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We introduce a microscopic model for collinear multiferroics capable to reproduce, as a conse-
quence of magnetic frustration and easy-axis anisotropy, the so-called “uudd” (or antiphase) mag-
netic ordering observed in several type II multiferroic materials. The crucial role of lattice distortions
in the multiferroic character of these materials is entered into the model via an indirect magnetoelec-
tric coupling, mediated by elastic degrees of freedom through a pantograph mechanism. Long range
dipolar interactions set electric dipoles in the antiferroelectric order. We investigate this model by
means of extensive DMRG computations and complementary analytical methods. We show that a
lattice dimerization induces an spontaneous Z2 ferrielectric bulk polarization, with a sharp switch
off produced by a magnetic field above a critical value. The topological character of the magnetic
excitations makes this mechanism robust.

PACS numbers: 75.85.+t, 75.10 Jm, 75.10 Pq

I. INTRODUCTION

Multiferroic materials, defined as those in which ferro-
electricity and (anti)ferromagnetism coexist and interact,
have become one of the most studied topics in the last
few years, both from the experimental and the theoreti-
cal point of view. The possibility of magnetic writing via
electric fields makes these materials a potential source of
technological applications in data storage.

Among the most recent discoveries a type of magneto-
electric materials, so called type II multiferroics in which
the electrical polarization coincides with a magnetic or-
dering transition, has been the subject of a lot of efforts
[1,2]. What is most important in these materials is the
very large coupling between magnetic and electrical prop-
erties, even if the value of the electrical polarization can
be rather small as compared to typical ferroelectric ma-
terials.

An important issue is to determine the microscopic
underlying general mechanism which could be applied to
guide the synthesis of bulk or film materials with en-
hanced magnetoelectric properties (see e.g. [3] and refer-
ences therein). Within the present paper we contribute
to this task by proposing and analyzing a model in which
this cross-coupling arises via the interaction with the
lattice, thus fitting into the so called exchange-striction
mechanism [1,2,4]

Very generally the high magnetoelectric response ap-
pears to be associated to the magnetic frustration due
to competing spin interactions leading to complex mag-
netic orders [1]. Indeed, in most of multiferroic materi-
als with collinear spins the magnetic order observed at
low magnetic fields is of the “uudd” (↑↑↓↓) type along

some particular line (see for instance [1,2,5] and refer-
ences therein). Such order usually appears when second
neighbors antiferromagnetic interactions compete with
either the uniform or Néel configurations induced by
nearest neighbors interactions. This happens to be the
case in quasi-one-dimensional materials like Ca3CoMnO6

[6], quasi-two-dimensional materials like the delafossite
AgCrS2 [7,8] and also in multiferroic manganite per-
ovskites with E-type antiferromagnetic order such as
HoMnO3 [9,10], ferrite perovskites such as GdFeO3 [11]
and other 3D compounds such as the CdV2O4 spinel [12]
or RNiO3 nickelates (R=La, Pr, . . . ,Lu) [13]. Among
these ↑↑↓↓ multiferroic materials, particular interest fo-
cuses on double perovskites such as Yb2CoMnO6 [14],
Lu2MnCoO6 [15,16], Er2CoMnO6 [17], and R2NiMnO6

(R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er) where a giant
magnetoelectric effect has been reported [18].

In a previous paper [19] we have introduced a simple
microscopic multiferroic model describing a system with
magnetic and electric dipolar degrees of freedom coupled
via lattice distortions. This mediated coupling is ubiqui-
tous in magnetoelectric phenomena and may be enhanced
by the strong influence of the lattice in multilayer multi-
ferroics, as in some cases the lattice mismatch of the layer
and the substrate can generate enormous lattice distor-
tions and trigger giant multiferroic responses [20,21].

In the present work we extend and generalize our pre-
vious study in several aspects: first and most impor-
tant, we add antiferromagnetic exchange couplings be-
tween next nearest neighbors (NNN) reported in most
of the above mentioned materials. When the NNN cou-
pling is strong enough we reproduce the experimentally
observed ↑↑↓↓ magnetic ordering at zero magnetic field.
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This confirms that magnetic frustration is at the root of
the phenomenology observed in many materials. Second
and in order to make closer contact with experiments, we
introduce an easy axis anisotropy that mimics the effec-
tive Ising character observed for otherwise quantum mag-
netic moments. Indeed, the magnetic ions are inmersed
in crystal local fields that generally diminish their quan-
tum character, making them behave as almost classical
Ising variables. Good examples of this situation are the
spin-ice pyrochlores [22], with the exception being Tb
based pyrochlores where Ising models seem not to suffice
but quantum fluctuations have to be included [23–25].
Thus a parameter controlling the easy axis anisotropy
allows for a phase diagram covering the “quantum” and
“classical” behavior realized in many possible different
materials. Last but not least, we consider realistic dipo-
lar interactions which either from intermediary itinerant
electrons [26], from Coulomb forces [27], or by other effec-
tive mechanism, are expected to act as long range forces.
Even when truncated at second neighbors, long range
dipole-dipole interactions give rise to new phases in a
richer dipole-elastic phase diagram.

Along this work we discuss the zero temperature
ground state of the magnetic, electric and elastic one di-
mensional system described below. The main results will
be the emergence of a spontaneous bulk polarization at
zero magnetic field, as well as a sharp drop thereof once
the magnetic field exceeds a critical value.

The paper is organized as follows: in Sect. II we de-
fine the microscopic model to be discussed, the regions
of interest and the methods to be used. In Sect. III we
explore the behavior of dipolar degrees of freedom in the
absence of magnetism, finding that long range dipolar
interactions give rise to a new intermediate phase with
period three order. In Sect. IV we present our main re-
sults: the spontaneous electric polarization driven by the
interactions and the switch off of this effect as soon as
the system is magnetized by an external magnetic field.
In Sect. V we summarize our results, discussing possi-
ble experimental tests and applications such as efficient
polarization flip devices.

II. SYSTEM MODEL AND METHODS

A. The model

The system model under analysis describes magnetic,
electric and elastic degrees of freedom, in which magnetic
moments and electric dipoles interact independently with
the lattice, that serves as the intermediary for the effec-
tive magnetoelastic coupling we want to describe.

Magnetoelastic sector. Magnetic ions positions are
described as sites i in a linear chain. Their regular posi-
tions are xi = ia where a is a lattice constant but under
distortions the ions move to xi + ui along the chain di-
rection, so that sites i and i + 1 will be separated by a

distance a + δi with δi = ui+1 − ui. The elastic energy
cost of such distortions is given by

Helastic =
K

2

∑
i

δ2i , (1)

where K is the lattice stiffness.
Magnetic ions themselves are represented by S = 1/2

spin operators Si at chain sites. While the model aims
to describe the ↑↑↓↓ order observed along certain lines
in two and three dimensional multiferroic materials, it
is interesting to notice that a few compounds that have
been identified to become multiferroic do show this order
in quasi-one-dimensional chains of Cu2+ magnetic ions (S
= 1/2): for instance LiCuVO4 [28,29], LiCu2O2 [30–32],
CuCl2 [33], CuBr2 [34], PbCuSO4(OH)2 [35,36], CuCrO4

[37] and SrCuTe2O6 [38].
Following our proposal in [19], the magnetic ions inter-

act via nearest neighbors (NN) antiferromagnetic cou-
plings J1. Frustration is introduced by next nearest
neighbors (NNN) antiferromagnetic couplings J2. Both
NN and NNN super-exchange couplings have magnitudes
that may depend on elastic distortions. However, we as-
sume for simplicity that only the NN exchange shows a
linear dependence that can be written as

J1(δi) = J1(1− αδi) (2)

where α > 0 is called the linear magnetoelastic coupling
(incidentally, in the frequent case of alternating distor-
tions the second neighbor distances 2a+δi+δi+1 are not
altered at all). Positive α makes NN exchange stronger
as magnetic ions approach each other.

The effect of crystal fields can in general be mod-
eled by anisotropic spin interactions: the SU(2) in-
variant Heisenberg interaction Si · Sj is replaced by
Sxi S

x
j +Syi S

y
j + ∆Szi S

z
j (z axis determined by the crystal

environment). Aiming to describe collinear multiferroic
materials, we focus on ∆ ≥ 1; that is, we cover the easy
axis anisotropy case ∆ > 1 and in particular the isotropic
case ∆ = 1. This is motivated by the large variety of
known multiferroic materials, but also by the theoretical
importance of the SU(2) invariant point case. The easy
plane regime ∆ < 1, not discussed here, is known to be
continuously connected with the isotropic case (see for
instance [39]). On the other hand, the limit ∆→∞ con-
nects our work with the classical Ising regime. In order
to deal with large ∆ without hiding the other sectors,
we introduce a parameter γ ≡ 1/∆ and absorb ∆ into
the exchange constants. Finally, we introduce the Zee-
man energy associated with an external magnetic field h
along the easy axis direction.

The magnetic sector, coupled to lattice distortions, is
then described by the Hamiltonian

Hspin =
∑
i

J1(δi) (Si · Si+1)γ +
∑
i

J2 (Si · Si+2)γ

− h
∑
i

Szi , (3)
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where we write for short

(Si · Sj)γ ≡ S
z
i S

z
j + γ

(
Sxi S

x
j + Syi S

y
j

)
. (4)

A model described just by Helastic+Hspin might be called
a frustrated anisotropic spin-Peierls system.

We recall that the anisotropy parameter γ < 1 (∆ > 1)
weakens the quantum fluctuations of the transverse spin
components, making the spins “more classical”. For sys-
tems with collinear order the large ∆ limit is equiva-
lent to considering large S spins, in the sense that in a
Holstein-Primakov [40] expansion transverse fluctuations
are suppressed out by a 1/S factor. Other approaches de-
scribe the easy axis component with a strong single ion
anisotropy [41], or do instead introduce quantum fluctu-
ations on top of classical spins [42,43].

FIG. 1: Schematic ground state diagram for the spin
S = 1/2 anisotropic frustrated antiferromagnetic chain. Most
of the materials we are interested in are located in the frus-
trated anisotropic region (low right corner). As representative
points we numerically explore in detail a frustration given by
J2/J1 = 0.8, in the isotropic case γ = 1 and a high easy axis
anisotropy γ = 1/8.

In the absence of deformations the magnetic model in
Eq. (3) has been thoroughly studied. We do not in-
tend to cover the subject in all details but summarize
the main results relevant for the present work; for a com-
plete treatment with a careful account of the literature
see [39] and references therein. For our purpose it is
worth calling to mind its main features when no mag-
netic field is turned on. These are governed by the com-
petition between frustration J2/J1 and anisotropy γ and
can be summarized by the diagram in Fig. 1. For low
frustration J2 � J1 the system can be seen as a linear
antiferromagnetic chain J1 weakly perturbed by NNN in-
teractions J2; in the opposite limit J2 � J1 it is better
described as two-leg ladder of linear antiferromagnetic
chains J2 weakly coupled by zig-zag rungs J1. The SU(2)
symmetric line γ = 1 is well studied by many techniques,
in particular the bosonization of the effective low energy
excitations [44]: for low frustration the ground state is
a gapless Luttinger Liquid (LL) with quasi long range
order but enters a two-fold degenerate gapped quantum
dimer phase for J2/J1 > 0.2411 [45,46], with expecta-

tion value of the local spin 〈Szi 〉 = 0 and strong antifer-
romagnetic (negative) spin correlations every two-bonds
(strictly, this is not collinear). A paradigmatic exam-
ple is found at J2/J1 = 0.5, the Majumdar-Ghosh point
[47], where the exact ground state is a (two-fold degen-
erate) direct product of two-site spin singlets. For very
large frustration the gap decreases exponentially and the
ground state shows incommensurate spiral spin correla-
tions [48–50]. On the bottom of the diagram, the large
anisotropy limit γ = 0 defines the one dimensional anti-
ferromagnetic Anisotropic Next Nearest Neighbors Ising
(ANNNI) model; classical spins order in a two-fold degen-
erate ↑↓↑↓ Néel phase for low frustration (J2/J1 < 0.5)
with a transition to the ↑↑↓↓ antiphase state for larger
frustration (J2/J1 > 0.5) [51]. In a sense, while γ → 0 the
LL quantum phase evolves into the classical Néel phase
and the quantum dimer phase evolves into the ↑↑↓↓ clas-
sical phase. Many of the materials we are interested in
are located in the frustrated, easy axis anisotropic region
(low right corner). Others correspond to the frustrated
ANNNI model with ferromagnetic J1 < 0 and antifer-
romagnetic J2 > 0, leading to the same ↑↑↓↓ antiphase
state when J2/|J1| > 0.5.

Electroelastic sector. The electric sector is modeled
by dipolar moments pi located midway between magnetic
atoms at sites i and i + 1. They might arise from local
charge distribution of non-magnetic ions in the crystal
unit cell, occupying one of two possible Jahn-Teller states
determined by the crystal environment and bridging the
super-exchange magnetic couplings.

As the magnetic ions change their positions, the mag-
nitude of dipolar moments may also change. It could
happen that no local dipolar moment is present in the
absence of distortions, in this case we would describe the
arising dipoles by a magnitude proportional to δi and
orientation along an appropriate axis. For some other
materials a local dipolar moment might exist prior to
distortions, along a given axis ê. Relatedly, it is worth
to recall that the measurable quantity in crystals is not
the absolute polarization but the polarization change be-
tween different states of the same compound [52].

The particular model discussed in this paper is partly
inspired in the the material AgCrS2 where the magnetic
ions Cr3+ are surrounded by six S2− non-magnetic sulfur
ions on the vertices of non regular octahedra (non equiv-
alent crystallographic positions). It suffers a transition
from the paramagnetic R3m structure to the ↑↑↓↓ mag-
netically ordered phase with non centro-symmetric Cm
structure [7]. This transition produces a magnetostric-
tion enlarging (shortening) the distance between parallel
(antiparallel) magnetic moments, then producing a shift
of the center of charge of surrounding sulfur ions and a
consequent spontaneous polarization [8]. Following this
description, and in order to unravel the physical mecha-
nism leading to multiferroicity by lattice distortions, we
will assume that the undistorted lattice hosts electric
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dipoles amidst magnetic ions, with a natural magnitude
p0 and a preferred axis ê oriented perpendicular to the
chain (this choice of axes can be easily generalized to
deal with more general situations, but the main novelty
of the mechanism presented here is already contained in
this simplified description). Under distortions δi the lo-
cal dipole magnitude is modified through a pantograph
mechanism [19,53,54]. This is modeled in a linear ap-
proximation by pi = pi(σi, δi)ê with a component

pi(σi, δi) = p0 (1− βδi) 2σi. (5)

Here σi = ±1/2 is an Ising variable for the orientation of
the dipole along its axis, p0 is the dipolar moment mag-
nitude in the absence of distortions, and β will be called
the dipole-elastic coupling. Notice that β > 0 makes
dipolar moments larger as neighboring magnetic sites be-
come closer. The pantograph mechanism, depicted in
Fig. 2, encodes the interaction between electric dipoles
and elastic degrees of freedom. Romboids in this picture
represent, without loss of generality, the actual crystal
environment of magnetic ions.

FIG. 2: Cartoon of degrees of freedom and dipole-elastic
coupling mechanism. Magnetic ions are described as a chain
of sites (in black) while dipoles (double arrows) associated to
charged ions (in blue) are located at chain bonds. Displace-
ments of magnetic ions ui modify bond lengths by a distortion
δi = ui+1 − ui. Also the distance between adjacent dipoles is
distorted by ηi = (δi + δi+1)/2. A dipole strength is enlarged
(shortened) when the bond is shortened (enlarged) while its
orientation is given by an Ising variable, as described in Eq.
5. Shaded symbols show the undistorted (regular) lattice, full
colored symbols represent a general distortion configuration.

For a given distribution of distortions δi and dipoles
pi(σi, δi) the system acquires a bulk polarization

P ≡ 1

Ns

Ns∑
i=1

pi(σi, δi) =
1

Ns

Ns∑
i=1

p0(1− βδi)2σi, (6)

where Ns is the chain length (number of sites).

Electric dipolar momenta may interact with each
other, at a relevant energy scale, in a phenomenologi-
cal way. Such interaction is eventually determined by
long range dipole-dipole interactions and/or elastic rela-
tions between deformations of charged and intermediate
ions in the crystal [55]. For the sake of definiteness we
consider a Coulomb long range dipole-dipole interaction
coupling decaying with the cube of the dipole separation,

λD
pi · pj − 3(pi · x̂)(pj · x̂)

|xj − xi|3
(7)

which in the present geometry only contributes with the
product of the transverse components pi. Regarding the
distance decay, notice that dipoles pi and pi+1 are sepa-
rated by a distance a+ηi, where ηi = (δi+ δi+1)/2 is the
distortion of the distance between adjacent dipoles. The
electric energy of a given configuration of dipoles coupled
to distortions is given by

H
(full range)
dipole = λD

∑
i

(
pi(σi, δi)pi+1(σi+1, δi+1)

(a+ ηi)
3

+
pi(σi, δi)pi+2(σi+2, δi+2)

(2a+ ηi + ηi+1)
3 + · · ·

− E
∑

pi(σi, δi) (8)

where the dots represent longer range dipolar interac-
tions and E is an external electric field along the dipolar
axis ê. An electric field component transverse to this
axis would introduce dipolar quantum fluctuations, in-
teresting in the context of molecular magnets [56] or the
ferroelectric SrTiO3 [57] but this is out of the scope of
the present work.

We consider here an expansion of the dipolar interac-
tions in Eq. (8) up to second neighbors. We expect that
the inclusion of longer range terms will not modify qual-
itatively the arising dipolar phases, at least for bipartite
lattices where further neighbors fall into either the first
or the second neighbor sublattices and will only renor-
malize the frustration. Assuming small deformations we
also expand distortions up to linear terms. We get

Hdipole = Je
∑
i

(
σiσi+1 +

1

8
σiσi+2

)
− 2ε

∑
i

σi + 2βε
∑
i

δiσi (9)

− Je
∑
i

[(
β +

3

2a

)
(σi−1σi + σiσi+1) +

1

8

(
β +

3

4a

)
(σi−2σi + σiσi+2) +

3

16a
σi−1σi+1

]
δi,

where Je ≡ 4λDp
2
0/a

3 and ε ≡ 2p20E. A model described by the addition of Helastic + Hdipole might be called a
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dipole-Peierls system.

Complete Hamiltonian. As we mentioned at the be-
ginning of this Section, the elastic degrees of freedom
with the Hamiltonian given in Eq. (1), coupled separately
to the spins in Eq. (3) and to the dipoles in Eq. (9), are
the intermediaries of the magnetoelastic coupling in our
proposal. This is achieved by the complete Hamiltonian
to be discussed below,

H = Helastic +Hspin +Hdipole, (10)

that will be called the spin-dipole-Peierls Hamiltonian.

B. Self-consistent equations

In order to cope with the three coupled degrees of free-
dom, one needs an organizing strategy. Here we follow a
self-consistent method [58] looking for the elastic distor-
tions that minimize the total energy in Eq. (10).

For a given configuration of dipoles σi and a (quantum
or classical) state for the spins Si, the minimal elastic
energy is obtained when distortions δi satisfy the local
zero gradient conditions

Kδfreei = αJ1〈Szi Szi+1 + γ
(
Sxi S

x
i+1 + Syi S

y
i+1

)
〉 − βεσi (11)

+ Je

(
β +

3

2a

)
(σi−1σi + σiσi+1) +

1

8
Je

(
β +

3

4a

)
(σi−2σi + σiσi+2) + Je

3

16a
σi−1σi+1,

further constrained by the fixed chain length condition

δi = δfreei − δfreei where the bar stands for average value
along the chain.

On the one hand these self-consistent (SC) equations
clearly exhibit the interplay between magnetic and elec-
tric degrees of freedom either collaborating or compet-
ing to produce the optimal elastic distortions. Each of
them enters in the form of local correlations. On the
other hand it allows to incorporate the knowledge about
the magnetic sector and the electric sector separately. It
should be stressed that NNN magnetic interactions, al-
though not explicit in Eq. (11), play a central role in
the actual value of NN correlations by introducing mag-
netic frustration in the Hamiltonian in Eq. (3). It is the
analysis of this Hamiltonian what allows for theoretical
or numerical input into the SC equations. Below we both
discuss theoretical arguments and provide numerical re-
sults by iteratively solving the spin problem with the help
of Density Matrix Renormalization Group (DMRG) com-
putations [59].

We have performed an iterative numerical analysis
based on DMRG to solve the magnetic and electric sec-
tors in the adiabatic equations (6), along the lines stated
in [58] and implemented in a similar context in [19].
The ground state for the spin system is obtained by
the DMRG algorithm for each δi and σi configuration.
Therefore, we re-obtain the set of δi from Eq. (11) and
prove different σi in order to minimize the total energy.
We have used periodic boundary conditions, and we have
kept the truncation error less than O(10−12), during up
to more than 100 sweeps in the worst cases. This assures
that errors of the DMRG computation are smaller than
symbol sizes in each figure.

C. Regions of interest

The various parameters in the model allow for a rich
phase diagram. According to the multiferroic materials
we aim to describe, the main region of interest along
the present work will be that with large enough ratio
J2/J1 so as to manifest magnetic frustration. For large
anisotropy γ � 1 one could expect that spin fluctu-
ations are strongly diminished, allowing for a “uudd”
ground state comparable to the classical ANNNI model
antiphase state. However, we will show that quantum
fluctuations still influence the deep Ising limit.

As for the energy scales, the dipolar exchange Je will be
kept below the magnetic exchange couplings, so that in
principle it is magnetism what drives electric responses.
The lattice stiffness K will set an energy scale larger than
magnetic and electric ones, in order to keep distortions
small with respect to the lattice spacing a. We set the
length scale by taking the lattice spacing a = 1 and also
set the energy scale taking Ka2 = 1.

From the above considerations, we choose for numeri-
cal computations a reference set of phenomenological pa-
rameters J1 = 0.5, J2 = 0.4 and Je = 0.2 to organize the
energy scale of each degree of freedom. We also choose
α = β = 0.2 to analyze the magnetoelastic and electroe-
lastic couplings. Notice that our results do not depend
on fine tuning, so we expect them to be valid in a wide
region of parameters.

The electric and magnetic fields in Eqs. (3, 8) can be
varied in order to set the system in different polarized and
magnetized regimes. Finally, the magnetic anisotropy
will be varied from the quantum SU(2) symmetric point
γ = 1 down to small enough values to explore the large
easy axis anisotropy regime where classical behavior is
expected.
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III. POLARIZATION PROCESS IN THE
PRESENCE OF AN ELECTRIC FIELD

In this Section we discuss the polarization due to an
external electric field, when the magnetic sector is decou-
pled from the classical degrees of freedom (α = 0). To
this end we analyze the minimum energy configurations
of the dipole-Peierls Hamiltonian Hdipole +Helastic: given
different periodic dipolar patterns we analytically com-
pute the distortions minimizing the elastic energy, in the
presence of the electric field. By comparison we select the
lowest energy electroelastic configuration. In detail, we
have considered all of the ordered dipolar configurations
up to period four. The results lead to the dipole-elastic
phase diagram in Fig. 3.

It should be stressed that long range dipole-dipole in-
teraction leads to a richer phase diagram, with respect
to the first neighbors interaction case [19]. It includes a
new exotic phase where dipoles order with a period of
three sites, not found before. Distortions occur with the
same periodicity and will eventually contribute or inter-
fere with the well-known period three magnetic plateau
state that is expected for the magnetoelastic sector [60].
In the present one-dimensional case, and in any bipar-
tite lattice, we expect no other qualitative changes by
including the interactions between further neighbors.

FIG. 3: Dipole-elastic phase diagram, computed for β = 0.2.
Double line arrows describe the dipole ordered pattern in each
region. Elastic distortions follow the dipole pattern period-
icity, except in the zero field line ε = 0 and the saturation
region ⇑⇑⇑⇑ where magnetic ions are equally spaced.

Without electric field the system possesses a Z2 in-
version symmetry, but spontaneously adopts one of the
two possible antiferroelectric ⇑⇓⇑⇓ configurations. To be
precise, these are described by

σi = (−1)i+ν , (12)

where ν = 0 (1) indicates whether odd (even) dipoles
are pointing in the positive preferred axis direction. The
distortions are null in either configuration, then dipoles

pointing up or down have the same magnitude and the
system has no net polarization. This is shown with
shaded circles in Fig. 4, with the left-most dipole point-
ing upwards; the other possibility is got by inversion, or
equivalently by a one-site translation.

When a small electric field is turned on, breaking the
inversion symmetry, no dipole flips are produced below a
critical field but dimerized distortions are induced

δi = −(−1)i+ν
p0β

K
ε, (13)

Under these distortions bonds with dipoles pointing
along the field get shorter, enlarging the corresponding
local dipolar momenta while bonds with dipoles point-
ing counter field get longer, shortening the correspond-
ing dipolar strength. This behaviour is sketched in Fig.
4, and occurs in either antiferroelectric configuration
(ν = 0, 1). The bulk polarization reads

P (ε) =
1

Ns

Ns∑
i=1

p0(1− βδi)2σi =
p20β

2

K
ε. (14)

That is, the system behaves as a simple paraelectric, ac-
quiring a bulk polarization proportional to the applied
electric field (with electric susceptibility χe = ∂P

∂E =
2p40β

2

K ).

FIG. 4: Dipolar pattern in the dimerized electroelastic phase
⇑⇓⇑⇓, for a finite electric field pointing upwards (symbols as
in Fig. 2). Dipoles pointing along the field are larger than
dipoles in the opposite direction. The alternation of bond
length distortions is the mechanism for bulk polarization. The
system acquires a linear electrical polarization (paraelectric
behaviour). Distortions are magnified for visual effect.

At the critical line that separates the antiferroelectric
low field phase from longer period dipolar structures, po-
larization gets discontinuous because of extensive dipolar
flips. In the present work we concentrate in the low field
region properties. Discontinuous transitions to higher
polarized states, either via an electric or a magnetic field
and the interplay with magnetization plateaus discussed
below will be studied elsewhere.

IV. MAGNETO-ELASTIC COUPLING AND
SPONTANEOUS ELECTRIC POLARIZATION

When the magnetic sector is coupled to the lattice
through α 6= 0, the ground state magnetic configura-
tion may come along with lattice distortions. These in
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turn bring about the possibility of modulations in the
exchange couplings, associated to the lattice distortions.

In the absence of dipolar degrees of freedom this inter-
play between distortions and modulated exchange cou-
plings is resolved as an energy balance between elastic
cost and magnetic energy gain. Technically, this balance
is expressed by self consistent equations similar to our
Eqs. (11). In general, when non trivial distortions show
up in the ground state, the spin excitation spectrum is
gapped. In consequence the magnetization curve presents
a plateau: it requires a finite magnetic field for the Zee-
man energy to overcome the energy gap and change the
spin state. A most important example is the spin-Peierls
mechanism that promotes the formation of spin singlets
at the cost of dimerized distortions [61,62], either in the
non-frustrated case J2 = 0 or the frustrated one [58].
This has been studied not only in one dimensional spin
chains but also in higher dimensions [63–67]. The spin-
lattice coupling also provides mechanisms for the opening
of plateaus at different magnetization fractions, either for
quantum S = 1/2 spins [68] or classical spins [69].

It is important to notice that magnetization plateaus
may be related to other mechanisms, different from elas-
tic distortions. One of them is the competition between
NN and NNN exchange couplings, frustrating the an-
tiferromagnetic order [44,70]. Moreover, the easy axis
anisotropy drives a competition between the convenience
of ground states with quantum structures (singlets) or
classical frustrated configurations [71].

In our system model the magnetic frustration and the
magnetoelastic mechanism co-exist, along with a dipolar
energy cost/gain for lattice distortions. Altogether, this
is expressed in the self consistent Eqs. (11) for lattice
distortions. These SC equations show that the panto-
graph mechanism puts dipolar and magnetic correlations
in either cooperation or competition with each other to
produce changes in the bond lengths. This is the key
ingredient that provides an effective magnetoelectric cou-
pling mediated by lattice distortions, opening an avenue
to a plethora of new physics.

We show below that this interplay gives rise to a bulk
polarization without the presence of an external electric
field. Moreover, we show that a magnetic field above a
threshold causes a sharp polarization switch.

To start our analysis we first address to the existence of
a zero magnetization plateau in the magnetization curve
of the present spin-dipole-Peierls model, at zero electric
field. As discussed in Section II C, we focus on the region
with high enough frustration so as to produce the ↑↑↓↓
magnetic ordering (see Fig. 1); for numerical work we
take as a representative case the parameters J1 = 0.5.
J2 = 0.4, Je = 0.2, α = β = 0.2. We have explored the
anisotropy range γ ≤ 1 and found signals of quantum
and classical behaviour; we report, as representative ex-
amples, the SU(2) symmetric case γ = 1 and a highly
anisotropic case γ = 1/8.

We solved the self-consistent equations (11) iteratively,
feeding in the spin-spin correlations computed by DMRG

in the presence of distortions and the zero electric field
antiferroelectric dipolar configuration (see Fig. 3).

By covering all the possible magnetizations in a finite
size chain of length Ns we draw the magnetization curves
shown in Fig. 5 where the magnetization M is defined as
the total 〈Sztotal〉 relative to saturation.

The outcome is a very rich phase diagram that not
only includes previously studied situations, but also sug-
gests some exotic non-trivial ones. Besides the M = 0
plateau present for both the isotropic and the anisotropic
case, one can see other plateaus at simple fractions of
the saturation magnetization. In particular, there is a
noticeable plateau at M = 1/3 that is much wider in
the anisotropic case, and comes together with a perid
three distortion modulation. There are also plateaus at
M = 1/2 and M = 2/3 in the isotropic case, which are no
longer present in the anisotropic case. In spite of small
differences or special points, it is interesting to notice
that the bosonization picture, strictly valid for |γ| ≥ 1
(|∆| ≤ 1), remains essentially the same for the easy axis
anisotropic region γ < 1.

For completeness, we have computed the magnetiza-
tion curves for systems with some lower frustration val-
ues (J2/J1 = 0.2, 0.5). We sketch in Fig. 6 a summary
of the observed plateaus in a plane h vs. J2/J1.

We will focus on the zero magnetization plateau and its
magnetic excitations in the present work, with emphasis
on the description of experimental setups attainable in
the multiferroic materials surveyed in the Introduction.
Finite magnetization plateaus, which could trigger fur-
ther experiments in high magnetic fields, will be studied
elsewhere.

A. Zero magnetization plateau

In this Section we compare the magnetic structure of
the M = 0 plateau state observed in the SU(2) isotropic
case (γ = 1) and the easy axis anisotropic case (γ =
1/8). In spite of their differences, we will show that both
of them lead to alternating distortions and produce a
finite bulk polarization at zero electric field. Moreover,
quantum fluctuations are relevant, though substantially
dumped, even for the (Ising-like) large anisotropic limit.

1. Quantum dimerized plateau

It is well known that, without exchange modulation
(α = 0) and with γ = 1, the homogeneous isotropic
frustrated spin S = 1/2 antiferromagnetic Heisenberg
chain spontaneously breaks the translation symmetry
and enters a quantum dimer phase for J2/J1 > 0.2411
[39,45,46], with 〈Szi 〉 = 0 and spin correlations dominated
by strong antiferromagnetic (negative) correlations every
two-bonds (strictly, this is not collinear). The possibility
of forming dimers in even or odd bonds makes the ground
state two-fold degenerate.
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FIG. 5: Magnetization curves obtained by DMRG self-
consistent solution of Eqs. (11) for the isotropic case (γ = 1)
and a high easy axis anisotropy (γ = 1/8), setting J1 = 0.5.
J2 = 0.4, Je = 0.2, α = β = 0.2 and zero electric field.
A plateau at M = 0 is observed in both cases, though the
spin structure found for isotropic case (quantum dimerized
plateau) is very different from the one found in the anisotropic
case (classical ↑↑↓↓ plateau), see discussion below. A promi-
nent plateau at magnetization fraction M = 1/3 is also ob-
served in both cases. The insets show the finite size scaling
of the main plateaus width.

In the presence of the magnetoelastic coupling in Eq.
(2) the NN spin-spin correlations have influence on elas-
tic distortions, as seen in the first line of Eqs. (11).
As the frustrated spin-spin correlations alternate along
the chain, frustration favors alternating distortions with
short bonds accompanying spin singlets. Regarding the
electroelastic coupling, one can see that the antiferro-
electric configuration at zero electric field has site in-
dependent dipole-dipole correlations (negative between
first neighbors, positive between second neighbors). Ac-
cording to the second line in Eqs. (11), and taking into
account the fixed length constraint, dipole-dipole corre-

FIG. 6: Schematic magnetic phases showing the appearance
of plateaus from the competition between the frustrated ex-
change J2/J1 and the magnetic field h, as well as the spin-
lattice coupling. We report separately the isotropic case (top
panel, γ = 1) and a highly anisotropic case (bottom panel,
γ = 1/8). M is the magnetization relative to saturation, ar-
rows indicate classical collinear order and points in an ellipse
indicate quantum singlet dimers. We do not intend to de-
pict here the J2/J1 → 0 limit. The vertical lines correspond
to magnetization curves at J2/J1 = 0.2, 0.5 and 0.8, where
solid segments indicate plateau ranges (J1 = 0.5, Je = 0.2,
α = β = 0.2).

lations have no influence on distortions. Thus, our model
gets alternating distortions following the frustrated spin
correlations. The strength of the dipoles sitting in short-
ened bonds is enlarged, while that of dipoles sitting in en-
larged bonds is shortened (see Eq. (5)). As a consequence
the magnetic frustration gives rise to a ferrielectric state,
carrying a spontaneous bulk electric polarization. Such
a bulk polarization, due to incomplete compensation of
local dipole moments, has been observed in several mul-
tiferroic materials; besides the AgCrS2 [8] that motivates
our system model, well studied materials like TbMnO3

and TbMn2O5 [72,73] are clear examples.

Notice that the two-fold degeneracy of the magnetic
sector makes it possible to locate spin singlets (short
bonds) either where dipoles point up or down. The spon-
taneous polarization then has two possible orientations,
as dictated by the Z2 inversion symmetry of the model.

The present analysis for the frustrated isotropic mag-
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netoelastic chain reinforces our previous results in the
absence of frustration [19] where spontaneous polariza-
tion was only due to the spin-Peierls instability of nearest
neighbors Heisenberg spin chains.

FIG. 7: Zoomed view of the M = 0 plateau configuration in a
chain of 84 sites with periodic boundary conditions (J1 = 0.5.
J2 = 0.4, Je = 0.2, α = β = 0.2, in the presence of an anti-
ferroelectric dipolar background). Upper panels: local profile
of 〈Sz

i 〉 (blue circles) and distortions δi (orange squares), in
the isotropic case (left panels, γ = 1) and highly anisotropic
case (right panels, γ = 1/8). Distortions are scaled by a
convenient factor for better visualization. Lower panels: lo-
cal profile of spin correlations 〈Si · Si+1〉 in the isotropic and
anisotropic cases. In the isotropic case the vanishing of 〈Sz

i 〉
and the enhanced alternated antiferromagnetic correlations
are signals of a quantum dimer phase. In the anisotropic case
the consecutive 〈Sz

i 〉 ≈ ±0.5 and the alternation of ferromag-
netic and antiferromagnetic correlations 〈Si · Si+1〉 ≈ ±0.25
indicate a classical ↑↑↓↓ phase. In both cases distortions are
negative (short bonds) when spin correlations are negative
(antiferromagnetic).

For concreteness, we show in the left panels of Fig.
7 the local spin expectation value, the distortion pro-
file and spin-spin correlations obtained by solving Eqs.
(11) for J1 = 0.5. J2 = 0.4, Je = 0.2, α = β = 0.2,
γ = 1. As anticipated, there are alternating lattice dis-
tortions. The local magnetization vanishes, 〈Szi 〉 = 0.
The spin-spin correlations are strongly antiferromagnetic
where the bonds are shortened, and weakly ferromagnetic
along enlarged bonds; this indicates the formation of spin
singlets every two bonds and defines the quantum dimer
phase. A second degenerate solution looks the same, but
with dimers translated by one lattice site. A pictorial
description of this states, including enlarged dipolar mo-
ments at singlet bonds, is shown in Fig. 8.

In the presence of an electric field (not enough to pro-
duce dipole flips, see Fig. 3), the dipole-field term in the
SC equations also favors the alternation of distortions.
But now it selects the short bonds to be located where
dipoles point along the field (as already discussed in the

FIG. 8: Schematic picture for the quantum plateau state
at M = 0. The two-spin singlets represented by ellipses gain
magnetic energy by shortening their distance, thus enlarging
their exchange coupling. The influence of these distortions
on the alternating dipoles lengths (double arrows) produces a
ferrielectric configuration with a finite bulk polarization.

electroelastic sector, see Section III). In other words, an
infinitesimal poling electric field breaking the Z2 symme-
try is enough to select one of the otherwise degenerate
electric polarization states of the system.

2. Classical ↑↑↓↓ plateau

In the easy axis anisotropy limit γ → 0 and no magne-
toelastic coupling (α = 0) our model coincides with the
homogeneous frustrated antiferromagnetic Ising chain
(ANNNI model). It is known that this model enters
the collinear antiphase (↑↑↓↓) state at J2/J1 > 0.5 [51],
where J2 is large enough to make the NNN spin cor-
relations everywhere antiferromagnetic, while NN corre-
lations alternate between values ±S2. Same as in the
quantum case, the analysis of the self-consistent condi-
tions in Eq. 11 shows that the magnetoelastic terms favor
alternating distortions, inducing the Z2-symmetric spon-
taneous polarization.

To explore this classical scenario we performed the self-
consistent DMRG computation of the ground state for
the same parameters as in the previous subsection, but
for a markedly anisotropic easy axis spin-spin interac-
tion, γ = 1/8. We show in the right panels of Fig. 7 the
spin and distortion profiles. They indicate that the spins
almost saturate the z component, 〈Szi 〉 ≈ ±1/2, follow-
ing the ↑↑↓↓ pattern. Spin-spin correlations are close to
classical, with 〈Si · Si+1〉 ≈ 1/4 for ferromagnetic bonds
and −1/4 for antiferromagnetic bonds. The distortions
do alternate, with short (long) bonds when spin correla-
tions are antiferromagnetic (ferromagnetic). A graphical
description of this state is shown in Fig. 9. Same as in
the quantum dimerized plateau, alternating distortions
lead to a finite spontaneous electric polarization.

It is worth emphasizing the robustness of the sponta-
neous polarization induced by magnetic instabilities in
the pantograph model. We have found the same result
in very different regimes, such as the magnetically frus-
trated J1 − J2 quantum spin chain, the close to classi-
cal frustrated (Ising) chain, and the spin-Peierls chain
without magnetic frustration [19]. However, an easy axis
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FIG. 9: Schematic picture for the ↑↑↓↓ plateau state at
M = 0. The collinear spin configuration represented by black
arrows gains magnetic energy by enlarging the exchange cou-
pling of anti-parallel nearest neighbors, shortening their dis-
tance. Same as in the quantum dimerized plateau, the influ-
ence of these distortions on the dipole strengths (double ar-
rows) produces a ferrielectric configuration with a finite bulk
polarization.

anisotropy in the low frustration regime (lower left region
in Fig. 1) induces a Néel antiferromagnetic state with
homogeneous correlations [74,75] that would eventually
destroy the spontaneous polarization.

B. Magnetic excitations

The M = 0 configuration remains stable under an ex-
ternal magnetic field h, until it reaches a critical value hc
such that the gain in Zeeman energy of a magnetically
excited state is larger than the spin gap. In this situation
the system overpasses the M = 0 plateau and enters a
magnetized regime (see Fig. 5). In order to understand
the magnetization process we start by analyzing the fea-
tures of the Sztotal = 1 state; we then check that low
magnetization states can be described as a superposition
of elementary magnetic excitations.

1. Excitation of the quantum dimerized plateau

There exist extensive studies of the Sztotal = 1 ex-
citation of the S = 1/2 magnetoelastic spin-Peierls
Heisenberg chain, which appears to be fractionalized into
two spinons [76]. In the bosonization framework these
spinons can be explained as topological solitonic exci-
tations of a sine-Gordon low energy effective continuum
theory coupled to the distortion field [77]. Their presence
has been checked numerically by different techniques [58]
and they are found to condense at the ground state in
the presence of a magnetic field.

Relevant to our purpose is the fact that the topological
solitons connect different degenerate vacua of the system.
In the spin-Peierls Heisenberg chain the ground state is
two-fold degenerate and these vacua are the two possi-
bilities of forming singlet pairs along the chain; that is,
the two vacua differ by a one-site translation. The se-
quence of elastic distortions is also shifted by one site
across each soliton, as the short bonds belong together

with magnetic singlet pairs. We call each of these vacua
a dimerized domain, say A and B. A qualitative picture
in Fig. 10 illustrates the two different dimerized domains
separated by a soliton.

FIG. 10: A magnetic soliton connects the two possible quan-
tum dimer vacua. In this qualitative picture red (cyan) circles
represent odd (even) magnetic sites; squares represent the
distortions of the bonds at the right of sites with the same
color, dotted lines are a guide to follow odd and even site
distortions; double arrows represent electric dipoles sitting
amidst magnetic sites, in an antiferroelectric configuration.
The sequence of spin singlets (ellipses, thick lines indicating
enhanced NN exchange) is shifted by one lattice site across
the soliton, defining a different dimerized domain. A spin
S = 1/2 (black arrow) indicates the fractional magnetization
carried by the soliton. The sequence of short-long bonds is
shifted accordingly. In the presence of the antiferroelectric
dipolar background the dimerization defines ferrielectric do-
mains with opposite polarization.

We have checked numerically that solitons also develop
in the present model, when distortions are coupled to the
amplitudes of antiferroelectrically ordered dipoles. As
well, the distortion pattern shows two different domains
A and B, separated by the magnetic solitons. At each
domain the dipoles develop a ferrielectric net polariza-
tion, pointing in opposite directions. It is important that
both domains are found to have approximately the same
length. This is expected from the sine-Gordon low en-
ergy theory [78] and numerically observed [79] due to the
exponential tails of the soliton profiles, which produce
a residual repulsion between them. It has been shown
that for higher Sztotal the excitations are pairs of solitons
distributed as a periodic array, evolving into a sinusoidal
magnetization profile [80].

Our numerical results for the Sztotal = 1 excitation
are shown in Fig. 11. Detailed data shows that the
distortions (squares in the upper panel) in odd/even
sites are interchanged across the first soliton, as sketched
with the same colors in Fig. 10, and interchanged
again to its original sequence across the second soli-
ton, so that the short/long bond sequence is shifted
by one site at each soliton. The alternation of ferro-
magnetic/antiferromagnetic correlations (triangles in the
lower panel) follows the same sequence as distortions, in-
dicating singlets in two different dimerized domains. The
magnetic excitation is localized in the soliton regions,
with an incipient 〈Szi 〉 spin component. As the soliton re-
gions are wide, in the finite lengths accessible by DMRG
〈Szi 〉 does not reach the null value seen in the vacuum
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state; instead, distortions and correlations clearly reach
their vacuum patterns. Similar behavior has been re-
ported for the excitation of fractional plateau states in
the frustrated magnetoelastic spin chain [60,71].

We have also studied higher magnetically excited
states, where a pattern of equidistant soliton pairs shows
up, thus confirming the described cancellation of electric
polarization.

FIG. 11: Local observables in the Sz
total = 1 excitation in

a chain of 86 sites, in the isotropic case γ = 1 (with pe-
riodic boundary conditions, J1 = 0.5, J2 = 0.4, Je = 0.2,
α = β = 0.2, in the presence of an antiferroelectric dipolar
background). Notice that, using periodic boundary condi-
tions, we have changed the chain length to 86 sites for com-
mensurability of the DMRG solution of the Sz

total = 1 excita-
tion with the lattice size. Upper panel: local profile of 〈Sz

i 〉
(circles) and distortions δi (squares). Lower panel: local spin
correlations 〈Si ·Si+1〉 (triangles). The same colors red, cyan
in Fig. 10 are used here to visually distinguish odd, even
sites and bonds. The magnetic state develops a two-soliton
profile for spin correlations, separating equal length domains.
The dimerized distortions follow the same profile. The local
magnetizations 〈Sz

i 〉 do not vanish, being larger around the
soliton regions, but show no clear order. Qualitative features
agree with the cartoon in Fig. 10.

2. Excitation of the ↑↑↓↓ plateau

Given the Ising-like ↑↑↓↓ structure found in the
anisotropic case γ = 1/8 for the M = 0 plateau in Fig.
7 (right panels), one could expect that the Sztotal = 1
magnetic excitation also looks Ising-like, that is a simple
spin flip followed by a rearrangement of classical spins
defining sharp domain walls where some second neigh-
bors correlations get frustrated (ferromagnetic).

However, it happens that the system takes advantage
of quantum fluctuations to develop solitonic excitations,
so that the reduction of 〈Szi 〉 in the soliton region lowers

FIG. 12: Sz
total = 1 excitation configuration in a chain of 86

sites with periodic boundary conditions (J1 = 0.5, J2 = 0.4,
Je = 0.2, α = β = 0.2, in the presence of an antiferroelectric
dipolar background), in the anisotropic case γ = 1/8. Up-
per panels: local profile of 〈Sz

i 〉 (circles) and distortions δi
(squares), in the isotropic case (γ = 1) and highly anisotropic
case (γ = 1/8). Lower panels: local profile of spin correlations
〈Si · Si+1〉 (triangles). Four different colors red, cyan, green,
blue are used to visually help the location of data every four
sites. The system develops two magnetic solitons, separating
equal length domains. The ↑↑↓↓ spin pattern, as well as the
short/long distortion pattern, are shifted by one lattice site
across each soliton.

the energy cost of the frustrated second neighbors corre-
lations. Away from the soliton regions, the same as in the
quantum case, we find that the alternation of distortions
and spin correlations, and the saturated ↑↑↓↓ spin pat-
tern, are similar to the classical Sztotal = 0 plateau struc-
ture but shifted by one lattice site across each soliton.
The same as in the isoptropic case, the electric polar-
ization forms ferrielectric domains with the polarization
pointing in opposite directions.

We show in Fig. 12 these results for anisotropy γ = 1/8
(cf. the M = 0 state in Fig. 7, right panels), using a se-
quence of colors to identify four sublattices. Spins at
the left side show a vacuum ↑↑↓↓ configuration; spins at
odd sites (red and green sublattices) are flipped across
the first soliton to connect with a different ↑↑↓↓ vac-
uum; the same happens with spins at even sites (cyan
and blue sublattices) across the second soliton. Distor-
tions are dimerized, changing the dimerization domain
across each soliton. Spin correlations in the lower panel
show that antiparallel spins go along with short bonds in
vacuum regions, but quantum fluctuations fade away the
expectation value and correlations of spins in the soliton
regions. This fact reduces the energy cost of the solitonic
“domain wall”, as compared with sharp classical domain
walls. As a visual aid, we summarize in Fig. 13 the ↑↑↓↓
soliton features in a cartoon picture.

Notice that the solitons in the anisotropic case are
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FIG. 13: Schematic description of the first soliton in Fig.
12, connecting two different ↑↑↓↓ dimerized domains. The
linear spin chain can be followed along the rungs of a zig-zag
ladder, separating odd sites in the lower leg and even sites in
the upper leg. Nearest neighbor exchanges J1 are represented
by solid rung lines and next nearest neighbor exchanges J2
by dashed straight leg lines. Single arrows represent the 〈Sz

i 〉
component of spins, using the same sublattice colors as in Fig.
12, and orange double arrows represent the electric dipoles be-
tween them. Notice that the ↑↑↓↓ spin order along the chain
can be seen as Néel configurations along each leg. The mag-
netic soliton reverses the spins in the lower leg (indicated as a
twist in the dotted lines), leaving unchanged those in the up-
per leg. The lattice dimerization brings closer the antiparal-
lel nearest neighbor spins, enlarging their exchange couplings
(thick solid rungs); thus the magnetic twist produces differ-
ent dimerization domains with ferrielectric polarizations in
opposite directions.

slightly narrower than those in Fig. 11, for the isotropic
case γ = 1. The more anisotropic the interaction, we
have checked numerically that the soliton regions gets
even narrower. But they do not evolve into sharp do-
main walls, at least for anisotropies as large as γ = 0.01
(∆ = 100). It is remarkable that quantum fluctuations
play a significant role even in the quasi-classical limit.

The presence of topological solitons, instead of sharp
domain walls, is decisive in the formation of equal length
↑↑↓↓ domains: it is the repulsive residual interaction be-
tween solitons what keeps them separated in the finite
size chain.

C. Polarization jump driven by magnetic field

At zero electric field, both in the isotropic and the
anisotropic cases, the solitonic magnetic excitations sep-
arate ferrielectric domains with opposite polarization.
This happens not only for Sztotal = 1 but for higher exci-
tations described by pairs of solitons. As a consequence,
having these domains the same length, the total polar-
ization of the system drops nearly to zero. That is, the
spontaneous electric polarization observed at zero mag-
netization is switched off by means of the applied mag-
netic field [19]. This happens either if the exit from the
M = 0 plateau is smooth (that is, soliton pairs appear
continuously with the magnetic field) or in the case of a
metamagnetic jump in which soliton pairs proliferate.

To make apparent the relation between the polariza-
tion jump and the onset of magnetization, we plot to-
gether in Fig. 14 the polarization and the low magneti-
zation curves in a magnetic field, both for the isotropic

(upper panel) and the anisotropic (lower panel) cases dis-
cussed along this work. The spontaneous polarization
(red curves, scale in right axis) is computed from the
lattice distortions in an antiferroelectric background, ac-
cording to Eq. 6. In both cases it suddenly drops several
orders of magnitude. The magnetization is the same as
in Fig. 5, with the addition of an infinite size extrapo-
lation (blue curves, scale in left axis). The infinite size
extrapolation of the polarization at the lowest magneti-
zation levels, shown in the insets, clearly proves that the
polarization switch off is a bulk magnetoelectric effect
occurring at the onset of magnetization. Beyond the ex-

FIG. 14: Polarization curves (red solid lines, scale in the
right axis in units of p0) in an external magnetic field for the
isotropic γ = 1 and the anisotropic γ = 1/8 models (J1 = 0.5,
J2 = 0.4, Je = 0.2, α = β = 0.2, in the presence of an antifer-
roelectric dipolar background). Magnetization curves in the
low M region (extrapolated as blue solid lines, scale in the
left axis) are also plotted for comparison. In both cases the
system supports a finite spontaneous polarization at low mag-
netic fields, while Sz

total = 0, but a sudden drop is observed
once the system exits the M = 0 magnetic plateau. The po-
larization curves follow from finite size results and infinite size
extrapolation. Insets: finite size scaling for the polarizations
obtained for Sz

total = 0, 1, 2 shows almost no size dependence.

cited Sztotal = 1 and Sztotal = 2 states, with polarization
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shown in the insets, we have checked that the further
increase of the magnetization introduces extra pairs of
solitons. These appear uniformly spread along the chain,
as it also occurs in the magnetoelastic case [80], sepa-
rating different dimerization domains and producing the
drop of the electric polarization observed in Fig. 14 for
arbitrary non vanishing magnetization.

Such magnetically driven polarization jumps are a
source of intrigue in many multiferroic materials. For
instance, Lu2MnCoO6 [16] and Er2CoMnO6 [17] show a
polarization jump when exiting the observed M = 0 mag-
netization plateau. Closely related are the polarization
jumps observed in R2V2O7 (R = Ni, Co) when entering
and exiting the M = 1/2 magnetization plateau [81]. We
expect that the present results could help in fitting actual
parameters in these materials and explain the observed
jumps.

D. Polarization flip controlled by very low electric
fields

Measures of spontaneous polarization are usually made
with the help of a tiny poling field, to lift the degener-
acy between the possible spontaneous orientations. Once
done, a coercive field much larger than the poling one is
required to flip the bulk polarization.

In the present model it is also interesting to discuss
the effect of a poling electric field when the polarization
has been switched off by a magnetic field larger than the
critical one, strong enough to magnetize and depolarize
the system by the creation of pairs of different ferrielec-
tric domains. It happens that the domains with polar-
ization pointing along the poling field are energetically
favored, hence pushing apart the soliton walls at their
ends to lower the total system energy. As the displace-
ment of solitonic domain boundaries in large systems has
very small energy cost, a high electric susceptibility is
expected in this regime. In consequence, the polariza-
tion cancellation is not perfect and the system exhibits
a small net polarization in the direction of the electric
field. From this situation, as soon as the magnetic field
is turned off, it is expected that the orientation of the
much larger recovered spontaneous polarization follows
the preferred orientation set by the poling field in the
magnetized regime.

One can think of designing a multiferroic memory stor-
age in which information, in the form of a polarized spot,
is controlled by a low electric field signal with the help of
a brief but strong magnetic blast: a magnetic field, carry-
ing no information, would erase the previously ”written”
polarization, which is then ”rewritten” in the desired (up
or down) orientation by the simultaneous presence of a
poling low electric field (low voltage bias). The proce-
dure is sketched in Fig. 15. Such a device would show
a giant electric response, and could be the basis for an
efficient memory writing/reading device.

In order to support these considerations we show in

FIG. 15: A magnetic field step, in any orientation and strong
enough to magnetize the system, produces electric depolar-
ization. In combination with a tiny poling field signal, it can
be used to reverse the spontaneous polarization P. This could
be the basis for storing information in a dipolar memory bit.

Fig. 16 how the equal length domains already seen in
Figs. 11 and 12 (shaded symbols here) are modified in the
presence of a small electric field ε = 0.01: the central do-
main, with polarization along the field, indeed gets wider.
We note that in the computationally accessible finite size
chains the effect is more pronounced in the anisotropic
case, where the solitons are narrower and their residual
repulsion is less manifest.

V. SUMMARY AND PERSPECTIVES

In the present work we have extended and improved a
microscopic mechanism of magnetoelectric coupling me-
diated by lattice distortions, previously introduced by
the authors in [19], into a realistic model for type II
collinear multiferroic materials. Essential ingredients to
match with experimental observations are the easy axis
anisotropy ∆ > 1 (expressed for convenience as γ < 1)
favoring collinearity, the magnetic frustration J2/J1 lead-
ing to the “uudd” spin ground state and the Coulomb-like
long range dipole-dipole interaction establishing the anti-
ferroelectric order, all of these in the absence of external
fields. Motivated by the variety of known multiferroic
materials, which includes the SU(2) symmetric as well
as strongly easy axis anisotropic spin interactions, we
have explored the proposed model from the Heisenberg
isotropic regime ∆ = 1 up to Ising-like anisotropic cases
∆� 1.

The microscopic mechanism may be described by a
spin-dipole-Peierls Hamiltonian, where the indirect mag-
netoelectric coupling arises from a combination of a spin-
Peierls like magnetoelectric coupling, which is known to
lead to an elastic dimerization instability, and a pan-
tograph mechanism that relates the strength of electric
dipolar moments to lattice deformations. Both mecha-
nisms are ubiquitous in multiferroic materials, specially
when competing magnetic interactions frustrate an an-
tiferromagnetic Néel configuration. Magnetic and elec-
tric degrees of freedom can thus either cooperate or com-
pete in provoking lattice instabilities, in a precise way
expressed in the selfconsistent key Eqs. 11.

We have argued theoretically and proven numerically,
by extensive DMRG computations, that in a wide param-
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FIG. 16: A small electric field provokes the displacement of
the solitons in the Sz = 1 configuration, enlarging the domain
with electric polarization along the field. The solid symbols
correspond to an electric field ε = 0.01, with the rest of the
parameters as in Figs. 11, 12 (repeated here in shaded symbols
for comparison) . The same effect is observed both in the
isotropic and the anisotropic case.

eter region, starting at the isotropic SU(2) Heisenberg
model and going up to an extreme anisotropic ANNNI
model, the system has a gapped magnetic ground state
associated to dimerized lattice distortions. Main conse-
quences are the zero magnetization plateaus in the mag-
netization curves and the emergence of an spontaneous
ferrielectric bulk polarization (an antiferroelectric with
a remanent polarization), with two possible degenerate
orientations (Z2 symmetry).

In the presence of an external magnetic field exceeding
a critical value, related to the spin gap, low magnetiza-
tion excitations develop as pairs of topological solitons
that separate different dimerized domains carrying op-
posite ferrielectric polarizations. A lattice of equidistant
solitons grows along the system, producing a sharp switch
off in the bulk polarization. This mechanism, robust due
to its topological character, could be at the root of the
bulk polarization jumps observed in many different mul-
tiferroic materials. We expect that the present paradigm

might be fitted to actual experimental parameters and be
identified as one of the microscopic mechanisms behind
magnetically induced polarization jumps.

We have also found a novel polarization state at inter-
mediate electric fields with ⇑⇑⇓ periodicity, exclusively
due to the long range character of the dipolar interacions
frustrating the antiferroelectric order. Such a period
three dipolar configuration, combined with the M = 1/3
magnetic plateau state found at intermediate magnetic
fields, could give rise to interesting magnetoelectric cross
effects. This will be studied elsewhere.

Regarding technological interest, a material described
by our model is classified as a ferrielectric. It has a spon-
taneous Z2 polarization due to dipolar imbalance that
can be easily controlled by applied fields. In fact the
presence of a small poling electric field gives rise to a
relative displacement of the solitonic domain walls, mak-
ing the polarization of the magnetized states not to be
completely turned off. Then a demagnetization would
select a preferred orientation for the spontaneous po-
larization. This property could be used, for instance,
to engineer polarized memory storage devices control-
lable by very low electric signals. From a different point
of view, the present work could guide the design and
manufacture of composite artificial multiferroic systems,
such as multilayers (see for instance [82]) where the me-
chanical strain transfer couples ferroelectricity and ferro-
magnetism, or even regularly nano-patterned arrays (see
for instance [83]) where flexoelectricity couples magne-
tostrictive strain gradients with electric polarization, in
different materials. The technological control of multifer-
roicity in these multiphase composite systems is rapidly
progressing and could in a future be the alternative to
chemically synthesized multiferroic compounds. We hope
that the understanding of the mechanisms of multifer-
roicity at the atomic scale will shed light on the effective
magnetoelectric coupling mechanisms taking place at the
nanometer scale.

The pantograph mechanism, which is the key ingredi-
ent in our proposal to generate the magnetoelectric cou-
pling, encodes the relation between the dipolar moments
and their lattice environment and is present as well in
two or three dimensional systems. Appropriate exten-
sions of the present model can be written taking into
account detailed crystallographic data. In these higher
dimensional settings the isolated solitons could become
extended walls; the predicted magnetically driven polar-
ization switch off will probably survive to these general-
izations.
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Andújar, J. Mira, N. Biskup, M.A. Señaŕıs-Rodŕıguez, and
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