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We apply the Green’s function coupled cluster singles and doubles (GFCCSD) impurity solver to
realistic impurity problems arising for strongly correlated solids within the self-energy embedding
theory (SEET) framework. We describe the details of our GFCC solver implementation, investigate
its performance, and highlight potential advantages and problems on examples of impurities created
during the self-consistent SEET for antiferromagnetic MnO and paramagnetic StMnOsz. GFCCSD
provides satisfactory descriptions for weakly and moderately correlated impurities with sizes that
are intractable by existing accurate impurity solvers such as exact diagonalization (ED). However,
our data also shows that when correlations become strong, the singles and doubles approximation
used in GFCC could lead to instabilities in searching for the particle number present in impu-
rity problems. These instabilities appear especially severe when the impurity size gets larger and
multiple degenerate orbitals with strong correlations are present. We conclude that to fully check
the reliability of GFCCSD results and use them in fully ab initio calculations in the absence of

experiments, a verification from a GFCC solver with higher order excitations is necessary.

I. INTRODUCTION

At present embedding methods such as dynamical
mean field theory (DMFT) [1], self-energy embedding
theory (SEET) [2-5], or density matrix embedding theory
(DMET) [6, 7] for treating realistic problems reached a
significant sophistication and can be routinely applied to
perform calculations for systems with relatively compli-
cated electronic structure such as transition metal oxides
(e.g. NiO, MnO solids) [5, 8-13] or oxide perovskites
(e.g. SrVOjz, SrMnOgj, and many others) [14-20]. In
these systems, in order to reach a good comparison with
experiments, it is possible to embed only a small sub-
set of orbitals present in the entire unit cell. Most fre-
quently only the d-orbitals of transition metal atoms are
embedded as impurity problems containing the t5, and
eg orbitals. Such calculations are commonly performed
using the LDA+DMFT formalism, where the two-body
interactions describing the impurity orbitals can either
be chosen to recover the experimental data or come from
earlier calculations such as constrained LDA (cLDA) [21].
While LDA+DMFT has an enormous computational ad-
vantage of being relatively inexpensive to calculate, in
addition to a practical advantage of frequently using ad-
justable parameters, it suffers from some degree of double
counting of electron correlation due to a lack of an ex-
plicit diagrammatic form of the DFT functional. [16].

In recent years, the rise of fully ab initio Green’s func-
tion embedding methods such as GW+(E)DMFT [22]
and SEET opened a possibility of performing calcula-
tions even in the absence of any experimental data with-
out any adjustable parameters or double counting correc-
tions. However, if a fully ab initio calculation is required
that yields a quantitative agreement with experimental
data multiple challenges have to be fullfilled. First, a
diagrammatic method capable of describing weak corre-

lation has to be chosen such that it is possible to re-
move the double counting correction rigorously. Second,
a method capable of solving an impurity problem has to
be chosen. Ideally, such a method, called an impurity
solver, should be systematically improvable and capable
of solving a large impurity containing a large number of
orbitals. These requirements are necessary to design a se-
ries of checks that allow us to confirm the validity of the
results obtained even in the absence of experimental data.
Moreover, a robust solver capable of treating a large or-
bital spaces certainly would deliver quantitative results
and enable many new applications to compounds where
both transition metal d-orbitals as well as p-orbitals of
oxygen or sulphur contain a significant amount of strong
correlation and should be treated within a single impu-
rity.

Recently, the coupled cluster (CC) method [23] at the
level of singles and doubles (CCSD) was adapted to work
as a solver in conjunction with DMFT [12, 13, 25] and
SEET [24] schemes. We will call this solver a Green’s
function coupled cluster (GFCC) solver. GFCC at the
CCSD level (GFCCSD) is capable of treating impuri-
ties with even a couple hundred of orbitals. While the
CC method originated in the nuclear physics community,
early on it was adapted by quantum chemists where it
was primarily used to treat weakly correlated molecu-
lar systems. The early tests of the CC solver were per-
formed on the impurities coming from the 1D and 2D
Hubbard models [24, 25], small molecular systems [24]
and limited solids [13]. These tests demonstrated that
the GFCCSD solver can be used in weakly to moderately
strongly correlated situations. These results were some-
what surprising since CCSD, in a molecular setting, is
commonly thought as being suitable only for weakly cor-
related problems. The success of GFCCSD for impurity
problems in the 1D and 2D Hubbard case can be ratio-
nalized by noticing that CCSD is exact for a two-electron



system. Consequently, for smaller impurity problems
without a significant degeneracy near the Fermi level, one
can expect very accurate results since it is likely that very
few orbitals have significant partial occupations. Both in
cases of the 1D and 2D Hubbard model, GFCCSD was
very successful where only two impurity orbitals were sig-
nificantly partially occupied. Consequently, for realistic
problems, it is natural to expect that the performance of
the GFCCSD impurity solver may somewhat worsen.

Our motivation in this paper is to examine the results
of the GFCCSD solver in detail for a set of impurities
that are obtained when treating realistic problems such
as MnO and SrMnOg solids. We choose these systems
since the MnO solid is a prototypical antiferromagnetic
(AFM) insulator, while the paramagnetic (PM) SrMnOj3
solid is metallic at the GW level and only higher post-
GW correlations are opening its gap and recovering its in-
sulating character observed experimentally [20]. We be-
lieve that such realistic compounds are more illustrative
of the GFCCSD performance than the test performed on
sparse model Hamiltonians. Subsequently, we examine
how the results obtained from the GFCCSD treatment
of these realistic impurity problems are influencing the
convergence of the self-consistency loop and spectra ob-
tained in the SEET procedure. We focus our discussion
of the performance of the GFCCSD solver on analyzing
steps that are necessary for its execution and on analyz-
ing its advantages and drawbacks. Moreover, any solver
requires a prescription of how to use it in order to obtain
a controlled and if possible an improvable set of results.
We focus our discussion on establishing such a procedure
and we list major requirements.

This paper is organized as follows. In Sec. II, we start
our discussion from briefly listing the requirements for
the SEET self-consistency and an in detail description of
the GFCC solver when used for the treatment of the im-
purity problem. Here, we particularly focus our consider-
ations on explaining finding a proper number of particles
present in the impurity problem when using the GFCC
solver. In Sec. III, we compare the self-energies obtained
from ED and GFCCSD solvers and discuss the final re-
sulting spectral functions for MnO and SrMnOg solids.
Again, we pay a considerable attention to explaining the
intricacies of the CC type solvers and we discuss possible
difficulties resulting from their use. Finally, in Sec. IV, we
present an extensive discussion of the GFCCSD accuracy
and we make recommendations concerning its controlled
and systematic use for real material calculations.

II. METHODS

We explore the capability of the GFCCSD impurity
solver [24] (see Sec. ITA for details) for ab initio im-
purity problems constructed during an embedding pro-
cedure for AFM MnO and PM SrMnOsj; solids. The
impurity problems are defined during the execution of
SEET [5, 20]. Here, SEET employs the GW approxima-

tion as the weakly correlated method and the GFCCSD
solver as the impurity solver for strongly correlated or-
bitals. We shall call this variant of the SEET exe-
cution SEET(GW /CCSD). In order to analyze results
from the GFCCSD solver, SEET with the exact diag-
onalization (ED) [26, 27] impurity solver, referred as
SEET(GW /ED), is performed whenever the impurity
size is possible to be handled by ED.

SEET by constructions requires no adjustable param-
eters, a projection to Wannier orbitals or downfolding to
a low-energy effective model, and is free from the dou-
ble counting correction error present in the density func-
tional theory (DFT) [28] plus DMFT [16]. Instead, in
SEET, the ab initio impurity Hamiltonian is constructed
using bare interactions and all the non-local screening
effects are treated at the GW level in the self-energy
embedding procedure. When a full self-consistency is
achieved, SEET by construction yields a conserving ap-
proximation to the Luttinger-Ward functional ® [29-31]
which is thermodynamically consistent. However, since
GFCCSD itself is not a conserving approximation [24],
SEET(GW /CCSD) is not a conserving approximation
either. The details of the SEET implementation used
here can be found in Ref. [5, 20].

For computational convenience, the outer-loop self-
consistency in SEET is omitted for the AFM MnO
solid [5]. The main effect of the outer-loop self-
consistency is to relax weakly correlated orbitals in
the presence of strong correlation coming from impu-
rity orbitals. Therefore, the omission of the outer-loop
self-consistency is justified when most correlations in a
solid are qualitatively captured by the weakly correlated
method, e.g. self-consistent GW (scGW) in the present
work. As we observed in Ref. [5], local self-energy correc-
tions from SEET to correlated orbital subspaces of MnO
are responsible for quantitative renormalizations between
quasiparticle peaks and the satellite peaks. However, this
is not the case for the PM SrMnOg solid, where scGW
predicts a qualitatively incorrect metallic state [20]. Con-
sequently, for the PM SrMnOg solid, we perform the
outer loop self-consistency and update the weakly cor-
related orbital description. The workflows for both
SEET with and without the outer-loop self-consistency
are shown in Fig. 1.

A. Coupled Cluster Green’s Function Solver

The GFCCSD solver consists of two parts, as has been
shown in Fig. 2. The specific details of these two parts
are given below.

1. Particle sector search

In order to define the impurity problem completely,
besides the Hamiltonian matrix elements, we need to
know the number of particles present for a given impurity



scG W as initial guess:
(G = (GO = Fipyaon (5 )
(ESEET)k _ (EGVI/ )k _ ]_-GVV[(GCW)k]

SEET without outer-loop
self-consistency

SEET with outer-loop
self-consistency
single iteration of GW
with input as GSFFT,
ie. BV = Fow [GSPET]

G = Fpyeon (2]

(E(}w’)kﬁ 7 (GSEET)k
single iteration of inner

\ loop for impurity
problem

Z

(RCW)k i fixed

Self-consistent inner
loop for impurity
problem

(GSEET)k (ESEET)k

Figure 1. Workflows of SEET with and without the outer-
loop self-consistency. The details of the inner loop are shown
in Fig. 2. Fpyson represents the Dyson equation solver which
is a functional of self-energy ¥ and Fgw is the GW solver
which is a functional of Green’s function G. Details of Fpyson
and Fgw can be found in Ref. [5].

Hamiltonian. While the knowledge of the Hamiltonian of
the full problem allows us to define the impurity Hamilto-
nian, from the knowledge of the number of particles in the
full problem we cannot immediately and a priori define
how many particles are present in the impurity problem.
Therefore for the impurity problem, we scan through all
possible particle numbers to determine which one yields
the minimum energy while keeping the chemical poten-
tial fixed at the value found for the whole problem. Note
that in the current work although GW is conducted at
a finite temperature, we consider the zero-temperature
limit for the GFCCSD solver where only particle sectors
with the lowest energy are used in the Green’s function
construction. It turns out to be a reasonable approxi-
mation since the Boltzmann factors corresponding to the
first excited states are often found to be negligible in our
calculations.

This search over different particle sectors is not only
limited to closed shell particle sectors (containing even
number of particles) but also includes all possible open-
shell particle distributions (containing odd number of
particles). Frequently, it is not straightforward to get
unrestricted coupled cluster (UCC) solutions for each of
the particle sectors. In those cases, the underlying un-
restricted Hartree-Fock (UHF) method before the actual
UCC step is unstable, and often converges to different lo-
cal minima. To alleviate this problem we first carry out
DIIS-based UHF steps and estimate the stability of the
solution [32] after a certain number of iterations. If the
solution vector is unstable, we rotate it to make it stable,
and feed it to a Newton solver for final convergence. We
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Figure 2. A schematic view of the inner loop and GFCCSD
solver. Particle sector search and GFCCSD construction sec-
tions pertain to the solver, and the rest of the steps are general
to the SEET scheme.

must mention that converging to the desired root is quite
essential, otherwise the ensuing SEET iterations show ar-
tifacts which are hard to control. Occasionally to facil-
itate the correct particle sector search, we use a priori
knowledge about the local spin moment of the impurity
problem, which can restricts the search over sectors with
different particle numbers. Examples of such restricted
search will be discussed in Sec. III.

2. GFCCSD construction

CC is a many-body theory based on the exponen-
tial parametrization of the ket wave function |¥) =
eT|®) where |®) is the reference mean-field wavefunc-
tion (|®ynr) in our cases). The bra wave function in CC
is not an adjoint of the ket, because e’ is not a unitary
operator. The choice of the bra state is non-unique in
CC, where we define (V| = (®|(1 + A)e~T through the
de-excitation operator A, thereby the bra and ket states
are biorthonormal. A CC wave function is mapped to a
corresponding Green’s function [24, 25, 33, 34] by using
the Lehmann representation
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where, @, = e~ Tayel, ah = ~Tale” with af, (a,) being
creation (annihilation) operators to the single-particle
state p, and H = e THeT — Egr. Eg4 is the UCCSD
ground state energy. CC is equivalent to ED if no trun-
cation is made in the rank of the cluster operator T.
However, in a practical implementation, we approximate

T as only singles and doubles, that is T = Ty + Ts, which



leads to a method that scales as n%, where n is the number
of orbitals. In addition to solving the ground state prob-
lem, GFCCSD requires an additional step where we tridi-
agonalize H in the space of (N+1) and (N-1) electronic
wave functions, using the Lanczos method. This partic-
ular step scales as n° for each of the elements GquCSD ,
thus keeps the computational cost low. Finally, the in-
version of Eq. 1 is carried out using a continued fraction
formula. Consequently, the computational scaling in our
approach is independent of the size of frequency grid.

Since GFCCSD is not written as a diagrammatic ex-
pansion of the Luttinger-Ward functional ®, GFCCSD
is not a conserving approximation and therefore a non-
causal self-energy is possible. Explicitly, it means that
the imaginary part of the diagonal elements of the
GFCCSD self-energy does not need to remain strictly
negative.

Note that CC calculations are usually carried out in
a one-particle basis that may come from either UHF or
unrestricted DFT calculations. Therefore GVCSP that
we first construct is in that basis. In a later step, we
transform it from a given one-particle basis to the original
impurity basis.

III. RESULTS
A. Computational details

Simulations were done at temperature T ~ 451 K
(8 = 700 Ha=1) for the MnO solid and T' ~ 1053 K
(B = 300 Ha™') for the SrMnOj3 solid. We used the
gth-dzvp-molopt-sr basis [35] with gth-pbe pseudopoten-
tial [36] for all atoms in both the MnO and the SrMnOj3
solids. In our GW implementation [5], density fitting
for four-index Coulomb integrals [37-39] is utilized for
the computational efficiency and memory reduction. Ex-
plicitly, the four-fermion Coulomb integrals were decom-
posed into a combination of even-tempered Gaussians for
the Strontium atom and def2-sup-ri [40] for all the other
atoms. The Coulomb integrals and non-interacting ma-
trix elements were prepared by the open source PySCF [41]
package.

B. MnO solid

MnO is one of the prototypical strongly correlated sys-
tems with AFM ordering (The Neél temperature ~ 120
K [43]). Nominally, it has five singly occupied electrons
in the Mn 3d shell. Due to its simple rocksalt structure,
it has been an ideal testbed for strongly correlated meth-
ods. In order to simulate the AFM ordering, we double
the primitive cell along [111] direction. The correspond-
ing crystal supercell contains two manganese (Mn) and
two oxygen (O) atoms in a rhombohedral unit cell. Due
to its charge-transfer nature, we consider not only Mn 3d
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Figure 3. The impurity self-energy 3 comparison between
ED and GFCCSD on imaginary frequency axis for the MnO
crystal. GW label is used to denote the double counting con-
tribution coming from performing one iteration of GW in the
impurity orbital subset.
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Figure 4. Orbital-resolved local DOS for the MnO crystal from SEET(GW /CCSD) and SEET(GW /ED). The impurity
choices from the first to second row correspond to (A) and (B) in Table I. Solid lines in both right and left panels are
from SEET(GW /CCSD) and SEET(GW /ED) data, respectively. Dashed lines are photoemission data from Ref. [42]. The
dotted lines correspond to the orbitally resolved scGW calculation.

but also O 2p orbitals in our choices of impurity prob-
lems. Correlations from different orbitals around Fermi
surface (Er) are disentangled by splitting Mn 3d and O
2p orbitals into several disjoint smaller impurity prob-
lems.

1. Comparison of impurity self-energies using ED and
CcCSD

To assess how well GFCCSD works as a solver for re-
alistic impurity problems created by splitting Mn 3d and
O 2p orbitals into several smaller impurity problems, we
compared the GFCCSD self-energies to the ones obtained
from ED. These comparisons are important since they al-
low us to assess in a realistic context what to expect from
GFCCSD.

In Fig. 3, we plot the impurity self-energies on the Mat-
subara axis from ED and GFCCSD for MnO in the AFM
phase. The number of bath orbitals are kept the same
for the two solvers to avoid any discrepancy due to the
bath discretization. In order to eliminate any cumula-
tion or cancellation of errors due to the self-consistency
procedure, the data is extracted from the first itera-
tion of SEET. In addition to self-energies from ED and
GFCCSD, we also plot double counting contributions ex-

tracted from a single iteration of GW within the impurity
orbitals and denoted in Fig. 3 as GW. Since the impurity
self-energies contain both static and dynamic parts, the
high frequency limit of the real part of the self-energy
decays to the static part of the self-energy.

From the (a) and (b) panels of Fig. 3, we observe that
for both Mn t, and e, orbitals, GFCCSD reproduces
the ED self-energy remarkably well in both low and high
frequency regimes.

The disagreement between GFCCSD and ED self-
energies becomes clear when a non-perturbative treat-
ment of O 2p is included, see Fig. 3 panel (c). Although
the static part of the self-energy from GFCCSD and ED
are close to each other (see the inset in Fig. 3 (c)), the dy-
namic counterpart is quite different for both the real and
imaginary components. In the view of many-body the-
ory, this implies that for the O 2p impurity, the GFCCSD
approximation is only capturing well first-order Feynman
diagrams. To recover the dynamic part of the O 2p impu-
rity higher orders of self-energy diagrams are necessary
and these require higher excitations in the CC theory.

The manifestation of the GFCCSD’s difficulty in han-
dling the O 2p orbital impurities can be already observed
at an earlier stage during the particle sector search where
UCCSD is used to find an optimal number of particles
for the impurity. In order to stabilize this search and



the overall calculation, we constrained the particle sec-
tors to the states that contain the same number of o and
B electrons. This constraint is determined and justified
by the exact particle sectors found by ED. The difficul-
ties and failure of UCCSD in the particle-sector search
is already a sign of a problematic nature of GFCCSD for
the impurity made out of O 2p orbitals.

Through comparisons of the impurity self-energies
from GFCCSD, ED and the GW double counting coun-
terpart, we found the O 2p orbitals to be the most
strongly correlated ones while the Mn 3d shell is merely
moderately correlated. These observations suggest that
conventional impurity choices for MnO with the Mn 3d
shell only are insufficient. Note that our impurity or-
bitals are symmetrized atomic orbitals (SAO) [44] based
on our choices of Bloch Gaussian basis which can only
be viewed as approximations to the true physical atomic
orbitals.

Name ‘ Imp ‘ Description
A 2 Mn t24; Mn e4 for a single Mn atom
B 1 O 2p
C 1 all 3d orbitals for both Mn atoms in the
unit cell

Table I. Different choices of impurities for the MnO solid. Imp
denotes the number of distinct, disjoint impurity problems.

2. Local density of states

Here, we consider the effect of using the GFCCSD
solver on the local density of states obtained in the
SEET(GW /CCSD) procedure. Note that to assess the
accuracy of this method, we compare the obtained local
density of states to the one from the SEET(GW /ED)
data. In Fig. 4, we display the orbital-resolved lo-
cal density of states (DOS) of the MnO solid from
SEET(GW /CCSD) and SEET(GW /ED) for different
impurity setups (for details see Table. I), analytically
continued from the imaginary to the real frequency axis
by Maxent [45, 46]. The x-ray photoemission (XPS)
and bremsstrahlung isochromat spectroscopy (BIS) data
are also included and shown for comparison [42]. Based
on our previous work on MnO [5], the outer-loop self-
consistency of SEET is not performed since we observed
that it did not change the results. In the computational
supercell there are two identical MnO units with opposite
local moments on Mn atoms. The impurities in setups
A and B created for these two primitive units contained
in the supercell are disjoined. Only one of such disjoined
impurities has to be calculated, the other one is recov-
ered considering symmetry between spins. This means
that the many-body correlation effects that describe in-
teractions between these impurities in the supercell are
described at the GW level while the impurity orbitals

themselves are treated by a higher level methods (here
either ED or GFCCSD).

Since for impurity choices denoted as setup A with
two disjoint impurities to, and e, on each of the Mn
atoms no major deviations in Mn e, and t3, were ob-
served in the first iteration (see panel (a) and (b) of
Fig. 3) the self-consistent DOS from SEET(GW /CCSD)
and SEET(GW /ED) are almost indistinguishable. As
shown in the top row of Fig. 4, GFCCSD successfully
captures the inner local correlations within the Mn 3d
shell. Here, the presence of correlations beyond GW is
responsible for renormalizing the valence Mn t5, and e,
bands and pushing the conduction Mn #5, and e, bands
a bit further away from Ep.

Next, as illustrated in the bottom row of Fig. 4,
we included a non-perturbative treatment of O 2p or-
bitals (setup B). Unlike the case in impurity setup A,
the DOS from SEET(GW /CCSD) is dramatically dif-
ferent from the DOS calculated using SEET(GW /ED).
Even though the orbital ordering remains mostly un-
changed, significantly different chemical potential shifts
are found in SEET(GW /ED) and SEET(GW /CCSD).
In SEET(GW /CCSD), the description of many-body ef-
fects present in the impurity orbitals at the GFCCSD
level is responsible for the enhancement of the satellite
peak for both O 2p and Mn e, in spin-major channel.

As we show in Sec. IIIB 1, O p orbitals show stronger
correlation effects and can not be fully resolved by CCSD
level of GFCC. The corresponding error could later cu-
mulate during the self-consistency of SEET(GW /CCSD)
and make the final results uncontrolable.
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Figure 5. Orbital-resolved local DOS of MnO from

SEET(GW /CCSD) for impurity setup C (see Table. I). Solid
lines are from SEET(GW /CCSD) data, dashed line are pho-
toemission data from ref [42] and the dotted lines correspond
to the orbitally resolved scGW calculation.

The strength of GFCCSD lies in the ability to treat
larger impurity problems than the ones treatable by ED.
In setup C, we combine the entire 3d shell from both Mn
atoms into one big impurity. The size of this impurity
is far beyond the capability of ED or any other state-
of-art impurity solver such as continuous-time quantum
Monte Carlo (CT-QMC) [47]. The corresponding DOS



(Fig. 5), however, shows no qualitative difference com-
pared to the DOS from the impurity setup A. Only a
slightly more renormalization to the satellite peaks of
Mn e4 in the spin-major channel and O 2p is observed.
This implies that the inter-correlations between Mn #a
and e, and inter-correlations between two Mn sites are
already well-captured by scGW and the corrections from
the GFCCSD are not changing the spectrum.

Considering the fact that O 2p orbitals seem to be the
most correlated ones in MnO, it is temping to combine
O 2p orbitals with Mn 3d into one big impurity. Un-
fortunately, although it is computationally feasible, we
found that SEET(GW /CCSD) fails to converge in a self-
consistent manner for such a challenging impurity prob-
lem. This may be due to either (i) the instability of the
particle sector search, and/or (ii) artificial spin orbital
symmetry breaking present in UCCSD. Both (i) and (ii)
are consequences of the non-exactness of UCCSD and
neither of them appears in SEET(GW /ED).

Recent studies [12, 13] have also utilized GFCCSD as
the impurity solver in the DMFT-type embedding scheme
where realistic impurity problems are constructed based
on HF [12] and GoW, [13]. In these studies, the strength
of GFCCSD is manifested by its ability to deal with an
impurity problems which encompasses all the orbitals in-
side a unit cell. In our work, we take a somewhat differ-
ent approach and we choose to include in the impurity
problem only the orbitals that are significantly correlated
leading to much smaller impurity problems. While many
steps in SEET(GW /CCSD) and full cell GW+DMFT
are similar, there is a number of differences that should be
considered when comparing the results from these meth-
ods.

Intrinsic differences between SEET(GW /CCSD) and
full cell GW+DMFT arise due to (i) particle number
present in the impurities and/or (ii) a different self-
consistency condition. In the search for a particle num-
ber present in the impurity, in SEET(GW /CCSD), we
use UCCSD while in GW+DMFT reported in Ref. [12]
the particle number presented in the impurity is deter-
mined by HF with fixed chemical potential. This is equiv-
alent to using HF to find the ground state among the en-
tire Fock space. We found, especially for impurities with
strong correlations, that such a procedure could favor a
choice of incorrect sectors and therefore prevents the self-
consistency loop from converging (see Sec. III C and Ta-
ble. IV for more details). Instead, in SEET(GW /CCSD)
the particle searching procedure based on UCCSD turns
out to be more stable, although we still expect it to fail
once correlations become too strong and the UCCSD ap-
proximation breaks down (see Sec. III C and Table. III).

Note that the problems arising during the particle
number search in the impurity are universal and must
be present for all the approximate wavefunction-based
impurity solvers. These problems appear since differ-
ent approximate methods can yield different orderings
of ground state energies coming from different particle
sectors.

As for the case (ii), the self-consistent condition is dif-
ferent in SEET when compared to the DMFT-type em-
bedding frameworks. In SEET, the non-local GW self-
energy to the local correlated orbital is explicitly included
in the SEET self-consistency condition (see Eqn. 25 in
Ref. [5]) and is not included in the hybridization function,
in contrast to the procedure done in Refs. [12, 13].

In addition, a further difference present in the full cell
GW+DMFT implementation [13] relies on the use of one-
shot GoWj rather than scGW (in our case). Empirically
it is believed that GoWj generally outperforms scGW
due to cancellation of errors [48, 49] while on the other
hand severe dependency on the mean-field reference may
occur especially when electronic correlations are strong
which makes the procedure less ab initio. Lastly, we
want to emphasize that the choices of orthogonal ba-
sis for the impurity problem are also different in SEET
and the full cell GW+DMFT. The orthogonal orbitals
chosen for embedding in Refs. [12, 13] are crystalline in-
trinsic atomic orbitals (IAOs) for the valence region and
projected atomic orbitals (PAOs) [50] for the rest, while
in SEET we use SAO basis [44]. Consequently, a signif-
icantly different impurity Hamiltonian is obtained even
though bare Coulomb interactions are used in both SEET
and the full cell GW+DMFT implementation [13].

C. SrMnOj3;

SrMnOQOs is reported to be a cubic perovskite with G-
type AFM ordering at Mn atoms with Neél temperature
~ 233-260 K [52, 53]. Unlike MnO, it has nominally
three singly occupied electrons on Mn ¢y, orbitals. Sev-
eral theoretical studies for AFM phase of SrMnQO3 were
performed in Refs. [16, 19, 54]. However, photoemis-
sion experiments [51, 55-57] are usually conducted at
room temperature corresponding to the PM phase. In
this work, we focus on the high-temperature PM insulat-
ing phase where scGW qualitatively predicts an incorrect
metallic phase [20]. In addition, both LDA+DMFT [16—-
18] and more sophisticated multitier GW+EDMFT [19]
have been reported to fail in predicting an insulating
PM phase. Recently, SEET(GW /ED) with an outer-
loop self-consistency [20] was used to successfully open
a gap for PM SrMnO3 by adding on Mn 3d orbitals lo-
cal self-energy corrections beyond the ones obtained in
the scGW. This is why we choose SrMnQOj3 as an ideal
strongly correlated PM insulator test case on which we
will investigate GFCCSD.

1. Comparison of impurity self-energies using ED and
CcCSD

In Fig. 6, we plot the Mn ¢y, ¢4, and O py, ps impurity
self-energy comparisons between the GFCCSD and ED
impurity solvers, along with the double-counting correc-
tion coming from GW restricted within the impurity sub-
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Figure 6. The impurity self-energy ¥ comparison between ED and GFCCSD solvers on the imaginary frequency axis for the
SrMnOs crystal. GW label is used to denote the double counting contribution coming from performing one iteration of GW

in the impurity orbital subset.

space, in the first iteration of SEET. Same as for MnO,
we use the same number of bath orbitals in GFCCSD
and ED to eliminate any discrepancies due to different
bath discretizations.

For both Mn ty, and e, orbitals, GFCCSD reaches
a qualitative agreement with ED for both the real and
imaginary parts of the self-energy even though a tiny
positive self-energy is observed for Mn e, orbitals. Quan-
titative deviations for the real part of self-energies appear
in the high and low frequency region for Mn ¢, and e,
respectively. Note that the imaginary part of Mn ¢y, im-
purity self-energies from both ED and GFCCSD shows a
divergent low-frequency behavior in contrast to the one
of GW double counting counterpart. This is likely an
indication of metal-to-insulator transition where a sim-
ilar divergence appears in the case of the 2D Hubbard
model (as observed for example in Ref. [2]). Although
a description of a realistic compound such as SrMnQO3
is much more complicated in the presence of the screen-
ing and hybridization from O p orbitals and beyond, the
above result implies that additional correlations added
by SEET to Mn t,, orbitals beyond the ones present in
scGW are crucial for the opening of a gap in PM SrMnOs.

Next, we consider including non-perturbative self-

energy corrections to the O 2p orbitals. For p, orbitals,
despite the good agreement in the static part of the
self-energy, large deviations are observed in the dynamic
impurity self-energy between GFCCSD and ED solvers.
This observation is consistent with the one for the O 2p
impurity in MnO. Moreover, for the imaginary part of
the self-energy for the p, orbitals, we observe a posi-
tive and therefore a non-causal self-energy produced by
the GFCCSD solver. This means that the correlations
present in the p, orbitals are too strong and intractable
at the level of singles and doubles excitations present in
the GFCCSD approximation. In contrast, for O p, or-
bitals, we observe an excellent agreement between the
GFCCSD and ED solvers.

The comparisons of impurity self-energies between
GFCCSD and ED solvers for various orbitals allow us
to examine the strength of correlations among orbitals
around Fr. We found that the O p, orbitals are the
least correlated, Mn tg4, €4 orbitals are modestly corre-
lated, and O p, are the most strongly correlated ones.
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Name ‘ Imp ‘ Description
A 1 Mn tgg
B 2 Mn ta2g; Mn eq
C 4 Mn t24; Mn eg; O pr; O po
D 3 Mn 3d; O pr; O po

Table II. Different choices of impurities for the StMnQO3 solid.
Imp denotes the number of distinct, disjoint impurity prob-
lems.

2. Local density of states

In Fig. 7, we plot the local orbital-resolved
DOS of SrMnOjs in the PM phase calculated using
SEET(GW /CCSD) and SEET(GW/ED) along with
photoemission data [51]. The impurity choices are listed
in Table. II. According to Ref. [20], the outer-loop self-
consistency is crucial to open the gap for the PM phase of
SrMnOgs and, therefore, SEET with the outer-loop self-
consistency is performed for both SEET(GW /CCSD)
and SEET(GW /ED).

For impurity setup A, for details see Table II, despite
problems of CCSD in finding a ground state of the impu-
rity problem with proper number of particles (for details



concerning energy ordering of different particle number
present in the impurity see Sec. III C 3) and small quan-
titative differences of impurity self-energies in the first
iteration (see Fig. 6 panel (a)), the self-consistent DOS
from SEET(GW /CCSD) is in a good agreement with
DOS from SEET(GW /ED).

A non-perturbative treatment of only Mn t5, orbitals
in SEET greatly suppress DOS at Er and opens a gap
between Mn t94 + O pr valence bands and Mn ¢y, con-
duction bands, in contrast to scGW results [20] (which
yield a metallic state). Such a result implies that treat-
ing local correlations of Mn ¢y, by a CCSD level solver
is sufficient to open a gap.

Although local correlation corrections beyond scGW
that are added by SEET to Mn t, orbitals open a
gap, it has been shown that the gap is formed between
Mn t3; + O p, valence states and Mn e, conduction
band states [18, 20] and a non-perturbative treatment
of Mn e, orbitals is necessary. Consequently, we fur-
ther treat Mn e, orbitals by SEET(GW /CCSD) (setup
B). SEET(GW /CCSD) successfully pushes Mn e, con-
duction bands towards Er which is now ahead of the
Mn to4 conduction band, similar as in SEET(GW /ED).
However, in SEET(GW /CCSD), the Mn e, conduction
band is pushed too close to the Fermi level such that the
gap becomes too small when compared to results from
SEET(GW /ED) and photoemission data [51]. This may
due to the slight non-causality observed in Mn ¢4 self-
energy.

Lastly, the non-perturbative treatment of O 2p orbitals
is analyzed in setup C. While the SEET(GW /CCSD)
and SEET(GW /ED) DOS looks similar, we have found
that the particle sector searching for O p, is nontrivial
in SEET(GW /CCSD) and shows significant differences
in comparison to the SEET(GW /ED) case. For details
see Sec. 11T C4.

«| SEET(GW/CCSD) 7 — Mnty
Setup D i ! Mn eg
50 I — 02p;

Figure 8.  Orbital-resolved local DOS of SrMnOgs from
SEET(GW /CCSD) for impurity setup D (see Table. II).
Dashed line are photoemission data from Ref. [51].

To show the strength of GFCCSD impurity solver, in
impurity setup D we further combine Mn 3, and e, or-
bitals into one bigger impurity in order to include inter-
correlations between Mn ¢34 and e, orbitals. Note that
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setup D treats O 2p orbitals in the same manner as in
impurity setup C where O 2p are split into p, and p, im-
purities. Fig. 8 shows the corresponding local DOS from
SEET(GW /CCSD). The most noticeable change when
inter-correlations between t24 and e, are included is the
shift of Mn 3d energy relative to O p bands. In addi-
tion, Mn e, now has non-negligible contribution in the
first valence peak from experiment. Unfortunately, we
are not able to conclude whether this result is physical
or simply an artifact from GFCCSD when enlarging the
impurity size. Note that enlarging the impurity may lead
to the rise of additional strong correlations resulting in an
insufficiency of GFCCSD. Therefore, a verification from
calculations that include higher rank excitations is nec-
essary and will be discussed in a future work.

Although GFCCSD is able to treat impurities with
more than couple tens of impurity orbitals, unfortu-
nately for SrMnOgs, we were not able to converge
SEET(GW /CCSD) calculations with larger impurities
e.g. containing both Mn 3d and O 2p orbitals combined
together. This is due to the correlations which are in-
tractable at the CCSD level. For such large impurities,
we have observed a pronounced spin orbital symmetry
breaking and instabilities in the particle sector search
process.

8. Particle number search for impurity in setup A

For impurity setup A, we first look at the energy order-
ing of particle sectors based on energies calculated using
UHF, UCCSD, UCCSD(T), and ED in the first iteration
of SEET (see Table III).

Note that in ED [27] we observe a different degen-
eracy than in from UHF, UCCSD, and UCCSD(T). In
ED, the ground state is a quartet state with the follow-
ing z-component of spin mys = {3/2,1/2,-1/2,-3/2}.
The first excited state lies in the (n, = 8,n3 = 7) sec-
tor is a doublet state with 32 mHartree higher in to-
tal energy than the ground state. On the other hand,
UHF and UCCSD, respectively, yield lowest energy for
(ne = 9,n3 = 6) and (n, = 6,ng = 9) particle sectors
equal to ms = {3/2,—3/2} values, thus breaking the de-
generacy present in the quartet state. As more correla-
tions are added UCCSD(T) finds (n, = 8,ng = 7) and
(ne = 7,n3 = 8) with ms = {1/2,—1/2} as the lowest
state. Note that the differences in the energies of dif-
ferent particle sectors are the result of the spin orbital
symmetry breaking present in UCCSD and UCCSD(T).
Fortunately for the impurity setup A, despite missing
many components of my in UCCSD and small quanti-
tative differences of impurity self-energies in the first it-
eration (see Fig. 6 panel (a)), self-consistent DOS from
SEET(GW /CCSD) is reasonably consistent with DOS
from SEET(GW /ED).
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UHF UCCSD UCCSD(T) ED
(9,6), (6,9) [-19.059] (9,6), (6,9) [-19.083] (8,7), (7,8) [-19.092] (9,6), (6,9), (8,7), (7,8) [-19.086]
(9,7), (7,9) [-19.027] (8,7), (7.8) [-19.073] 9,6), (6,9) [-19.088] (8, )7 (7,8) [-19.043]
(8,7), (7.8) [-19.023] (8,6), (6,8) [-19.031] 8,6), (6,3) [-19.036] (8,7), (7,8) [-19.041]

Table III. Ordering of particle sectors for Mn t24 in StMnOs found by UHF, UCCSD, UCCSD(T) and ED. The corresponding

total energies (in a.u.) are denoted in square brackets.

UHF UCCSD UCCSD(T) ED
(8,5), (5,8), (6,8), (8,6) [-5.771] (6,6) [-5.855] (6,6) [-5.872] (6,6) [-5.866]
(8,7), (7,8) [-5.765] (7,6), (6,7) [-5.846] (7,6), (6,7) [-5.861] (7,6), (6,7) [-5.855]
(6,6) [-5.757] (8,6), (6,8) [-5.839] (7,7) [-5.849] (6,5), (5,6) [-5.848]

Table IV. Ordering of particle sectors for O pr in StMnOg3 found by UHF, UCCSD, UCCSD(T) and ED. The corresponding

total energies (in a.u.) are denoted in square brackets.

4. Particle number search for impurity in setup C

The particle number search for impurity created us-
ing the O 2p, orbitals is used in setup C of Fig. 7.
Table. IV shows the orderings of different particle sec-
tors based on total energy determined by UHF, UCCSD,
UCCSD(T), and ED in the first iteration of SEET. As we
mentioned before, particle sector search based on UHF
frequently favors an unphysical ordering of states. In
this case, the UHF ground state consists of open shell
quartet with ms = {3/2,1/2,—-1/2,—3/2} values while
the ED determined ground state is a singlet. UCCSD
recovers the correct ground state and also the correct
ordering of higher energy sectors as found in ED. Unfor-
tunately, during self-consistent loop our particle-sector
search based on UCCSD energy becomes unstable due
to flipping of the energies of (n, = 6,m3 = 6) and
((ne = 6,n3 = 7);(ne = 7,ng = 6)) particle sec-
tors from iteration to iteration. Correlations beyond
UCCSD are necessary to consistently distinguish the
ground state (n, = 6,n = 6) and the first excited states
((ne = 6,ng = 7);(ne = 7,ng = 6)). Therefore, to
stabilize the self-consistency procedure (similarly as in
the case of MnO 2p impurity), we constrain the particle-
sector space to states that contain the same number of o
and [ electrons.

IV. CONCLUSIONS AND DISCUSSION OF THE
POTENTIAL OF GFCC SOLVERS

We have investigated the performance of the GFCCSD
solver for realistic impurity problems present in AFM
MnO and PM SrMnOs by analyzing impurity self-
energies and local DOS for each of these compounds. Our
ab initio impurity Hamiltonians were constructed during
the SEET(GW /CCSD) self-consistency procedure. In
this way, we examined impurity Hamiltonians present in

realistic materials calculations avoiding possible simpli-
fications that may be present in the low-energy models
analyzed in the previous papers [24, 25].

Our work demonstrates that the GFCCSD solver is
able to provide a satisfactory description for moderately
correlated impurity problems. We observed that the self-
energies from impurities containing to, and e, orbitals
of Mn were in an excellent agreement with the ones
evaluated by ED. However, for impurities containing 2p
orbitals of O both in the case of MnO and SrMnOg,
we observed significant discrepancies between ED and
GFCCSD solvers. Consequently, we conclude that when
correlations become stronger, higher order approxima-
tions in the CC theory are necessary for an excellent
agreement with ED. This result is expected and com-
pletely supported by the experience gained in the quan-
tum chemistry community with treating molecular sys-
tems at the CCSD level.

By limiting GFCC solver to the singles and doubles ap-
proximation, impurities with around hundred orbitals are
very easily possible due to its polynomial scaling both for
the parent UCCSD calculation and later at the Green’s
function construction stage. Note that this allows one
to dramatically extend both the number of impurity or-
bitals as well as the number of bath orbitals. However, we
also demonstrated that the singles and doubles approxi-
mation could lead to instabilities in the particle number
search procedure when electron correlations are strong.
Consequently, for impurities containing a large number
of d and p orbitals where multiple possibilities of degen-
erate orbitals leading to strong correlation effects exist,
we advise caution when employing the GFCCSD solver.

In our opinion, the relative difficulty in searching for
the particle number in the impurity problem is the most
significant drawback of the GFCCSD solver since for zero
temperature problems it may lead to the construction of
Green’s function corresponding to a ground state with a
wrong particle number. Consequently, when performing



SEET(GW /CCSD) calculations with GFCCSD in zero-
temperature limit, we are very careful to find an impurity
ground state with a correct particle number. For other
approximate wavefunction-based solvers such as the ones
based on RASCI [58], it is possible to perform a finite
temperature calculation where a Green’s function is con-
structed using ground and excited states that are close
in energy and can come from sectors with different num-
ber of particles. In this way multiple states are used and
weighted with Boltzmann factors to construct a Green’s
function. In this procedure, even if the energy ordering of
states is not perfect, the information from many states is
retained mitigating small errors in the ordering of states.
The same procedure cannot be applied to the CC method
since for CC during the embedding self-consistency it is
not possible in a completely automatic manner to gener-
ate couple of converged excited states for a given number
of particles.

For larger impurity problems, especially where strong
correlations are present, in order to meticulously analyze
results for any realistic problem, especially in the ab-
sence of experimental data, one would like to know that
the results from the GFCCSD solver are converged with
respect to the excitation level. This is especially impor-
tant when the impurity is enlarged since it is possible
that the number of strongly correlated orbitals increases
in the enlargement process making CCSD insufficient to
illustrate all correlations and leading to wrong ordering of
particle sectors. For additional discussion of the process
of enlarging the impurity size evaluated in the GFCCSD
solver, we refer the reader to Ref. [59]. This is why, in our
opinion, to safely conduct many materials science calcu-
lations, we recommend checking the convergence of the
CCSD ground state calculations (which is the first step of
the GFCCSD solver) by comparing CC energies or impu-
rity orbital occupation numbers against CC results with
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higher excitations. If the results seem to be converged,
then the result obtained at the GFCCSD level can be
trusted and the ordering of particle sectors found is most
likely sound. Only such results should be used for phys-
ical interpretation of the results. Ultimately, one would
envision that a whole family of GFCC type of solvers can
be developed with arbitrary high level of excitations lead-
ing to flexible tools where convergence with excitations
can be always ensured.

In summary, we would like stress that at present the
GFCCSD solver already yields impressive results for
weakly and moderately correlated impurity problems.
One of its biggest advantages is its ability to treat im-
purity problems with large number of orbitals and the
possibility of enlarging both the correlated orbital space
as well as the number of bath orbitals. We believe that
including higher order excitations into the GFCC solver
may bring a substantial improvement and enable fully
predictable and systematically improvable ab initio cal-
culations for novel compounds even in the absence of ex-
perimental data.
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