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There is considerable interest in the intersection of correlations and topology, especially in metallic systems.
Among the outstanding questions are how strong correlations drive novel topological states and whether such
states can be readily controlled. Here we study the effect of a Zeeman coupling on a Weyl-Kondo semimetal
in a nonsymmorphic and noncentrosymmetric Kondo-lattice model. A sequence of distinct and topologically
nontrivial semimetal regimes are found, each containing Kondo-driven and Fermi-energy-bound Weyl nodes.
The nodes annihilate at a magnetic field that is smaller than what it takes to suppress the Kondo effect. As such,
we demonstrate an extreme topological tunability that is isolated from the tuning of the strong correlations per
se. Our results are important for experiments in strongly correlated systems, and set the stage for mapping out
a global phase diagram for strongly correlated topology.
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The application of topological concepts to condensed mat-
ter physics has considerably enriched the landscape of quan-
tum phases in the quantum matter field. Yet two crucial fron-
tiers of the field remain: the search for tunable topological
materials, and the exploration of topological states in strongly
correlated settings. A plethora of quantum states of matter
are driven by strong correlations [1, 2]. Here, large Coulomb
repulsion often produces local moments that form a build-
ing block of the low-energy physics. The quantum entangle-
ment between the local moments determines the nature of the
ground state. Of particular interest are heavy fermion sys-
tems, which possess both strong correlations and significant
spin-orbit coupling that provides the band inversion suitable
for nontrivial topology.

In heavy fermion metals, itinerant electrons are quantum
entangled with the local moments as well, giving rise to the
celebrated Kondo effect [3] and a rich landscape of metal-
lic quantum phases and quantum critical points [4, 5]. When
spin-orbit coupling is also strong, topological metallic states
may also appear in the phase diagram. Recent theoreti-
cal [6, 7] and experimental [8, 9] studies have shown that
the Kondo effect can drive the emergence of Weyl nodes
near the Fermi energy, leading to a Weyl-Kondo semimetal
(WKSM). This development provides a new opportunity to
utilize insights about the strong correlation physics of the
heavy fermion metals and elucidate how strong correlations
and topology intersect in metallic systems.

Strong correlations per se amplify a system’s response to
external stimuli. For example, heavy fermion metals have
long been explored by a magnetic field, which is a non-
thermal tuning parameter and its relatively small variation can
trigger phase transitions or help access quantum critical points
by perturbing the 4f local moments [10]. This is highlighted
by the usage of a magnetic field to reveal a jump in the nor-
mal Hall effect that originates from an abrupt change in the
Fermi surface at a local quantum critical point [11–19]. What
has been open is whether strongly correlated topology can be

readily tuned and, if so, what sequence of topological quan-
tum phase transitions can be realized.

In this Letter, we study the effect of a Zeeman coupling
in a nonsymmorphic and noncentrosymmetric Kondo lattice
model. We find that the combined time-reversal and inversion
symmetry breaking associated with the Zeeman field and a
sublattice-differentiating potential produces a progression of
topological Lifshitz transitions. The Weyl nodes are annihi-
lated at a Zeeman energy that is smaller than the Kondo energy
scale and, thus, the strongly correlated topological semimetal
retains its heavy fermion character under the magnetic field
before it is quenched into a Kondo insulator. The complete
node annihilation happens at a modest (laboratory-accessible)
field. This reflects the extreme tunability of the strongly cor-
related topology to the Zeeman coupling, which is isolated
from the tuning of the correlation physics per se. The extreme
topological tunability is also to be contrasted with the case of
weakly correlated Weyl semimetals where the Weyl nodes are
hard to tune [20–23]. Our results are important for experi-
ments on heavy fermion and related systems [24]. In addition,
our findings set the stage to map out a theoretical global phase
diagram for strongly correlated topology. The latter is impor-
tant to the identification of new correlated topological states
in theoretical models, and may guide systematic experimental
explorations in this frontier area.

Model and Methods: To consider the strong coupling
(Kondo) limit, we implement the Anderson lattice model on a
diamond crystal structure with H = Hc + Hcd + Hd [6, 7].
The conduction electrons corresponding to the spd-orbitals
of heavy fermion systems are represented by a Hamiltonian
based on the Fu-Kane-Mele model [25–27],

Hc = t
∑
〈ij〉,σ

(
c†iσcjσ + H.c.

)
+
∑
i,σ

(
m(−1)i − µ

)
nciσ

+ iλ
∑
〈〈ij〉〉

[
c†iσ (σ · eij) cjσ − H.c.

]
, (1)
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FIG. 1. (a) Phase diagram of the WKSM model as a function of the Zeeman field normalized by the zero-field Kondo temperature,
M0 = Mz/T

0
K . “Phases” labels each WKSM regime by its nodal trajectory in the BZ. TLT=topological Lifshitz transition, which labels

regime crossover and critical points (filled circles) by where it occurs in the BZ and the type of dispersion. TRI=time-reversal invariant,
QBT=quadratic band touching, ABT=anisotropic band touching. (b)-(d) shows the path of selected nodes through the fcc BZ for each corre-
sponding WKSM regime: (b) X-W (yellow), (c) Γ-X (light blue), and (d) Γ-X−Γ-L (orange). Red (blue) refers to −1 (+1) monopole Weyl
nodes, darker (lighter) color variants denote nodes below (above) the Fermi energy, white-filled circles mark double Weyl nodes regime.

with nearest-neighbor 〈ij〉 hopping t, chemical potential µ, a
Dresselhaus-type spin orbit coupling λ, and an inversion sym-
metry breaking sublattice potential m. The electrons are cou-
pled to the d fermion species (representing physical 4f mo-
ments) through the hybridization term,

Hcd = V
∑
i,σ

(
d†iσciσ + H.c.

)
. (2)

The localized 4f electrons are represented by

Hd =
∑
i

[Undi↑n
d
i↓ +

∑
σ

(Edσ0 +Mzσz)d
†
iσdiσ], (3)

where Ed is much lower in energy than the conduction elec-
tron band edge [3], σ0, σz are Pauli matrices acting on spin
space, and the Coulomb repulsion U acts between d fermions.
The Zeeman interaction with field Mz aligned in the ẑ di-
rection, breaks time-reversal symmetry. In a heavy fermion
system subjected to a magnetic field, the response of the local
moments dominates over orbital effects, so we do not consider
Landau levels here.

In the U → ∞ (Kondo) limit, we use the auxiliary boson
method [3], with diσ = fiσb

†
i . Here, double-occupancy of the

d-electrons is projected out, and small hole-fluctuations away
from single-occupation are tracked by the bosonic field, bi →
〈bi〉 = r. The occupation constraint is enforced by a term
that replaces the Coulomb repulsion, H` = `

∑
i,σ(f

†
iσfiσ +

r2−1). The parameters ` and r, along with µ, are determined
by solving the system of saddle point equations 〈δH/δr〉 =
0, 〈δH/δ`〉 = 0, together with a condition for the electron
filling. We consider a total quarter filling nd + nc = 1, which

is 1 fermion per site; in the strong coupling limit we have
nf + r2 = 1, implying that nc ∼ r2.

Generically, both the time-reversal and inversion
symmetry-breaking will influence the Weyl nodes [28].
We study the extent to which the Kondo-driven Weyl nodal
excitations survive the Zeeman coupling and, if they do,
whether and how they can be controlled by the magnetic field.
Our numerical method to solve the self consistency equations
is detailed in the Supplemental Material [29].

Zeeman-Field Tuning of the Weyl Nodes: In what follows,
we describe several Weyl node configurations in the Brillouin
zone (BZ) that we encounter as a function of the Zeeman field.
We label each WKSM regime by the Weyl node trajectories
from one high symmetry point to another, and label topo-
logical Lifshitz transitions (TLTs) between regimes/phases by
their dispersion type and the BZ location, as shown in the
phase diagram of Fig. 1(a). The Zeeman field strength is re-
ported as M0 = Mz/T

0
K , relative to the Kondo temperature

T 0
K , which is estimated from the bandwidth of the heavy Weyl

bands for Mz = 0, in units of µ0 = kB = 1; the parameters
held constant are {Ed, V, λ,m, t} = {−7, 9.29, 0.5, 1, 1}. We
previously established the WKSM phase for the time-reversal
invariant case [6, 7], represented by the blackM0 = 0 starting
point of Fig. 1(a). Here Weyl nodes can be found along all X-
W lines on the BZ boundary (red and blue dots of Fig. 1(b)).

In the yellow X-W regime, the Weyl nodes move along
the yellow arrows in the BZ diagram in Fig. 1(b). The
darker (lighter) blue and red circles of nodes on the kx, ky =
±2π BZ faces (but off the kx-ky−plane) indicate that, in
addition to moving in k−space toward W , they shift in en-
ergy below (above) the Fermi energy (EF = 0), establishing
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FIG. 2. Γ -X−Γ -L WKSM eigenenergy dispersion at M0 = 0.432;
(a) high symmetry path through the BZ, (b) on the [011] plane, with
origin at Γ . Here, D is the bare conduction-electron bandwidth.

Fermi/hole pockets that evolve with the field, which disap-
pear in the Γ -X − Γ -L regime (details in Ref. [29]). Re-
markably, all the nodes besides these (moving toward X) are
pinned to EF . In particular, the nodes remaining at EF are
the kx, ky = ±2π BZ face nodes lying in the kx-ky−plane,
and all four nodes on the ky = ±2π faces.

The kz = ±2π face nodes meet uniformly at X , simultane-
ously with the pinned nodes on the kx, ky = ±2π BZ faces,
while the off-EF nodes meet at W . At M0 = 0.128 (yellow
circle, Fig. 1(a)), the dispersion forms a non-Kramers’ type
quadratic band touching at X , dubbed the X-QBT point.

The emergence of double-Weyl nodes: Next, the WKSM
enters the Γ -X regime (Fig. 1(c)). ForM0 just beyond theX-
QBT point, the dispersion undergoes a TLT, and Weyl nodes
form just inside the BZ boundary from the six X points, and
move towards Γ along the blue arrows. On the kx, ky-plane,
double Weyl nodes develop with charge +2 [30–39], yet along
the ẑ-axis, the Weyl nodes form a monopole charge-opposite
pair.

At the L points when M0 = 0.290 (blue circles,
Fig. 1(a),(d)), a crossover TLT occurs, called the L-ABT point
to label an anisotropic band touching at L: the dispersion
along the (±1,±1,±1) directions is a quadratic band touch-
ing, but is linear in the perpendicular plane of the hexagonal
BZ boundary. When M0 > 0.290, charge ±1 Weyl nodes
form from the L points along the Γ -L directions (see Fig. 2).
All sets of nodes (3 pairs of Γ -X , 4 pairs of Γ -L) progress
towards Γ , and this Γ -X − Γ -L regime corresponds to the
orange regime and arrows in Fig. 1(a),(d).

The normalized Berry curvature field of the Γ -X − Γ -L
WKSM is shown in Fig. 3(a), projected onto the [011] plane
to show both the Γ -X and Γ -L nodes. The Γ -L nodes (blue
and red points) display sink/source monopole fields, while the
Γ -X nodes have field structure for charge +2 double-Weyl
fermions [30–36]. In Fig 3(b)-(c), closer field configurations
of the Γ -X double Weyl fermions are shown.

The emergence of the double Weyl fermions out of a
quadratic band touching is reminiscent of what happens in di-
amond lattice α-Sn [40, 41]; in a k ·pmodel, the application of
a magnetic field to the pre-existing Luttinger semimetal leads

FIG. 3. (a) Berry curvature projected onto the [011] plane in the
Γ -X − Γ -L regime at M0 = 0.432, where k0 points along the ky-
kz−plane. The orange arrows indicate the node pairs’ path toward
simultaneous annihilation at the Γ point for M0 > 0.432. The green
line marks the BZ boundary, blue/red (empty) circles mark ±1 (+2)
Weyl nodes, and yellow, blue, and orange circles correspond to the
TLT locations of Fig. 1(a).

to double-Weyl nodes at different energies [39]. There, it was
found that a linear inversion symmetry breaking term splits
the double-Weyl fermions into single-Weyl fermions. By con-
trast, in our model the double-Weyl fermions are pinned to the
Fermi energy, and are present over a range of combined time-
reversal and inversion symmetry breaking couplings. The lat-
ter reflects the robustness of the Kondo effect that underlies
the Weyl nodes. We also note that double Weyl fermions en-
hance the anomalous Hall effect twofold, and their Fermi arcs
come in pairs [35].

Zeeman-induced Annihilation of the Weyl Nodes: When
the Zeeman coupling approaches the threshold value M0 =
0.611, all the Γ -X and Γ -L nodes meet in the zone center Γ .
This complete annihilation of the Weyl nodes by the Zeeman
coupling is illustrated in Fig. 1(d) as well as in Fig. 3(a).

At the threshold coupling M0 = 0.611, a quadratic band
touching critical point is formed (labeled Γ -QBT) (orange cir-
cle, Fig. 4). The Γ -QBT point is non-Kramers (singly de-
generate) due to the broken time-reversal symmetry. When
M0 goes beyond this threshold, the Γ -QBT bands open a gap,
leading to a Kondo insulator phase. The emergence of the Γ -
QBT point is consistent with a continuous nature of the zero-
temperature topological phase transition at this threshold M0

value.
Indeed, Γ -QBT marks a second-order thermodynamic

quantum phase transition. This is evidenced by the parame-
ters ` and r as a function ofM0 being continuous and showing
nonanalyticities (pronounced kinks) across the Γ -QBT point,
as seen in Fig. 5.

Pinning of the Weyl nodes to the Fermi energy: An impor-
tant finding of our work is that each topologically nontrivial
regime contains Fermi-energy-bound Weyl nodes. In the pres-
ence of time-reversal symmetry, this effect has been exten-
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FIG. 4. Eigenenergy dispersion at Γ -QBT; (a) high symmetry path
through the BZ, (b) on the kx-ky plane, with origin at Γ .

sively demonstrated. The strong correlation effect underlying
the Kondo effect dictates that the Kondo-driven Weyl nodes
lie near the Fermi energy within the narrow energy range of
the Kondo scale; this effect, when combined with the nonsym-
morphic nature of the space group symmetry, pins the Kondo-
driven nodes in our model to the Fermi energy [6, 7]. The
Zeeman field only reduces the symmetry of the spin degrees
of freedom, and so the node-pinning mechanism remains free
to operate. The space-group symmetry constraint is a general
phenomenon [42–44]. Thus, we expect that the mechanism
we have advanced here, for the Zeeman-field-induced WKSM
to Kondo-insulator transition, will apply to Kondo-lattice sys-
tems defined on a variety of nonsymmorphic crystalline struc-
tures.

Indeed, we can see the generality of the Fermi-level-bound
nature of the Kondo-driven Weyl nodes by comparing the
Zeeman-tuned WKSM-Kondo insulator transition to one that
occurs as a function of tuning m with time-reversal pre-
served [6, 7, 26] (even though the latter tuning is experi-
mentally difficult to implement). When m = 0, inversion
symmetry is preserved, resulting in a Dirac-Kondo semimetal
with degeneracies at X . A WKSM forms for 0 < m < 2
where the inversion-symmetry breaking splits the Dirac cone
into two Weyl node pairs per square BZ boundary, with tra-
jectories from X to W . At m = 2, each node meets its
opposite charge partner from the neighboring BZ, becoming
an anisotropic band touching at W , before annihilating and
forming a gapped Kondo insulator state for m > 2. Simi-
lar to the Zeeman-tuned WKSM-Kondo insulator transition,
the merging of Weyl nodes at W precipitates their annihila-
tion and gap formation, which in both cases is accompanied
by a kink in the saddle-point parameters across the critical
point. Moreover, the topologically-nontrivial regime always
has the Kondo-driven Weyl nodes at the Fermi energy. How-
ever, in the case of Zeeman tuning at nonzero m, the dou-
ble Weyl nodes emerge, and the gap opening location occurs
at the highly symmetric time-reversal-invariant momentum Γ ,
in contrast to annihilation at the lower-symmetry time-reversal
non-invariant momentum W .

Implications of our results: Our results are highly rele-
vant to the magnetic field experiments done on the nonmag-

FIG. 5. The saddle-point parameters as a function of M0. Top: scalar
bosonic condensate r. Bottom: Lagrange multiplier `. The dashed
line marks the kinks at the Γ -QBT point where M0 = 0.611.

netic heavy fermion compound Ce3Bi4Pd3, where a WKSM-
Kondo insulator transition has been observed [24]. The exper-
iments also found a heavy-fermion metal phase at high field
values, which is more typical of Kondo-insulator physics and
is not the focus of the present work. Importantly, we have
shown that the WKSM phase and its TLTs take place at a
Zeeman field smaller than the Kondo scale, before the Kondo
effect itself is suppressed by the Zeeman coupling. In other
words, the extreme tuning of the strongly correlated topology
happens when the strong correlation physics per se does not
experience a qualitative change.

A Zeeman coupling on the order of the Kondo scale in typi-
cal heavy fermion semimetals corresponds to a magnetic field
on the order of 10 T. In weakly-interacting WSM systems,
such a magnetic field would have produced a minute Zee-
man effect; indeed, typically, the orbital effect of the magnetic
field dominates, which smears the Weyl fermions and prevent
a well-controlled nodal annihilation [21–23, 45]. We expect
that the extreme topological tunability we have demonstrated
also applies to related models based on Kondo effects [46–
51], as well as to other materials, such as CeRu4Sn6 [52–57],
YbBiPt [58–61] and CeSbTe [62], which are considered to be
WKSM candidates.

Summary: This work has addressed the effect of Zee-
man coupling in a nonsymmorphic and noncentrosymmetric
Kondo lattice model, in which the cooperation of the Kondo
effect and space-group symmetry produces Weyl nodes near
the Fermi energy. We have demonstrated an extreme respon-
siveness of the Weyl nodes to the Zeeman coupling. Several
topologically-distinct semimetal regimes are induced by the
Zeeman coupling, which involve double Weyl points that may
significantly affect the anomalous magnetotransport proper-
ties. We have shown that a Zeeman coupling that is smaller
than the zero-field Kondo energy scale is adequate to fully an-
nihilate all the Weyl nodes, leading to a second-order topolog-
ical quantum phase transition to a Kondo insulator. Our results
provide a proof-of-principle demonstration that the extreme
tuning of strongly correlated topology can be realized without
the interference of any qualitative change to the strong correla-
tion physics per se. Equally important, our work sets the stage
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for the exploration of a global phase diagram for strongly
correlated topology, which may be important for identifying
new correlated topological states both theoretically and ex-
perimentally.
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