We construct a semiholographic effective theory in which the electron of a two-dimensional band
hybridizes with a fermionic operator of a critical holographic sector, while also interacting with other
bands that preserve quasiparticle characteristics. Besides the scaling dimension ν of the fermionic
operator in the holographic sector, the effective theory has two dimensionless couplings α and γ
determining the holographic and Fermi-liquid-type contributions to the self-energy respectively. We
find that irrespective of the choice of the holographic critical sector, there exists a ratio of the
effective couplings for which we obtain linear-in-T resistivity for a wide range of temperatures. This
scaling persists to arbitrarily low temperatures when ν approaches unity in which limit we obtain a
marginal Fermi liquid with a specific temperature dependence of the self-energy.

I. INTRODUCTION

The measurement of the spectral function via ARPES
has given us key insights into the nature of elemen-
tary constituents in strongly correlated electronic sys-
tems which do not admit quasiparticle description, and
which also demonstrate a rich variety of novel super-
conducting, metallic and insulating phases [1–3]. Phe-
nomenological approaches to model strange metallic be-
havior have considered spectral functions with the follow-
ing properties: (i) particle-hole asymmetry, (ii) semilo-
cality (i.e. very mild dependence on the momentum in
the direction normal to the Fermi surface), and (iii) non-
trivial scaling exponent with the frequency [4–6]. Such
features are extremely challenging to obtain from a first
principle approach.

It is quite remarkable that spectral functions with
these properties arise in holographic theories at finite
density; the infrared behavior is described by a Dirac
fermion in the near-horizon AdS2 × R2 geometry of the
black brane dual to the critical sector [7–12] concretely
realizing the scenario of deconfined criticality [13]. Al-
though such theories are essentially gauge theories and
the microscopic description is possibly not relevant for
material physics, the infrared fixed point with novel scal-
ing behavior at finite density could be universal in a suit-
able large N limit and thus could provide a first principle
realization of emergent non-Fermi liquid behavior.

The holographic approach allows one to dispense with

the notion of quasiparticles, which are replaced by the
modes of the underlying (emergent) infrared conformal
field theory, and this can be very useful to provide a uni-
fied picture of transport phenomena [14]. At the same
time, this makes it difficult to understand what are the
effective microscopic degrees of freedom of the system.
In [15–20] it has been argued that in order to describe
the strange metals, it is crucial to consider the effects
of intermediate scale physics, especially that of the up-
per Hubbard band, on the critical sector – necessitating
an approach that is often called Mottness. Such effects
cannot be reliably modeled by a purely holographic ap-
proach. Bottom-up models [21–28] can holographically
engineer a quantum critical sector that can reproduce
the scaling of resistivity, Hall angle, etc with tempera-
ture but typically only in the low temperature regime
(unless further contrived [29]).

Based on the key insights provided by Faulkner and
Polchinski [30], a semiholographic effective theory was
proposed in [31] and further studied in [32]. The proposal
of Faulkner and Polchinski was to retain only the infrared
part of the holographic sector (i.e. the near horizon ge-
ometry) and allow linear hybridization of some of the
bands on the lattice with the bulk holographic fermions;
this results in a Fermi surface with low frequency be-
havior determined by the holographic critical sector, in
particular by the scaling exponent ν of the holographic
fermion. In [31], it was shown that if one introduces
short-range interactions among the lattice fermions and
also more general mutual interactions between the lat-
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tice fermions and the holographic fermions with a spe-
cific form of large N scaling (see below), the low fre-
quency behavior at the Fermi surface remains unaffected
leading to the notion of a generalized quasiparticle. The
density-density correlations and the case of Coulombic
interactions was analyzed in [32]. In particular, it was
found that in presence of a frequency cutoff, the semi-
holographic theory exhibits well-defined collective exci-
tations within the continuum above a certain momen-
tum threshold and at reasonably low frequencies. It was
speculated that these plasmonic excitations may provide
a realization of the midinfrared scenario for superconduc-
tivity proposed by Leggett [33, 34].

In this work, we address a key issue in this semiholo-
graphic approach by achieving a natural UV completion
that interpolates between non-Fermi liquid behavior at
low frequencies/temperatures and Fermi liquid behav-
ior at high frequencies/temperatures. The completion
does not alter the generalized quasiparticle on the Fermi
surface and is also insensitive to microscopic lattice ef-
fects. Such a scenario leads to an effective theory shar-
ing some features with Mottness. Our construction is
rather simple and is based on the assumption that the
two-dimensional band of interest, in addition to hybridiz-
ing with the infrared critical sector, also interacts with
other bands which have conventional quasiparticle be-
havior. We can engineer the interactions in a way that
involves only two effective couplings. Because the theory
is UV complete, observables are well defined without the
need of an ad hoc frequency cutoff as employed in [32],
however we do reproduce the results of the latter work
qualitatively and extend them to finite temperatures.

In this letter we use the model described above to com-
pute the dc conductivity at finite temperature. Our main
result is that we observe a linear-in-T resistivity for a
wide range of temperatures when the scaling dimension
ν >∼ 0.67. For ν ≈ 2/3, as for instance, this linear scal-
ing regime extends from 0.3EF to about 20−40EF when
the couplings are small, but when ν ≈ 1 it holds at arbi-
trary low temperatures also. Crucially, in our semiholo-
graphic approach where we include perturbative degrees
of freedom, we are able to obtain the linear-in-T resistiv-
ity irrespectively of the critical sector (for a wide range
of ν) as long as the ratio of the two effective couplings is
optimal. Although the range of temperatures where this
scaling is valid depends on ν, it is typically very wide.

II. A SIMPLE EFFECTIVE THEORY

We propose a simple effective theory based on a single
band of electrons localized on a two-dimensional plane.

The starting point is the model studied in [31, 32]. It
includes the creation and annihilation operators for the
electrons in the band c†(k), (c(k)) which are hybridized

linearly with a fermionic operator χCFT (k) (χ†CFT (k)) in

the critical sector described by a holographic AdS2 ×R2

dual geometry. Crucially this band has no direct self-
interactions because of a large-N limit discussed in [31]
in which the self-interactions of the bath critical sec-
tor [an infrared conformal field theory (IR-CFT)] scale
quadratically as N2 while the hybridization coefficient
scales linearly with N . The backreaction of the met-
ric is suppressed in this limit but the self-energy of the
two-dimensional band receives an O(N0) correction in
the form of a holographic fermionic proagator destroying
its quasiparticle nature. It has been shown in [31] that
the leading low-frequency behavior at the Fermi surface
is unaltered as long as we introduce further interactions
like cχ3 which are linear in c(k) and c†(k), and scale at
most linearly with N . In this sense, the semiholographic
theory of this band creates a generalized quasiparticle.

One major problem with this version of the semiholo-
graphic theory is that the UV behavior is not regular; one
manifestation of this is the fact that the real part of the
density-density correlation function (a.k.a the Lindhard
function) is negative for all frequencies, unless we impose
an artificial frequency cutoff as in [32]. However, we ex-
pect the high energy behavior of the theory to be more
conventional with the real part of the Lindhard function
being positive definite at high frequencies. It is there-
fore pertinent to look for a modification of this theory
in which we obtain this automatically without implying
any specific UV completion.

Such a modification can be achieved if we assume that
the two-dimensional band couples linearly with other
bands which preserve their (Landau) quasiparticle char-
acteristics. Denoting the creation (annihilation) opera-

tors of one-particle states in these bands as f†i (fi) we
allow only interactions of the type cf3, cf5, · · · . We
thus consider the following Hamiltonian

Ĥ =
∑
k

ε(k)c†(k)c(k) +N
∑
k

(
gc†(k)χCFT (k) + c.c.

)
+N2ĤIR−CFT +

∑
i,j,k

(
λijk,k1,k2,k3 (1)

c†(k1)fi(k2)f†j (k3)fk(k1 − k2 + k3) + c.c.
)

+ · · · .

At leading order in the coupling λ, the c-fermions can-
not run in the loops. This leads to factorization of the
self-energy of the c−band into two parts, namely the con-
tribution from the holographic propagator and a Fermi-
liquid type self-energy term (more details in the Supple-
mental Material).

In this effective theory the finite-temperature retarded
Green’s function of the c−band thus takes the form

G(ω,k) =
(
ω + iγ̃(ω2 + π2T 2) + α̃G(ω)

−
(

k2

2m
− k2

F

2m

))−1

(2)
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with γ̃ = O(λ2) being the coefficient of the Fermi-liquid
type self-energy term, α̃ = O(|g|2) and G(ω) is the con-
tribution of the holographic sector on the Fermi surface
with the form [10, 35]

G(ω, T ) = ei(φ+πν/2)(2πT )ν
Γ( 1

2 + ν
2 − i

ω
2πT )

Γ( 1
2 −

ν
2 − i

ω
2πT )

. (3)

at finite temperature. Note that the holographic con-
tribution to the self-energy has both real and imaginary
parts. Furthermore, 0 < ν < 1 is the scaling dimension
of the IR-CFT fermionic operator χ which is related to
the mass of the dual bulk fermion. The restriction on ν
is necessary in order for the holographic contribution to
be relevant at low frequency. It is easy to check that the
spectral function ρ = −2ImG is non-negative provided
0 < φ < π(1− ν) and α̃, γ̃ > 0.

Note in the high frequency or zero temperature limit
G(ω, T ) is eiφων in agreement with the form studied
in [32] at zero temperature. In the low energy limit
G(ω, T ) ≈ T ν . Crucially the limit ν → 1 yields a
marginal Fermi liquid with a ω logω term in the self-
energy and with a specific type of temperature depen-
dence.

The model contains a single intrinsic scale, given by the
Fermi energy EF . It is useful to rewrite the propagator
(2) in terms of dimensionless variables x := ω/EF and
y := k/kF in the form

G(x,y) = E−1
F

(
x+ iγ(x2 + (πxT )2) + αei(φ+πν/2)

(2πxT )ν
Γ( 1

2 + ν
2 − i

x
2πxT

)

Γ( 1
2 −

ν
2 − i

x
2πxT

)
−
(
y2 − 1

))−1

(4)

with xT := T/EF , α = α̃E
−(1−ν)
F and γ = γ̃EF . Note

α and γ are dimensionless. Some plots of the spectral
function are shown in Fig. 1.

The density-density correlation functions (the Lind-
hard function L(q,Ω)) can be readily computed from
the above spectral function at finite temperature. We
reproduce the qualitative features of the zero tempera-
ture density-density correlations computed earlier in [32].
Even at finite temperatures T ≈ 0.5EF , the edges of the
continuum are still prominent when α, γ � 1 although
the response has sufficient support outside the contin-
uum. Furthermore, there exist well-defined plasmonic
excitations for q < 2.5kF which have support inside the
continuum when ≈ 2kF < q <≈ 2.5kF . The dispersion
relation of the plasmonic modes is approximately linear.
(See Supplemental Material.) Furthermore, as noted in
[32], it is important to consider 1/2 < ν ≤ 1 to avoid
ultraviolet issues that destabilizes the infrared effective
theory.

Finally we emphasize that it is necessary for γ to be
sufficiently small and also α < 1 for the effective theory
to be applicable at high frequencies and temperatures. If
this is not the case, the effects of c−fermion running in
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FIG. 1. Top: the dimensionless spectral function EF ρ(ω) is
plotted for various values of k/kF at T = 0.5EF , ν = 0.7,
φ = 0.2π and α = 0.016 with the solid lines corresponding
to γ = 0.001 and the dashed lines corresponding to γ = 0.
Note that the effects of nonvanishing γ is significant only for
k away from kF . Bottom: here the dimensionless spectral
function is plotted for T = 0.1EF , ν = 0.7, γ = 0.001, α =
0.016 and various values of φ between the allowed range 0
and (1 − ν)π = 0.3π (see text) at k = kF . Note that when
φ ≈ 0.15π = π(1 − ν)/2, the spectral function at the Fermi
surface is nearly even in ω.

loops will spoil the separation of the self-energy into holo-
graphic and Fermi-liquid terms. Since both of these ef-
fective couplings are irrelevant on the Fermi surface [31],
our assumption is consistent.

III. DC CONDUCTIVITY

The dc conductivity can be computed readily from the
simple formula

σdc ≈
e2

2~

∫
dω

2π

∫
d2k

4π2
k2ρ(ω,k, T )2

(
−∂nF (ω, T )

∂ω

)
.(5)

Above nF (ω, T ) denotes the Fermi-Dirac distribution
function. Here we have used the exact bare vertices for
the coupling with the photon and not simply its value on
the Fermi surface which give the k2 term in the integrand.
We do not impose any cutoff in the integrations.

It is quite easy to see that the low temperature be-
havior of the conductivity should be determined by the
holographic critical sector so that σdc(T ) ≈ T−ν for T �
0.1EF . For T > 0.1EF , the Fermi liquid contribution
to the self-energy is influential when 0.001 ≤ γ ≤ 0.01.
At high temperatures T � EF , the dc conductivity be-
comes almost independent of the holographic critical sec-
tor and therefore does not depend on α, ν and φ. In
this regime the scaling exponent decays rapidly imply-
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FIG. 2. The temperature dependence of the scaling of the
conductivity with the temperature for ν = 2/3 is shown for
various values of α when γ = 0.01 (on left) and γ = 0.001
(on right). The upper horizontal dashed lines in both plots
indicate that the scaling at very low T is −2/3. The linear-
in-T scaling of resistivity appears in midtemperature regime
when α ≈ 13γ.

ing that the rate of decay of the dc conductivity with
temperatures slows down. We find that a scaling regime
where σdc ≈ T−ν̃ with ν̃ 6= ν and approximately in-
dependent of the temperature emerges for ν >∼ 0.67
to a very good approximation at intermediate tempera-
tures. Interestingly, ν̃ ≈ 1 implying linear-in-T resistiv-
ity in this midtemperature regime which stretches to ar-
bitrary small values of temperatures when ν approaches
1 where we obtain a marginal Fermi liquid with a spe-
cific temperature-dependent self-energy. (Note we re-
strict ourselves to 1/2 < ν < 1 for reasons mentioned
above.)

Furthermore, we also find that the best approximation
to the scaling in midtemperature regime is obtained when
the phase φ in Eq. (2) takes its value around π(1 −
ν)/2 (the midpoint of the allowed range of values). We
therefore choose φ to be around this value for the rest
of this paper. We observe that in this case the spectral
function at the Fermi surface is approximately even in ω
as shown in Fig. 1.

Case 1 (0.5 < ν <∼ 0.8): It is useful to first study
the representative case of ν = 2/3 plotted in Fig. 2
where the independence of the high temperature be-
havior on the holographic sector is manifest. In the
intermediate temperature regime, the scaling exponent
d log σdc/d log T is nonmonotonic. However, crucially we
observe that when α ≈ 13γ, there is a scaling regime in
which the scaling exponent is temperature independent
for both γ = 0.01 and γ = 0.001 and furthermore it is
approximately −1 implying linear-in-T resistivity. Re-
markably, the range of temperatures where this occurs is
quite wide extending from about 0.3EF to nearly 10EF
when γ = 0.01 and nearly 20EF when γ = 0.001.

Such a scaling regime at intermediate temperature
regime does not arise for ν <∼ 0.67. In Fig. 3, we report
the dependence of the scaling exponent on the temper-
ature at various values of ν ranging between 0.5 and 1
for γ = 0.001 and for those values of α where we get the
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FIG. 3. The scaling exponent of the dc conductivity is plotted
for various values of ν between 0.5 and 1 at γ = 0.001. Above
α has been optimally fine-tuned. The inset plot shows that
the best linear-in-T scaling is obtained for ν = 0.73, α =
0.017.
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FIG. 4. The temperature dependence of the dc conductivity is
plotted above for ν = 0.95, γ = 0.001 and various values of α.
The best approximation to linear-in-T resistivity is obtained
for α = 0.1. The scaling exponent for this case has been
plotted as a function of the temperature in Fig 3.

best approximation to linear scaling of the dc resistiv-
ity with the temperature. Clearly, for ν = 0.55, there
is no scaling regime for T > 0.1EF . The best approxi-
mation to the linear-in-T resisitivity in the temperature
range that includes EF is obtained when ν = 0.73 and
α = 0.017 (see inset plot of Fig 3 where it shows that
the scaling exponent varies between 0.98 and 1.02 for
0.3EF < T < 30EF ).

Thus we obtain linear-in-T resistivity to a remarkable
approximation in the midtemperature regime Tmin <
T < Tmax with EF included in this range for ∼ 0.67 <
ν <∼ 0.8 if we choose the optimal ratio α/γ for each ν
while setting φ near π(1− ν)/2 as mentioned above.The
higher end of this scaling regime (Tmax) strongly depends
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on γ but the lower end (Tmin) depends only mildly on γ
and the parameters of the holographic sector.

Case 2 (∼ 0.8 < ν ≤ 1): For higher values of ν we
can still obtain the linear-in-T resistivity in the midtem-
perature regime including T ≈ EF by tuning α/γ for
each choice of ν as shown in Fig. 3. However, the scaling
is less accurate, i.e. −1±0.1 percent instead of −1±0.05.
In the case of ν = 0.85, as for instance, we get an excel-
lent linear-in-T resistivity only at higher range of tem-
peratures between 3EF and 30EF . However, if we allow
for 10 percent variation of the scaling exponent, then the
scaling regime stretches to arbitrarily low temperatures
as illustrated in the case of ν = 0.95 in Fig. 4. This con-
tinues to hold as we approach the marginal Fermi liquid
ν ≈ 1.

Thus our effective field theory approach that is justified
by the Wilsonian renormalization group shows that we
can achieve the linear-in-T resistivity for ν >∼ 0.67 at
intermediate temperatures just by fine tuning the ratio
of the two effective dimensionless couplings.

DISCUSSION

Our effective semiholographic approach, that shares
common features with Mottness, produces the linear-in-
T resistivity over a very wide range of temperatures ir-
respectively of the holographic critical sector provided
ν >∼ 0.67 when we tune the ratio of the two cou-

plings optimally. Although the Fermi energy provides
the unique energy scale of our model, in order to match
it with a material we should probably use a lower scale,
eg. where the self-energy becomes strongly k-dependent.
In any case, the model is just the first step to a more
viable theory applicable to real-world strange metals.

It is useful to compare our approach to some recently
discussed models involving a lattice of (complex) SYK
quantum dots exchanging fermions via hopping [36–42]
which also can reproduce linear-in-T resistivity (see also
[43]). A heuristic connection with our approach readily
emerges from the observation that (nearly) AdS2 holog-
raphy can capture many aspects of SYK systems [44].
Thus a lattice of AdS2 throats representing a fragmented
AdS2 × R2 geometry recently proposed as a model for
quantum black hole microstates [45] could be actually
also relevant for our approach. Aided via DMFT meth-
ods in which the Anderson impurity atom is replaced by
a single AdS2 throat (without any compact/noncompact
tensor part), we aim to understand the thermodynamic
reason for why a certain ratio of the couplings can be pre-
ferred. We also plan to explore magneto-transport and
the superconducting instability.

It is a pleasure to thank Johanna Erdmenger, Rene
Meyer, Ronny Thomale, Mukul Laad and Shantanu
Mukherjee for helpful discussions. A.M. acknowledges
support from the Ramanujan Fellowship and ECR award
of the Department of Science and Technology of India.
A.M. and G.P. also acknowledge generous support from
IFCPAR/CEFIPRA funded project no 6403.

Derivation of the fermionic propagator

The action of our effective theory is simply

S =

∫
dt

∫
d2k c†(k)(i∂t − εk)c(k)

+N

∫
dt

∫
d2k

(
gc†(k)χCFT(k) + c.c.

)
+N2Shol

+

∫
dt

∫
d2k1

∫
d2k2

∫
d2k3 λ c

†(k1)f(k2)f†(k3)f(k3 + k1 − k2)

+h.c. (6)

with εk = (k2 − k2
F )/2m and where we have suppressed the k-dependence of λ. In the large N limit, the self-energy

correction to the c-fermion is

Σc(k, ω) = N2|g|2 1

N2
G(ω,k) + loop diagrams with c and f fermions + O(N−2)

= |g|2G(ω,k) + loop diagrams with c and f fermions + O(N−2). (7)

Above G(ω,k) is the temperature dependent two-point function of χCFT which is obtained from solving the Dirac
equation of the dual holographic fermion in the bulk geometry. The above follows from the following features: (i) loops
in the holographic bulk geometry are suppressed in the large N limit, (ii) tree diagrams in the bulk with n-points at
the boundary scale as N2−n implying suppression of bulk vertices also. Crucially in the large N limit, the self-energy
contribution is simply the sum of the holographic contribution and a Fermi liquid type term arising from loops with
the λ-vertices. Therefore, we obtain that

Σc(k, ω) = |g|2G(ω,k) + λ2b(ω2 + π2T 2) + O(N−2, λ2|g|2, λ4). (8)
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Furthermore, if the dual holographic geometry is of the type AdS2 ×R2 (note backreaction is suppressed in the large
N limit and by the subscript CFT in χCFT we imply a scale invariant infrared fixed point and not a 2+1−dimensional
CFT), then the k-dependence arises from ν(k), the k-dependent scaling dimension of χCFT which is determined by
the k-dependent AdS2 mass of the dual bulk fermion. Near the Fermi surface, ν(k) has a weak dependence on k, and
therefore we can assume ν(k) ≈ ν(kF ). Thus we obtain the fermion propagator given by Eq. (2) in the main text.

We note that one may also think of the AdS2 geometry as merely providing a holographic description of SY K-
type quantum dots smeared over the lattice. Assuming that the mutual interactions between these quantum dots is
suppressed, while a suitable operator of the holographic quantum dot sector, namely χCFT couples to the c-fermion,
the holographic contribution to the self-energy is purely local (in space) and is thus k-independent in the large N
limit.

It is worth noting that if we diagonalize the quadratic terms of the action (see Supplemental Material of Ref [31]),
then we obtain two propagating fermion modes of which only one has a Fermi surface singularity and whose overlap
with χCFT is suppressed by O(N−1), while the other one vanishes on the Fermi surface like the AdS2 propagator
G(ω) ≈ ων at T = 0. Note coincidence of poles and zeroes (more generally branch points) on Fermi surface is a feature
of Mottness.

The generalized Lindhard function and the plasmonic excitations

The density-density response function L (generalized Lindhard function) is schematically

L(Ω, q) = −2i

∫
k

∫
ω

G(ω+,k+)G(ω−,k−), (9)

where ω± = ω ±Ω/2 and k± = k± q/2. In terms of the variables introduced in the main text, the imaginary part of
the Lindhard function explicitly is

ImL(xΩ, yq, xT ) = 4

∫ ∞
−∞

dx

∫
d2y ImG

(
x+ xΩ

2 , y +
yq
2 , xT

)
ImG

(
x− xΩ

2 , y −
yq
2 , xT

) (
nF (x+ xΩ

2 , xT )− nF (x− xΩ

2 , xT )
)

The plot of ImL as a function of xΩ is shown in Fig. 5. The continuum extends between 0 < Ω < q2/2m+ 2qkF /m,

5 10 15
xΩ

-25

-20

-15

-10

-5

0
Im(L)

yq=0.1

yq=0.5

yq=1.0

yq=1.5

yq=3.0

yq=3.5

yq=4.0

FIG. 5. Imaginary part of the Lindhard function as a function of xΩ. We have set xT = 0.5, α = 0.12 and γ = 0.01.
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i.e. between 0 < xΩ < y2
q + 2yq for q ≤ 2kF (i.e. yq ≤ 2) and between q2/2m− 2qkF /m < Ω < q2/2m+ 2qkF /m, i.e.

between y2
q − 2yq < xΩ < y2

q + 2yq for q > 2kF (i.e. yq > 2). As for instance, for yq = 1, the maximum support is in
the region 0 < xΩ < 3 and for yq = 3 the range of maximum support is 3 < xΩ < 15. It is clear from Fig. 5 that ImL
is supported maximally within the continuum although the edges are blurred out especially for higher values of q.

We compute the real part of the Lindhard function using the Kramers-Krönig relation:

ReL(xΩ) = lim
ε→0

1

π

∫ ∞
0

dx ImL(x)

(
x− xΩ

(x− xΩ)2 + ε2
+

x+ xΩ

(x+ xΩ)2 + ε2

)
. (10)

We put a cut-off on the x−integral at x = 30 and set ε = 10−4 while evaluating the above integral numerically. The
plot of ReL is shown in Fig. 6.

5 10 15
xΩ

-30

-20

-10

0

10

Re(L)

yq=0.1

yq=0.5

yq=0.9

yq=1.5

yq=2.0

yq=2.5

yq=3.0

yq=3.4

yq=3.7

yq=4.0

FIG. 6. Real part of the Lindhard function as a function of xΩ. We have set xT = 0.5, α = 0.12 and γ = 0.01.

The bubble resummation produces the improved generalized Lindhard function which is given by

Limp(xΩ, yq, xT ) =
L(xΩ, yq, xT )

1− V (yq)L(xΩ, yq, xT )
, (11)

where V (yq) is the Coulomb potential. In 2D, this is inversely proportional to yq. The real and imaginary parts
of the improved Lindhard function are shown in Fig. 7. Fig. 8 shows the contour plot for imaginary part of the
improved Lindhard function. In these figures we have chosen the values of the couplings and the temperature such
that they lie in the regime of linear-in-T resistivity. The well defined plasmonic poles with linear dispersion relation
are prominently visible. Around q = 2kF , the plasmonic excitations have sufficient support inside the continuum
which could not have occurred in the case of a Fermi liquid.
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FIG. 7. Real and imaginary part of the improved Lindhard function as a function of xΩ and yq when xT = 0.5. We have set
α = 0.12 and γ = 0.01.

FIG. 8. Density plot of imaginary part of the improved Lindhard function with the maxima shown as the black dots. We have
set xT = 0.5, α = 0.12 and γ = 0.01.
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