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A freely walking fly visits roughly 100 stereotyped states in a strongly non-Markovian sequence.
To explore these dynamics, we develop a generalization of the information bottleneck method, com-
pressing the large number of behavioral states into a more compact description that maximally
preserves the correlations between successive states. Surprisingly, preserving these short time cor-
relations with a compression into just two states captures the long ranged correlations seen in the
raw data. Having reduced the behavior to a binary sequence, we describe the distribution of these
sequences by an Ising model with pairwise interactions, which is the maximum entropy model that
matches the two-point correlations. Matching the correlation function at longer and longer times
drives the resulting model toward the Ising model with inverse square interactions and near zero
magnetic field. The emergence of this statistical physics problem from the analysis real data on

animal behavior is unexpected.

In the twentieth century there were two very distinct
approaches to the characterization of animal behavior.
Ethologists focused on behavior in its natural context,
often describing in qualitative terms phenomena of great
complexity [T, 2]. Psychophysicists, in contrast, brought
behavior into the laboratory, constraining subjects to
choosing from a small set of alternatives, quantifying the
probabilities of different choices as a function of sensory
inputs and task constraints [3, [4]. Recently there has
been considerable interest in quantifying unconstrained
and more naturalistic behaviors. Examples include ex-
ploring the variability of eye movement trajectories in
primates [5], and the postural dynamics of freely moving
C elegans [0} [7], walking flies [8HIO], and mice [II} [12].
The combination of high resolution video imaging and ef-
ficient AT tools [13] 14] is making these approaches more
generally applicable, and these data have focused atten-
tion on the wide range of time scales in the behavior of
single organisms, from milliseconds to a lifetime [T5HI9].

The behavior of a fly walking freely in a featureless
arena can be described as a sequence of transitions among
discrete, stereotyped states [9]. Some of these states cor-
respond to actions with a simple verbal description, such
as grooming particular body parts, while other states are
not so simple; nonetheless all flies of a single species re-
visit the same ~100 states, and one can recognize the
same states in closely related species. Although the de-
scription of behavior as a sequence of states often is
accompanied an analysis of transitions from one state
to the next, and the (possibly implicit) hypothesis that
these transitions are independent of one another, fly be-
havior dramatically violates this Markovian assumption
[10]. We would like to find a simple phenomenological de-
scription of behavioral sequences that captures this non—
Markovian structure, ideally leading to some insight into

the internal states that make it possible.

The non—Markovian character of the fly’s trajectory
through state space can be seen in several ways. In par-
ticular, if we look at the probability that the fly moves
from one state to another after a time 7, then in a Markov
model all of these transition matrices are powers of the
fundamental transition matrix describing the model, and
the eigenvalues of this matrix will decay at a constant
rate. This predicts that essentially all memory of the
initial state will be lost after ~ 30 transitions. Instead,
memory persists out to ~ 1000 transitions, and the eigen-
values of the transition matrix decay more and more
slowly as we look across longer time scales [10].

We can see the same effect in the mutual information
between states separated by a time 7, or in the proba-
bility that the fly returns to the same state after 7 tran-
sitions, P.(7), shown in Fig In both of these repre-
sentations we detect correlations in behavioral state ex-
tending over thousands of transitions, far beyond what is
predicted by a Markov model matched to the measured
transition probabilities at 7 = 1. More subtly, the decay
of mutual information or return probability is gradual,
and does not seem to be characterized by discrete time
scales, echoing the slowing of eigenvalue decays.

The problem that we face in characterizing the non—
Markovian structure of behavior is that with more than
one hundred states, there are ~ 10* possible transitions
between pairs of states. If we observe a single fly for
one hour, we see roughly this number of transitions [9,
10]. If we make much longer observations on single flies
we encounter non—stationarity, while if we merge data
from many flies we may obscure individual differences.
To make progress we need to simplify our description of
the behavioral states, but we need to do this in a way that
preserves the long memory seen in the full description.
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Figure 1: Probability P.(7) that a behavioral state is re-
visited after 7 transitions. We normalize so that P.(r) =
P.(1)/P.(t — o0) — 1 decays to zero. Means and standard
errors across 59 flies (red) compared with predictions from a
Markov model that matches observed transition probabilities
(green). In both cases we analyze individual flies and average
P, at the end.

Concretely, we want to map the behavioral state at
each moment in time into some reduced or clustered de-
scription, x; — z;, with the hope that we can preserve
the long memories that we see in the state sequence; in
general this mapping can be probabilistic, described by
P(zt|zt). The “information bottleneck” problem [20] is
the search for a compression that maintains information
about some other variable, which we could take to be a
behavioral state in the future [I0], but here we want a
more symmetric formulation (Fig|[2).

We choose compressions that preserve temporal corre-
lations by maximizing the mutual information between
compressed variables at different times, I(z¢; z¢4-). To
control the complexity of our description, we limit the
information that we capture about the original variables,

I(z;;2¢). In principle the mapping z; — z; could be
probabilistic, so we solve the variational problem
;1(12}){) (I(zt; 2t4r) — TI(2e;24)] (1)

where the Lagrange multiplier T imposes the constraint
on I(z;x). As in the original bottleneck problem, T
plays the role of a temperature, such that as T — 0 the
mapping x — z becomes deterministic.

Following the same steps as in Ref [20], we find that
the solution to the maximization problem in Eq obeys

the self—consistent equation

= Z](DI(;Z;) exp [—;F(ﬂc,z)] , (2)
F(x1,2) = Drp[P(zigr|@)l|P(2eqr|20)]
+Dg 1 [P(zt4r @) || P(ze4r]2) ] (3)

where D [P||Q)] is the Kullback—Leibler divergence be-
tween the distributions P and @, and Z(x; T) is a normal-
ization constant. Again following Ref [20], we can turn a
self-consistent equation into an iterative algorithm. We
have explored solutions with different cardinality for z,
and find that they form a hierarchical clustering scheme,
as expected from earlier work [I0]. Our focus here is
on the most severe compression, in which z; has just
two states, and the limit 7' — 0, where the mapping
x — z becomes deterministic. Further, we search for
compressions that preserve information from one state
to the next, corresponding to 7 = 1 in Eq .

When we compress into just two states we turn be-
havior into a binary sequence, or equivalently a one—
dimensional chain of Ising spins z; = o; = +1; the struc-
ture of this mapping is illustrated in Fig[3] Each point in
the two—dimensional behavioral space represents a short
temporal sequence from the original video recording; the
probability distribution in this plane has many well re-
solved peaks, and the dynamics consist of sojourns in
the neighborhood of one peak followed by a quick jump
to another, allowing us to define the Ny, = 123 discrete
states and their boundaries [9]. States which are neigh-
bors in these two dimensions are similar by construction,
and can be (informally) grouped into the clusters shown
in Fig 3a—anterior movements, posterior movements, lo-
comotion gaits, etc. In Fig 3b we have the results of the
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Figure 2: Mapping of behavioral states x into a compressed
representation z. We compress the state at each moment in
time independently, with a mapping x — z that is in general
probabilistic, P(z|x). The compressed representation cap-
tures an information I(z:;x:) about the original state, and
the compressed variables share information I(z¢; 2¢4-) across
time 7. We choose the compression to maximize I(z¢; zi4r)
at fixed I(z¢;x¢), as in Eq .
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Figure 3: Behavioral states and their compressed represen-
tation. (a) The original N, = 123 states and their bound-
aries, grouped informally into clusters [9]. (b) The optimal
compression into two states, with ¢ = +1 shown in red and
o = —1 shown in grey.

optimal mapping x — z, which groups together a range
of relatively rapid movements into one state o = +1 while
walking and idling are mapped to o = —1 [21].

Once we have reduced behavioral trajectories to a
chain of Ising spins, we can measure temporal correla-
tions with the usual spin—spin correlation function [22],

C(7) = (010147) — (00)* (4)

Perhaps surprisingly, although we asked for a compres-
sion that preserves information only across one behav-
ioral transition, Fig [d] shows that the resulting binary or
Ising variables have measurable correlations out to ~1000
transitions. While the compression into two behavioral
“states” obviously throws away a lot of detail (by con-
struction), long time correlations are preserved.

Having reduced behavior to binary sequences, we
would like to understand the full probability distribution
for these sequences, P({o:}), going beyond the Markov
approximation. We want our approximation to match
the observed bias between the two behavioral states, mea-
sured by the expectation value (o). We also want to
capture the long-ranged correlations in Fig[d] so we in-
sist that the correlation function C(7) computed from
the model P({c;}) match the correlation function that
we observe experimentally. The minimally structured, or
maximum entropy model that matches (o;) and C(7) is

P({o}) = %exp hZUt—F%ZJtJ(t—t’)ot/ . (5)

t,t

where the interactions J(7) must be tuned to match the
correlation function C(7), and the field A must be tuned
to match the asymmetry (o) [23] [24]. We solve this in-
verse problem following the same strategy as in previous
work [25], using Monte Carlo to estimate C(7) in the
model and adjusting J(7) in proportion to the difference
between this estimate and the measured values.

Even without detailed calculation, we know that gen-
erating long-ranged correlations in one dimension (here,
time) requires long-ranged interactions, and this is what
we find (Fig . Specifically, if we try to match the cor-
relations C(7) for |7| < Tmax, then J(|7| > Tmax) = 0,
but as we increase Tpax We “uncover” interactions that
couple states with longer and longer separations. We
see no end to this, within the limits of our data. More
subtly, although the asymmetry in the two clusters of
behavioral states is large, corresponding to a “magneti-
zation” (oy) = 0.424 £ 0.048, the magnetic field that we
find is very small, h = (4.740.7) x 1073 when we match
correlations out to Tmax = 102. Intuitively, long-ranged
correlations imply that sequences of states are moving
collectively, and hence a small intrinsic bias is amplified.

Over more than two decades in 7, the interactions are
very nearly J(7) = Jo/72. The Ising model with such “in-
verse square”’ interactions has a fascinating history, and
played an important role in the development of scaling
ideas that presaged the full development of the renormal-
ization group [26]. It is quite startling to see this model
emerge from the analysis of data on animal behavior.

Perhaps the most important prediction of our model
is the probability of the behavioral state at time ¢t given
the states at all other times ¢/,
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Figure 4: Connected correlation function for the binary de-
scription of behavior, Eq @ Data points and error bars
(red) as in Fig 1, compared with a Markov model over the
two states (green). Solid line is a single exponential decay
with correlation time 7. = 7.9 = 0.9.
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Figure 5: Interactions J(7) needed to reproduce the corre-
lation function C(7) for 7 < Tmax, With Tmax = 100 (red),
400 (green), 1000 (blue points with errors). Error bars are
the standard deviations across models that match C(7) from
randomly chosen halves of the flies in the experimental pop-
ulation. Black dashed line is J(7) = 1/72, for comparison.

We can test this prediction by walking through the
data and collecting all the moments in time where heg
falls into some small range, and averaging the behav-
ioral states over these times [27]; we should find (o) =
tanh(heg). To avoid any dangers of over—fitting [28], we
assume that the system is described exactly by the in-
verse square Ising model, J(7) = Jo/72, and fit the one
parameter Jy. Results are shown in Fig [6p.

The agreement between theory and experiment that
we see in Fig[6h is very good, and the best fit value of Jy
is consistent with the estimate of J(7 = 1) in Fig[s| The
largest deviations between theory and experiment are at
extreme values of heg, where behavior is even more nearly
deterministic ({(o) — £1) than predicted by the theory.
The distribution of heg is strongly bimodal, as if the fly
were alternating between strong internal biases, and we
see this in the time course of heg in Fig [6b.

Equation [6] has the form of a behavioral state respond-
ing at each moment in time to a bias heg, but these bi-
ases are determined by behavioral states at other times
through Eq . Importantly, the full model in Eq can
be rewritten in a form where behavioral states respond
independently at each moment in time to a completely
internal, fluctuating bias ¢; [19],

Pl{o) = [ D¢P<{@}>HW. ®)

The probability distribution of biases is given by

P({6}) = e[S (o)) )

4

(o) = 530Kt~ 1)or — 3 Incosh(h+ 60),

(10)

and the kernel K (7) is the inverse of the interaction J(7),

SOK{E—t") I 1) = . (11)

7

For models in which J(7) ~ 1/72, for large 7 we have
K (1) ~ —1/72, s0 that the internal biases also must have
interactions that extend over long spans of time; there
must be yet more internal degrees of freedom which carry
memory across these spans. To generate the ~ 1/72 be-
havior exactly requires that the dimensionality of these
internal dynamics be effectively infinite [I9]. In a differ-
ent language, if we wanted to generate ~ 1/72 behav-
ior exactly using a hidden Markov model, the number
of hidden states would have to be effectively infinite as
well. While not suggesting a specific mechanism, the ex-
plicit ~ 1/72 interactions provide a simple description of
the phenomenology, the minimum required to match the
observed correlations C(7).

To summarize, we have tamed some of the complexity
of the behavior in walking flies by compressing the behav-
ioral states into binary variables which preserve correla-
tions from one state to the next. The resulting binary
sequence nonetheless captures long ranged correlations
in the behavior, with memory detectable out to thou-
sands of transitions. The simplest model that describes
this behavior turns out to be an Ising model with almost
perfectly inverse square interactions, and this model gives
excellent quantitative predictions for the behavioral state

a b

1 2
Al il
0s il \ I
— I
o [ ol
| (-
-0.5 -1 ‘b‘ ‘ |
03 | U‘U
o I o i
-2 0 2 3200 3300 3400
h off t (# of transitions)

Figure 6: (a) Mean behavioral state at one moment in time
vs the effective field determined by states at other times, from
Eq (7) with J(7) = Jo/72, Jo = 0.5440.01. Points are means
across 59 flies, and error bars are standard deviations across
random halves of this population; line is (¢) = tanh(heg).
(b) A short segment of heg vs time for one fly.



at one moment in time given the surrounding sequence
of states. Although very simple, this description points
to an effectively infinite number of hidden states.
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