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The simplest topologically ordered phase in 2+1D is the deconfined phase of Z2 gauge theory,
realized for example in the toric code. This phase permits a duality that exchanges electric and
magnetic excitations (“e” and “m” particles). Condensing either particle while the other remains
gapped yields a phase transition with 3D Ising exponents. More mysterious, however, is the tran-
sition out of the deconfined phase when self-duality symmetry is preserved. If this transition is
continuous, which has so far been unclear, then it may be the simplest critical point for which
we still lack any useful continuum Lagrangian description. This transition also has a soft matter
interpretation, as a multicritical point for classical membranes in 3D.

We study the self-dual transition with Monte Carlo simulations of the Z2 gauge-Higgs model
on cubic lattices of linear size L ≤ 96. Our results indicate a continuous transition: for example,
cumulants show a striking parameter-free scaling collapse. We estimate scaling dimensions by using
duality symmetry to distinguish the leading duality-odd/duality-even scaling operators A and S. All
local operators have large scaling dimensions, making standard techniques for locating the critical
point ineffective. We develop an alternative using “renormalization group trajectories” of cumu-
lants. We check that two- and three-point functions, and temporal correlators in the Monte-Carlo
dynamics, are scale-invariant, with scaling dimensions xA and xS and dynamical exponent z.

We also give a picture for emergence of 1-form symmetries, in some parts of the phase diagram,
in terms of “patching” of membranes/worldsurfaces. We relate this to the percolation of anyon
worldlines in spacetime. Analyzing percolation yields a fourth exponent for the self-dual transition.
We propose variations of the model for further investigation.

I. INTRODUCTION

Continuum field theory provides a language for a huge
range of classical and quantum phase transitions [1, 2].
This includes many cases for which a simple Landau-
Ginsburg formulation is insufficient [3–10]. For exam-
ple, a wide range of topological phase transitions, lack-
ing any local order parameter [3], may be brought under
some measure of analytical control using the language
of continuum gauge theory, together with various kinds
of perturbative expansion (ε expansions, large N expan-
sions, etcetera). However, despite the wild success of the
field theory approach to critical phenomena, there ex-
ist phase transitions in simple and natural models that
still remain out of reach of field theory tools. This paper
characterizes what we suggest is the paradigmatic exam-
ple of these mysterious transitions. This is the “self-dual”
phase transition between confined and deconfined phases
of Z2 gauge theory in three dimensions [11–14].

The Z2 gauge–Higgs model [3, 11, 15] has a stable de-
confined phase, as well as a trivial phase, in three di-
mensions. In the context of quantum systems in 2+1D
(the model also has a 3D classical interpretation that we
discuss below) the deconfined phase is the simplest Z2

spin liquid [16–21]: the phase of matter realized, for ex-
ample, by the toric code [22]. The anyon excitations of
this phase include quasiparticles denoted e and m, with
nontrivial mutual statistics, which correspond to charge
and flux in the gauge theory.

The simplest lattice field theory formulation of the
Z2 gauge-Higgs model has a two-dimensional parameter
space [3, 11–13, 15, 23]. In the quantum language, these
two couplings allow us to separately control the masses of
both e and m excitations. In the language of the lattice
gauge theory, one of the couplings controls the “stiffness”
associated with fluctuations of the matter field, and the
other the stiffness of gauge field: see the schematic Fig. 1.

While there are only two stable phases in Fig. 1, there
are various possibilities for the transition between them
[6, 11–14]. The Higgs and confinement transitions cor-
respond to condensation of the e particle, and of the m
particle, respectively. These two lines of transitions are in
fact completely equivalent, as they are mapped into each
other by the crucial duality transformation, which ex-
changes the two kinds of particle. They are subtle phase
transitions with no local order parameter [3]. Neverthe-
less, they are amenable to field theory tools. For exam-
ple, gauge fluctuations are in fact irrelevant at the Higgs
transition [11]. Its universal scaling is therefore same as
in the limit of infinite gauge stiffness, where the parti-
tion function is simply related to that of the standard
Ising model (with a sum over boundary conditions): in a
sense, we can define a “fictitious” Ising order parameter.
In the language of anyons, the reason that this transition
(where e condenses) is relatively conventional is because
m remains massive: this ensures that nontrivial braiding
processes are not important at low energies.

By contrast, the nature of the transition out of the
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deconfined phase on the self-dual line, where there is a
symmetry between e and m, has not been understood.
Previous Monte-Carlo [13] and series expansion [14] stud-
ies gave some evidence for a multicritical point here, but
the order of the transition, and the structure of the phase
diagram close to this “corner” of the deconfined phase,
have not been definitively resolved [13, 24]. The argu-
ment above, which relates the Higgs transition to a sim-
ple Landau theory, no longer applies, so that we really
have to confront the issue of coarse-graining a discrete
gauge field, whose low-lying excitations have nontrivial
mutual statistics.

The basic challenge can also be understood in geomet-
rical terms. The gauge-Higgs model describes various
phases of fluctuating membranes in three spatial dimen-
sions [6]. This is a fascinating system in its own right, rel-
evant to experiments on amphiphilic membranes, where
the deconfined phase is known as the “symmetric sponge”
phase [25–31]. We argue below that, if the “holes”
in these membranes are “small”, and disappear under
coarse-graining, the membranes are effectively closed sur-
faces. Mapping them to Ising domain walls is then one
way to think about the fictitious Ising order parame-
ter described above. But as the self-dual point is ap-
proached, the holes become large (we demonstrate this
explicitly), so that this way of thinking breaks down.

In this paper we determine many of the properties
of the self-dual transition using extensive Monte Carlo
simulations and arguments based on the renormalization
group and symmetry. Our numerical results include the
first demonstration of scale-invariance at this transition,
via scaling collapse of numerous observables. Our results
for exponents also raise intriguing theoretical questions
about how to understand this transition.
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FIG. 1. Topology of the phase diagram of Z2 gauge theory
with matter. The shaded region is the trivial phase. The dou-
ble line ( ) represents a first-order line, ending at a standard
critical endpoint ( ). The Higgs and confinement transitions
have Ising exponents. The question mark shows the region
studied in this paper. We give evidence for a scale-invariant,
self-dual critical point.

First, we give strong evidence that the transition is
governed by a scale-invariant fixed point, for example via
a striking scaling collapse that does not require any fit-
ting parameters. We classify the leading local operators
S(r) and A(r) as even and odd under duality symme-
try respectively, and estimate their scaling dimensions xS
and xA using scaling collapses and two-point functions.
We check that three point functions are compatible with
conformal invariance.

We also address some fundamental aspects of the
anyon condensation transitions away from the self-dual
line. As noted above, a key feature of the Higgs and con-
finement transitions is the possibility of using a Landau
theory for a “fictitious” Ising order parameter. (These
are sometimes referred to as “Ising∗” transitions [32].)
The emergence of this order parameter may be related to
the question of where in the phase diagram certain “one-
form” symmetries [33–35] emerge under coarse-graining.
We propose an explicit construction of the fictitious Ising
field (and of the string operators of the one-form sym-
metry). This construction is based on “repairing” or
“patching” the membranes that appear in a geometri-
cal representation of the partition function. We relate
the feasibility of this patching operation to the question
of whether e and m worldlines “percolate” in spacetime,
and obtain the phase diagram for this percolation [6] nu-
merically. This shows that the fictitious Ising fields can
be constructed on the Ising∗ transition lines, but not at
the self-dual critical point. However, we find that scale
invariance at the self-dual transition can be diagnosed via
the percolation of worldlines, and compute their univer-
sal fractal dimension df . (The result hints at a possible
relation between exponents.)

We discuss the role of self-duality symmetry, arguing
that it becomes an emergent internal symmetry in the
IR. While our numerical analysis here is for the standard
gauge-Higgs model, we also propose a modified lattice
model, with a simpler action of duality, which it would
be interesting to study further.

The dynamics of the Monte-Carlo algorithm (in
Monte-Carlo time) correspond to a physically sensible
universality class for the stochastic dynamics of mem-
branes in 3D. We find that the dynamical exponent for
this universality class is z ' 2.48 (not to be confused with
the dynamical exponent zQM = 1 of the zero-temperature
quantum dynamics in the 2+1D interpretation) and show
that two-time correlation functions are another way to
obtain xA,S . The fact that the dynamical exponent is
large is one of the challenges in simulating this model:
unlike in many simple ordering transitions [36], no effi-
cient nonlocal Monte Carlo update, that reduces z to a
small value, is known for this problem.

Various features of the fixed point make standard ap-
proaches to determining the precise location of the phase
transition point, and the order of the transition, inef-
fective. These features include the structure of Binder
cumulants close to the transition, the lack of any local
operator with a small scaling dimension, and the fact
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that xS is very close to 1.5. (This is the threshold sep-
arating divergence and convergence of the heat capacity,
and the proximity to this threshold leads to large scal-
ing corrections in this quantity.) These features were the
bane of our initial attempts at data analysis. We de-
scribe how they may be overcome, for example by focus-
ing on appropriate dimensionless observables that allow
a parameter-free scaling collapse.

Our numerical estimates for the exponents xS and xA
turn out to be close to certain exponents in the XY uni-
versality class. This is remarkable in view of the mutual
statistics of the condensing quasiparticles [13, 14, 37, 38],
which would make any relationship with the XY fixed
point very surprising (Sec. X D). The fixed point stud-
ied here is certainly distinct from the XY fixed point,
as implied for example by the very different universal
properties of the adjacent phases. On the other hand, it
is not hard to find examples of pairs of 3D fixed points
with exponents that are fairly close, but distinct. This
issue requires further investigation. There are also many
variations of the present model that remain to be studied
(Secs. X B, X C, XI).

Textbook discussions of critical phenomena sometimes
give the impression that studying universality in phase
transitions is synonymous with studying Lagrangian
quantum field theory. Therefore it is important to re-
member that there are critical points for which we so far
lack any useful continuum Lagrangian (Sec. XI). Given
that the self-dual transition is second-order, as previ-
ously suspected [13, 14] and as the numerical evidence
presented here shows, then it is perhaps the simplest ex-
ample of one of these untamed beasts.

However, a rich variety of other topological transitions,
with distinct (nontrivially braiding) anyons simultane-
ously becoming massless, are possible, with other discrete
gauge theories providing further simple examples. Mod-
els with U(1) symmmetry are also interesting [37, 39–41],
though they are more closely connected to continuum
U(1) gauge theory (perhaps with Chern-Simons terms).
A systematic program to understand all of these transi-
tions would be valuable. Past results on the formulation
of field theories for deconfined phase transitions [10, 42–
51], where mutually nonlocal fields and Berry phases con-
necting different gapless degrees of freedom also play a
key role, may provide some tools.

The Z2 deconfined phase is adjacent to another fam-
ily of critical “quantum loop models” [52–56] with no
known Lagrangian description [56]. Interestingly, while
these critical points may again be viewed in terms of
membranes in spacetime, the obstacle to a continuum
description is different there: a topological constraint on
the dynamics, rather than the existence of massless par-
ticles with nontrivial braiding.

These different kinds of examples suggest that statisti-
cal ensembles of membranes [57] in three and four dimen-
sions (elementary “string field theories” [58]) still hold
many lessons for critical phenomena.
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II. THE ISING GAUGE MODEL

The gauge-Higgs model has many guises. We begin by
reviewing several equivalent formulations of the partition
function we study and the basic features of the phase
diagram. Readers should skip topics with which they are
familiar.

A. As a lattice gauge theory

This is the standard formulation of Z2 gauge theory,
with matter, on a cubic lattice [3, 15]. (Z2 gauge theory
is also referred to as “Ising” gauge theory.) The degrees
of freedom are classical Ising matter fields τi = ±1 on
the sites i of the lattice and gauge fields σij = ±1 on the
links 〈ij〉. The action includes a stiffness K for the gauge
fluctuations, and a coupling J for the matter field. If �
denotes a square plaquette, the partition function is:

Z ∝
∑

{σ},{τ}
exp


K

∑

�


 ∏

〈ij〉∈�
σij


+ J

∑

〈ij〉
τiσij τj


 .

(1)

We work throughout on an L× L× L torus.1 The action
is invariant under the Z2 gauge transformation τi → τiχi,
σij → χiσijχj with χi = ±1. If desired, we can choose
the gauge τi = 1, leaving a lattice model for the σ spins
on the links only, with terms Jσ on the links: this empha-
sizes that Eq. 1 is a lattice model with no internal global
symmetries [3]. However along a line in the phase dia-
gram it has a self-duality symmetry, as discussed below.
In parts of the phase diagram the model also has one-
form symmetries, either microscopic or emergent, which
we discuss in Sec. IX.

It will be convenient to define [3, 23]

x = tanhK, y = tanh J. (2)

The phase diagram in this parameterization is shown in
the main panel of Fig. 2. The dashed line is where the
model is self-dual. The approximately rectangular region
in the bottom right corner, at large gauge stiffness K and
small matter field coupling J , is the deconfined phase
supporting deconfined anyons (Sec. II D).

1 We have used a ∝ sign rather than an equality because we will
choose to absorb a trivial constant into the definition of Z.
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FIG. 2. Sketch of phase diagram in the plane (x, y). The
gauge stiffness K = tanh−1 x increases to the right, and the
matter field coupling J = tanh−1 y increases upwards (self-
dual line shown dashed). Inset: same phase diagram in the
(y, y′) coordinates, where duality acts as a reflection. (The ex-
ponents below imply that the e and m condensation lines are
asymptotically parallel as they approach the self-dual critical
point, though the curvature is not visible at this scale.)

B. As a model of membranes

The model can be mapped to a statistical ensemble of
“membranes” on the cubic lattice [6, 59]. In this picture,
the parameters x and y control the microscopic surface
tension for the membrane, and the microscopic line ten-
sion for membrane boundary respectively. The partition
function is (see App. A for details):

Z(x, y) =
∑

M
x|M| y|∂M|. (3)

Here a membrane configuration M is simply any set of
plaquettes of the cubic lattice: we call the plaquettes in
M “occupied”. The energy of a configuration depends on
the total number |M| of occupied plaquettes in the con-
figuration, and on the total length of membrane “bound-
ary”, |∂M|. This is the number of links where an odd
number of occupied plaquettes meet. We refer to these
as occupied links.

Note that the deconfined phase occurs in the regime
where membrane surface is cheap, but membrane bound-
ary is expensive. The extreme limit of the deconfined
phase is x = 1, y = 0, where we have an ensem-
ble of closed membranes with vanishing surface tension.
We may exit the deconfined phase either by suppressing
membrane area (decreasing x sufficiently) or by tearing
holes in the membranes (increasing y sufficiently) [6].

Fig. 3 shows a part of a membrane configuration taken
from a simulation close to the self-dual critical point that
we study. Plaquettes inM have been coloured (arbitrar-
ily) and the boundary links in ∂M have been marked in
red. The membrane representation suggests investigat-
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FIG. 3. Membranes with boundary: part of a configuration,
close to the critical point on the self-dual line. Occupied pla-
quettes are shown coloured (colours have no meaning). Oc-
cupied links, where an odd number of plaquettes meet, are
shown in red, thick.

ing “geometrical” (percolation-like) observables close to
the critical point, as well as thermodynamic ones [6]. We
discuss this in Sec. IX, showing that the loops in ∂M
form a scale-invariant ensemble at the self-dual critical
point.

The membrane picture is one way to see the duality
property of the model [3]. In Eq. 3 the partition function
is expressed as a sum over membrane configurations on
the original cubic lattice. An alternative graphical repre-
sentation yields an ensemble of precisely the same form,
but for membranes on the dual cubic lattice (App. A),
with dual values of the plaquette and link fugacities:

x′ ≡ 1− y
1 + y

, y′ ≡ 1− x
1 + x

. (4)

This pair of mappings shows that Z(x, y) is equal, up
to a trivial constant, to Z(x′, y′).2 Below we will see
that duality can also be thought of as a conventional
symmetry operation. This symmetry is not manifest in
the formulations above, but may be made apparent in an
alternate representation of the partition sum in terms of
worldlines of e and m particles (Sec. II C).

Note that, in view of Eq. 4, we are free to choose (y, y′)
as coordinates for the phase diagram, as in the inset to
Fig. 2. The line y = y′ is then the self-dual line, where
the Boltzmann weights are invariant under duality sym-
metry.

2 Explicitly, Z(x, y) = c3L
3
Z(x′, y′) with c =

(1+x)(1+y)
2

.

FIG. 4. Cubes of the original and dual lattices, with e world-
lines (red) and m worldlines (blue) on the former and the
latter respectively. (This configuration has linking number
X = 1.)

C. Manifestly self-dual loop representation

The quantum interpretation reviewed in the next sub-
section motivates yet another representation of the path
integral, in terms of two species of “loops”, which repre-
sent worldlines of both e and m particles. This represen-
tation makes self-duality manifest. The price we pay is
minus signs in the Boltzmann weight, which encode the
mutual semion statistics of the anyons e and m.

The partition function can be written as (see App. A 3
for details):3

Z ∝ 4
∑

Ce, Cm
(−1)X(Ce,Cm)y|Ce|y′

|Cm|. (5)

The electric and magnetic worldline configurations Ce
and Cm, which we refer to as loop configurations, are
sets of “occupied” links on the original and dual lattices
respectively. See Fig. 4. Any even number of occupied
links may be adjacent to each site, so the term “loops”
is used loosely (see the footnote4 for details). Ce may
be identified with the membrane boundaries ∂M in the
previous representation.

The crucial feature in Eq. 5 is the topological factor
(−1)X , which gives a factor of −1 for each linking be-
tween an e worldline and an m worldline. (That is,
X(Ce, Cm) = 0, 1 is the Z2 linking number of the two
worldline configurations. It can be computed, for exam-
ple, by introducing an arbitrary membrane configuration

3 The omitted proportionality constant is a trivial (nonuniversal)
extensive contribution to the free energy. The factor of 4 is uni-
versal (and equal to the ground state degeneracy of the 2D quan-
tum system in its deconfined phase).

4 Ce obeys the same restrictions as ∂M: it must make sense to re-
gard it as the boundary for a membrane configuration on the
original lattice. The same holds for Cm on the dual lattice.
Specifically, each site on the original lattice lies on an even num-
ber of the links in Ce (possibly zero) and similarly for the dual
lattice and Cm. Additionally the Z2 winding numbers of Ce, Cm
in each of the three directions are equal to zero modulo two (this
is a requirement for a worldline configuration to be promoted to
the boundary of a membrane configuration).
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M̃ such that ∂M̃ = Ce, and counting the number of in-

tesections between M̃ and Cm modulo 2.) The values of
the dual link fugacities y and y′ are defined in Eq. 2.

An interesting model of U(1) (oriented) flux lines with
a linking sign has been studied in [37] (see also varia-
tions in Refs. [37, 39–41]). That model has many features
in common with Eq. 5, and also describes a problem of
condensation of anyons with mutual statistics. However
it also has significant differences as a result of a global
U(1)×U(1) symmetry. We expect the U(1)×U(1) model
to be described, at least in principle, by a continuum
Chern-Simons gauge theory. The “Z2 × Z2” loop model
in Eq. 5 is also closely related to a quantum wavefunction
in 3+1D that sustains 2+1D Z2 topological order on its
boundary [60–62].

Returning to Eq. 5, it is possible to sum over Cm ex-
actly (App. A 3). We then return to the membrane ex-
pression (3) for the partition function, with Ce = ∂M.
Similarly, integrating out Ce gives the dual membrane
picture on the dual lattice. (Note that the line tension y′

or y of the species that is integrated out determines the
surface tension of the membranes.)

However the representation (5) makes the duality sym-
metry that exists when y = y′ (i.e. when x = x′) mani-
fest. We can think of the symmetry operation as a trans-
lation by (1/2, 1/2, 1/2), where the lattice spacing of each
cubic lattice is unity. This translation exchanges the cu-
bic lattice with its dual, so exchanges e and m worldlines.
Microscopically, this is not an internal symmetry (since
it involves translation) but we will argue in Sec. III that
self-duality becomes an internal Z2 symmetry of the IR
theory.

Sec. X A presents an alternative loop model in which
the e and m loops share the same lattice.

D. Anyons and the toric code in a field

The 3D gauge theory is expected to capture the uni-
versal physics of a wide range of 2+1D quantum models
with a Z2 spin liquid phase. An anisotropic limit of the
3D theory, where the z direction becomes a continuous
imaginary time coordinate, maps exactly to the parti-
tion function for such a Hamiltonian on the square lat-
tice. See Refs. [9, 15] for details of such mappings. Here
we review the basic excitations of the deconfined phase,
and how they relate to the geometrical pictures above, in
qualitative terms.

It is convenient to start with the toric code [22], a par-
ticularly simple model lying in the deconfined phase. The
degrees of freedom are spin-1/2s on the links of the square
lattice. The Hamiltonian includes a plaquette term and
a vertex term:

H = −V
(∑

�

XXXX +
∑

+

ZZZZ

)
. (6)

The first product is a shorthand for the Pauli-X operators
on the four links making up a given plaquette, and the

e

e

t

FIG. 5. The relation between e particles and membranes.
Left: in the Z basis, the toric code wavefunction is a su-
perposition of strings of occupied links (bold) representing
Z = −1, and an e excitation is a vertex where an odd number
of occupied links meet. Right: constructing a path integral
(for a generic perturbed model) in this basis, worldsurfaces
of strings become membranes M (grey), and worldlines of e
particles form the membrane boundary, or “loops”, ∂M = Ce.
(The figure on the right is schematic: in the model we study,
membrane configurations look like Fig. 3.)

second for the four Pauli-Z operators on the links touch-
ing a given site. Here V is a coupling constant, which we
have chosen equal for the two terms to ensure self-duality
symmetry. Noting that we can equally well view spins ei-
ther as living at the midpoints of bonds on the original
square lattice or at the midpoints of bonds on the dual
square lattice, the duality symmetry operation may be
viewed as a translation by (1/2, 1/2), together with an
exchange of X and Z.5

Ground states6 have all the plaquette and vertex terms
in Eq. 6 equal to 1, and are superpositions of “strings”
— either on the original lattice (if we use the Z basis, a
link with Z = −1 being regarded as part of a loop) or the
dual lattice (if we use the X basis) [22]. There are two
fundamental types of excitation, related by duality. A
vertex where ZZZZ = −1 is an “e particle”, and a pla-
quette where XXXX = −1 is an “m particle”. These
are distinct types of anyon. Each is a boson, but adiabat-
ically braiding an e around an m changes the sign of the
wavefunction. (That is, they are mutual semions. The
combination of an e particle and an m particle forms an-
other type of anyon whose topological sector is denoted
“ε”: this also has −1 statistics with e and m, but is a
fermion [22, 64].) In the Z basis, a e excitation is the
endpoint of a string (Fig. 5).

The toric code is a fine-tuned limit in which the e and
m particles are non-dynamical. Critical phenomena are
possible when the model is perturbed so that pair cre-
ation and annihilation of these particles becomes pos-
sible. This may be achieved by adding magnetic fields
in both the X and Z directions [13, 14]. (For example,
adding the operator X to the Hamiltonian allows both
hopping and pair creation/annihilation of bare e parti-

5 If a basis transformation is applied to the Hamiltonian the sym-
metry becomes a simple translation [63].

6 There is an order–1 degeneracy that depends on the system’s
topology.
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cles on a given link.) The resulting model has been in-
tensely studied [13, 14, 24, 65]. Duality exchanges these
two magnetic fields, so that the line hX = hZ preserves
duality symmetry.

The phase diagram of the toric code in X and Z fields
is expected to be equivalent to that discussed in the pre-
vious sections, up to nonuniversal constants [13]. The di-
mensionless field hX/V , which can induce condensation
of the e particle, plays the role of the vertical coordi-
nate in Fig. 1, and hZ/V plays the role of the horizontal
coordinate.

The connection with the geometrical pictures above
arises from writing the imaginary-time partition func-
tion in various choices of basis. We describe this only in
qualitative terms:

In the Z basis, the wavefunction is a superposition of
terms like that illustrated in Fig. 5 (Left) with e parti-
cles (at sites of the square lattice) forming endpoints of
strings. Constructing the sum over Feynman trajecto-
ries using this basis, the worldsurfaces of strings form a
set of membranes M, and the worldlines of e particles
form a set of loops that are the boundaries Ce = ∂M of
these membranes. (In the limit hX = 0 there are no
bare e particles in the ground state, and correspondingly
the membranes are closed surfaces.) This picture is a
continuous-time version of that in Sec. II B. The dual
membrane picture is obtained by working in the X basis,
where the worldlines of m particles are manifest.

Alternately we may pick a basis in which both the pla-
quette products XXXX and the vertex products ZZZZ
are diagonal: this is possible since all these terms com-
mute. The Feynman trajectory sum is then over world-
line configurations Ce and Cm for both e and m particles,
and is a continuous time version of the loop model in
Eq. 5.

E. Ising∗ and first-order lines

To conclude this overview of the model, we recap some
features of the phase transition lines in Fig. 1 or equiva-
lently Fig. 2.

Starting in the deconfined phase (in the lower-right
hand corner of Fig. 2) we may exit it in three ways, two
of which are related by duality [3, 11, 13]. Condensing the
e particle while keeping the mass of m finite corresponds
to the upper boundary of the deconfined region in Fig. 2
(main panel); this is the Higgs transition in the lattice
gauge theory. Condensing m while e remains massive is
equivalent by duality, and is the left-hand boundary of
the deconfined region in Fig. 2 (main panel). This is the
confinement transition in the lattice gauge theory.

These transitions are continuous with Ising exponents,
at least sufficiently close to the boundaries of the phase
diagram [15], as we now rapidly review. These transi-
tions, described by a weakly gauged Landau theory, are
sometimes referred to as “Ising∗” transitions (see for ex-
ample Ref. [32]) to denote the fact that, because of gaug-

ing, only the Z2–even operators of the Ising CFT survive
as local operators.

Consider first the Higgs transition in the limit x = 1,
i.e. infinite gauge stiffness K = ∞. The freezing of
gauge fluctuations in this limit gives an exact mapping
to a standard cubic lattice Ising model. But Ising expo-
nents are retained at least along some part of the phase
transition line, for finite K. This can be argued by fix-
ing the gauge and deriving an effective longer-range Ising
Hamiltonian perturbatively in e−K [3, 11]. In the quan-
tum language, the point is that so long as the m and ε
anyons are gapped, we can for many purposes neglect the
fact that the e particle which is condensing is an anyon,
rather than a local excitation [38]. By duality, equivalent
points hold for the confinement transition.

A more intuitive way to understand the relation to
Ising is developed in Sec. IX and Ref. [66]. Let us start
with the membrane representation in the limit where
membrane boundary is completely suppressed (y = 0 in
Eq. 3, or y′ = 0 in the dual membrane picture). Again
this corresponds to the transitions on the boundaries of
the phase diagram. In this limit the membranes form
closed surfaces, so they may be mapped exactly to do-
main walls in a nearest-neighbor Ising model.7

Now when we increase y slightly, the membranes ac-
quire holes in them. This means that there is no longer
an unambiguous mapping to an Ising model. But if the
holes are sufficiently small, we might expect this ambi-
guity to be unimportant on large scales, so that we can
again think in terms of an ordering transition for a ficti-
tious Ising order parameter.

We make this idea of a fictitious Ising order parame-
ter precise using an explicit construction, based on the
idea of “repairing” or “patching” the membranes in the
representation (3) of the partition function (Sec. IX and
Ref. [66]). We argue that this construction can be per-
formed all the way along the Ising∗ critical lines, but not
at the self-dual critical point, where a different universal-
ity class takes over.

For completeness, let us note that we can also think
of the Ising∗ transition in the loop model representation,
Eq. 5. Loosely speaking, when one species of loops has a
finite typical size, coarse-graining beyond this scale gives
a loop model for a single species of unoriented loops.
This is a standard representation of the Ising universality
class, in terms of worldlines of the Ising quanta.

The self-dual transition point [11–14], where the two
Ising∗ lines meet, will be discussed in the rest of the text.

The line of first order transitions occurs within the
trivial phase, so is relatively conventional. It is also a
line where self-duality symmetry is spontaneously bro-
ken. The natural expectation is that the critical endpoint

7 In this Ising model we must sum over both periodic and antiperi-
odic boundary conditions for each direction. This is to allow an
odd number of domain walls to span the system perpendicular
to each direction.
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Deconfined Duality broken Trivial

x y

FIG. 6. The phase diagram on the self-dual line, i.e. on the
line y = (1− x)/(1 + x) (where x = x′ and y = y′).

of this line is in the Ising universality class, with the Ising
order parameter being the anti-self-dual operator defined
below. Ising universality for this critical endpoint is con-
sistent with a very rough estimate of the universal cross-
ing value of the Binder cumulant, as shown in App. B.

In addition to these thermodynamic transitions we
may also define geometrical transitions [6] using the ge-
ometry of the membranes in Eq. 3 (Sec. D).

III. SELF-DUALITY AS A SYMMETRY

We anticipate that, for any scale-invariant critical
point on the self-dual line, self-duality becomes an in-
ternal Z2 symmetry of the IR theory.

One way to argue for this is via the manifestly self-
dual representation of the partition function in Eq. 5
with y = y′. This has a translation symmetry by
(1/2, 1/2, 1/2) which exchanges e and m worldlines. Cor-
respondingly, the 2D quantum model in Sec. II D has
a symmetry involving translation by (1/2, 1/2) that ex-
changes e and m particles.

The simplest assumption is that, at a scale-invariant
critical point this microscopic symmetry gives rise to
an internal Z2 symmetry of the IR fixed point theory.
Loosely speaking, the action of the translation on the
rescaled spatial coordinate of the coarse-grained theory
disappears in the IR limit, so that the microscopic sym-
metry transformation should map to a purely internal
symmetry transformation on the operators of the IR the-
ory.8

We can motivate this further by noting that alternative
models for the deconfined phase can be constructed in
which the duality symmetry, exchanging e and m, is an
internal symmetry even at the lattice level. Refs. [68,
69] give exactly solvable 2D string-net Hamiltonians for
the deconfined phase, with this property.9 We may also
define a variant of the 3D loop model (5) in which the e
and m loops live on the same lattice, with a Z2 symmetry
exchanging them. This model is defined in Sec. X A. It

8 See Ref. [67] for a careful discussion of the role of translation
symmetries in the continuum in some other spin models.

9 The existence of microscopic models for the deconfined phase
with an “on-site” self-duality symmetry [68, 69] suggests that this
symmetry of the critical theory is not anomalous. In this respect
it is different from the Kramers-Wannier duality symmetry of
the 1+1D Ising model, which cannot be realized as an on-site
symmetry [70–72].

is plausible that by varying the interactions in either of
these models we could access the same self-dual fixed
point, at the corner of the deconfined phase, as in the
original model.

The phase diagram of the gauge-Higgs model, re-
stricted to the self-dual line, is shown schematically in
Fig. 6. The first-order line in Fig. 1 corresponds to spon-
taneous breaking of self-duality symmetry, as discussed
below.

A. Defining (anti)symmetric operators

Duality acts on the phase diagram as y ↔ y′. We
would now like to define lattice operators S and A that
are conjugate to the self-dual and anti-self-dual cou-
plings, namely y + y′ and y − y′ respectively.

We continue to use the language of membranes (II B).
First, define “face” and “edge” operators, F(p) and E(`)
respectively, which are equal to either zero or one and
which measure whether a given plaquette p or link ` of
the cubic lattice is occupied in membrane configuration
M. That is, F(p) = 1 if p ∈ M and F(p) = 0 if p /∈ M;
E(`) = 1 if ` ∈ ∂M and E(`) = 0 if ` /∈ ∂M.

The duality transformation maps these operators to
operators on the dual lattice. By extending the transfor-
mation (App A) to the case of spatially varying couplings
x and y, we see that this mapping is

F −→ − 2x

1− x2 E +
x

1 + x
, (7)

E −→ − 2y

1− y2 F +
y

1 + y
. (8)

We have suppressed plaquette/link indices to avoid clut-
ter. The transformed operator on the RHS is located at
the link/plaquette that is dual to the plaquette/link of
the operator on the LHS.

Next let us symmetrize these operators with respect to
the lattice point group. This naturally leads to operators
that are centred either on a cube of the lattice, or on a
vertex. We use Fcube(c) to denote the sum of F over the 6
plaquettes of a cube c, and Fvertex(v) to denote (one half
times) the sum of F over the 12 plaquettes that touch a
vertex v. Similarly Ecube(c) is (one half times) the sum
over the 12 links in a cube and Evertex(v) is the sum over
the 6 links touching a vertex. (We include the factors
of 1/2 so that the expectation values of Ecube and Evertex
are equal, and similarly for Fcube and Fvertex.)

Finally, specializing to the self-dual line, we define

Acube = Fcube +
2x

1− x2 Ecube −
6x

1 + x
(9)

Scube = Fcube −
2x

1− x2 Ecube +
6x

1 + x
(10)

and analogously for operators Avertex and Svertex at the
vertices.
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These operators transform simply under duality:

Acube ←→ −Avertex, (11)

Scube ←→ +Svertex. (12)

In addition,

∑

c

Acube(c) =
∑

v

Avertex(v), (13)

∑

c

Scube(c) =
∑

v

Svertex(v). (14)

These “integrated” operators, which can be written ei-
ther as sums over cubes or vertices, are the anti-self-dual
and self-dual perturbations of the self-dual line.

Now we expand the lattice operators above in terms
of continuum operators of a putative IR fixed point. De-
note the leading Z2 odd and Z2 even scalar continuum
operators by A(r) and S(r) respectively, with no sub-
script. We will also write Acube(r), Avertex(r), etc., for
lattice operators, where r is the location of the appropri-
ate cube/vertex.

To be consistent with Eq. 11 and Eq. 14, the operator
Scube must be of the form

Scube(r) =(self-dual operators)+

(derivatives of anti-self-dual operators),

and analogously for the other lattice A and S operators,
so that their integrated versions have well-defined sym-
metry under duality. Taking into account point-group
symmetry, some of the allowed terms in Scube and Svertex

are:

Scube(r) = αS(r) + β∇2A(r) + γ∇2S(r) + . . . (15)

Svertex(r) = αS(r)− β∇2A(r) + γ∇2S(r) + . . . . (16)

Here α, β and γ are nonuniversal constants. The sign of
the Z2–odd term is reversed in the second line so that
mixed correlators of lattice operators are consistent with
Eq. 11. Equivalent formulae apply for the lattice A op-
erators, with A and S exchanged, and separate nonuni-
versal constants.

We will use the operators Acube and Scube in our sim-
ulations. We see that these lattice operators may be
identified (up to derivative operators and other opera-
tors that are expected to be highly irrelevant) with the
leading self-dual and anti-self-dual continuum operators.

From now on we will denote the lattice operators sim-
ply as A(r) and S(r), where r is the coordinate of a cube.
We will use A or S, without an argument, to denote the
spatially averaged quantity, for example

A =
1

L3

∑

r

A(r). (17)

We write xA and xS for the scaling dimensions of the two
operators.

0.634 0.635 0.636 0.637 0.638
x

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

√
〈A

2
〉

16

24

32

48

64

96

FIG. 7. Duality-breaking order parameter,
√
〈A2〉, as a func-

tion of x on the self-dual line, for various system sizes (in-
dicated in legend). Lines are just a guide to the eye. The
deconfined phase is at larger x.

0.634 0.635 0.636 0.637 0.638 0.639
x

3.90

3.95

4.00

4.05

〈S
〉

16

24

32

48

64

96

FIG. 8. 〈S〉 as a function of x for different system sizes. The
legend indicates system size. The lines are just a guide to the
eye.

B. Spontaneous breaking of duality symmetry

The phase diagram on the self-dual line was shown in
Fig. 6. A in Eq. 17 is an order parameter for the sym-
metry breaking that occurs when we exit the deconfined
phase. By self-duality symmetry, its average vanishes,

〈A〉 = 0, (18)

but in the duality-broken phase its magnitude
√
〈A2〉

remains nonzero in the thermodynamic limit.
Raw data for this quantity are shown in Fig. 7, close to

the critical point of interest. In all plots we parameterize
the position along the self-dual line with x, so the de-
confined phase corresponds to the right-hand-side of the
figure. At first glance, Fig. 7 is consistent with the or-
der parameter becoming nonzero in a continuous fashion
below some xc (whose estimation we will discuss below).

The operator S, whose average is shown in Fig. 8,
is analogous to the “energy” operator at a conventional
classical transition, since it does not break symmetry: for
a continuous transition, the correlation length exponent
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is

ν =
1

3− xS
. (19)

The data in Figs. 7, 8 may be restated in terms of the
average occupation of plaquettes and links in the mem-
brane picture. On the section of the self-dual line where
duality is spontaneously broken, there are two coexist-
ing equilibria with different plaquette and link densities:
we plot these two solutions explicitly in App. B. In the
critical regime of interest here, the average occupation
number of links is relatively small ≈ 2.5%, but despite
this they make up a scale-invariant ensemble of loops
(Sec. IX).

We now discuss how to establish the universal proper-
ties of the transition.

IV. SCALE INVARIANCE

A. Initial obstacles

One standard means of locating a phase transition is
to analyze the specific heat, which for many simple order-
ing transitions diverges at the critical point. If so, data
for different system sizes can typically be scaled, allowing
the critical point and correlation length exponent to be
determined. Here the variable S(r) is analogous to an en-
ergy, as discussed in the previous section, and L3 var(S)
is analogous to a specific heat. Values for different system
sizes are shown in Fig. 9.

At first sight the behaviour is the expected one: curves
show a peak. But on closer inspection it is unclear
whether the peak diverges at large L or tends to a con-
stant. It also becomes clear that variation of the width
and height of the peaks does not follow the simple scaling
form

Var(S) = L−2xSf(z), (20)

where z = (x − xc)L1/ν and ν = 1/(3 − xS). At a first
glance it looks like this transition will be plagued by large
finite-size effects and it will be difficult to see any sign
of scale invariance. In fact this is not the case; this will
become clear after analyzing the behaviour of the variable
A. (We will return to the specific heat below.)

Another standard tool to determine the location of a
critical point is the Binder cumulant for the order param-
eter [73]. Here A is our order parameter and we define a
rescaled version of the Binder parameter:

b4(A) = − κ4(A)

2κ2(A)2
, (21)

where κn(A) is the n-th order cumulant.10 With this nor-
malization, b4(A) becomes zero in the deconfined phase

10 The standard definition of the Binder cumulant is UL = 2 b4 /3.
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FIG. 9. The “heat capacity”: Variance of S (multiplied by
L3) as a function of x for different system sizes. The legend
indicates system size. The lines are b-spline fits and are just
a guide to the eye.
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FIG. 10. b4(A) = −(1/2)κ4(A)/Var(A)2 as a function of x
for different system sizes. The legend indicates system size.
The lines are b-spline fits and are just a guide to the eye.

(where A is disordered and has a Gaussian distribution)
and tends to one in the first-order coexistence region
(where A has a two-delta distribution).

At a conventional second-order symmetry-breaking
transition (e.g. Ising), the Binder parameter varies
monotonically from zero to one, and different system sizes
show a crossing that allows accurate location of the crit-
ical point. This is not the case here, as shown in Fig. 10.
Rather than crossing, the curves present a minimum near
x = 0.6367. The curves do tend to touch here, consistent
with scale invariance (b4(A) is a dimensionless quantity,
which should be asymptotically L-independent at a crit-
ical point), although some finite-size effects can be ap-
preciated. A previous estimate of xc ≈ 0.6359 [13] is not
consistent with the location of the minimum (we will give
a more accurate estimate below).

So, after a first look at these two standard quantities
it is hard to assess whether the data obeys scaling col-
lapse, and it seems at first sight that accurate estimation
of xc will be more troublesome than for other systems
and plagued by finite-size effects. Having reached this
point, a key step for our understanding was analysing a
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parameter-free scaling collapse that we describe next.

B. Parameter-free scaling collapse; RG trajectories

We advocate using a parameter-free procedure to de-
termine the quality of scaling collapse of the data near
a critical point. We construct a parametric plot using
as coordinates two dimensionless quantities, b4(A) and
b1(A) (defined below).

In the scaling region,

b4(A) = f(z), (22)

where z = (x − xc)L1/ν . Other dimensionless ratios of
cumulants are candidates for the second dimensionless
quantity. Binder defined a ratio based on the sixth or-
der cumulant: VL = κ6(A)/(30κ2(A)3) [73]. High order
cumulants are sensitive to the tails of the distribution
and can be difficult to estimate accurately. Therefore we

instead advocate using the ratio 〈|A|〉 /
〈
A2
〉1/2

:

b1(A) =
1

1−
√

2/π

(
〈|A|〉

κ2(A)1/2
−
√

2

π

)
. (23)

The coefficients have again been chosen so that b1(A)
tends to zero in the deconfined phase and to one in the co-
existence region. b1(A) behaves qualitatively like b4(A)
in Fig. 10, and its expected scaling form is as in Eq. 22,
with a different scaling function. For a standard Ising
transition b1 goes monotonically from 0 to 1 with a cross-
ing for different system sizes: there, it can be used to
determine the critical temperature with the advantage of
being slightly easier to estimate than b4(A).

By plotting b4(A) versus b1(A) we obtain a parametric
plot where z is the parameter, see Fig. 11. If scaling
is obeyed, points with different x and L, but the same
z, must overlap. This is a fair test of scale invariance
because we do not have to fix or fit any parameters by
hand and instead just plot raw data.

The data traces a trajectory from the point (0,0) to
the point (1,1), showing very good overlap, except near
the region (b1(A),b4(A)) ≈ (−0.109,−0.285) where we
see some finite-size effects. However, these finite-size ef-
fects become small for L > 32. This figure represents on
its own strong evidence that the multi-critical point is a
second-order phase transition.

This figure can be also used to estimate the crit-
ical point. We construct “RG trajectories” in the
(b1(A),b4(A)) plane by following the points for a fixed
value of x as L is increased. The points representing
a system (for a fixed generic x) should flow along the
universal line towards either the (0,0) or the (1,1) fixed
point. The inset of Fig. 11 shows this flow for two dif-
ferent x values. For the system sizes used this simple
procedure already determines the critical point with four
digits of precision. We observe that for x > 0.6367 the
system flows towards (0,0), while for x < 0.6366 it flows
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FIG. 11. Parameter-free scaling collapse for b4(A) as a func-
tion of b1(A) for several system sizes (colored). Black stars
mark the two phases: the deconfined phase at (0, 0) and the
broken-duality phase (i.e. first-order coexistence) at (1, 1).
Inset shows a zoom of the left lower corner of the main panel.
Two selected x values (0.6364 and 0.6370) are highlighted and
arrows are drawn in-between consecutive system sizes. Close
to the critical point, x ≈ 0.6367, values remain in a small
region around (b1(A), b4(A)) ≈ (−0.109,−0.285).

to (1,1). The repulsive fixed point is located (within the
precision of the procedure) at the lower left extreme of
the universal curve.

We see that the data in Fig. 10 should approximately
scale for L & 32 (fits are given below). A similar figure
using ratios involving S (e.g. b4(S) or κ3(S)/κ2(S)3/2)
does not show good overlap, as expected from the dis-
cussion of Fig. 9. It would be strange to have very large
finite-size effects in quantities depending on S but not
on those depending on A. The explanation turns out to
be very simple. The exponent xS is very near 1.5, where
the regular contribution to Var(S) cannot be neglected.
When this is taken into account quantities depending on
S also obey scaling (Sec. V B).

V. CRITICAL EXPONENTS

We turn to scaling fits in order to determine xc and the
scaling dimensions of A and S (xA and xS respectively).
Details of how fits were constructed may be found in
App. C. The results of the various fits are summarized in
Table I.

A. Scaling collapse for A

The scaling form for dimensionless quantities such as
b1(A) involves, in addition to the scaling function, the
parameters xc and ν = 1/(3 − xS). Fig. 12 shows the
scaling collapse of the data for b1(A), and the fitted scal-
ing function. The critical coupling xc obtained (Table I)
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Variable xc xS xA χ2 d.o.f.

b1(A) 0.636660(16) 1.446(56) 49.53 46
b4(A) 0.636670(14) 1.445(62) 65.8 46√
〈A2〉 0.636702(20) 1.502(43) 1.222(16) 44.9 40
〈|A|〉 0.636702(22) 1.510(48) 1.221(16) 43.1 40

V ar(S) 0.636661(14) 1.5(fixed) 88.6 81
κ3(S) 0.636651(18) 1.506(9) 68.6 66

TABLE I. Results of fits. Errors shown are purely statistical.
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FIG. 12. Scaling collapse of b1(A) versus scaling variable z =

(x− xc)L1/ν , where 1/ν = 3− xS . The blue line corresponds
to the fitted scaling function using B-splines with 12 degrees
of freedom. The legend indicates the different system sizes.

is very near the initial estimation made in section III B
and xS is near 1.5, as noted above. A fit of b4(A) gives
very similar results (Table I).

In order to obtain the exponent xA we fit

√
〈A2〉 = L−xAg(z). (24)

The resulting scaling function, g(z), is shown in Fig. 13
and the fitted parameters are indicated in Table I. Fitting
〈|A|〉 yields similar results.

No finite-size-scaling corrections are included in these
fits, although for L = 32 these corrections are still non-
negligible (compared to the error bars). If data for
L = 32 is excluded from the fits for b1(A) and b4(A) the
estimates of xS increase.

B. Scaling collapse for S

We have suggested above that the failure of a straight-
forward scaling collapse for Var(S) is due to xS being
very close to 3/2, the threshold where the regular con-
tribution becomes comparable with the scaling contribu-
tion. Fortunately, a simple modification of the scaling
ansatz should be accurate when |xS − 3/2| � 1/ logL:

L3 Var(S) ' f(z) + 4πα2
S log(L). (25)
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FIG. 13. Scaling collapse of LxA
√
〈A2〉 versus scaling variable

z = (x− xc)L1/ν , where 1/ν = 3− xS . Blue line is the fitted
scaling function using B-splines with 10 degrees of freedom.
Legend indicates system sizes.
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FIG. 14. Scaling collapse for L3(Var(S) − C log(L)) versus

scaling variable z = (x − xc)L1/ν , where 1/ν = 3 − xS . The
blue line corresponds to the fitted scaling function using B-
splines with 10 degrees of freedom. Legend indicates different
system sizes. In this fit only xS has been fixed to 3/2, see
text for explanation of the scaling ansatz.

Here α2
S is the normalization constant for the two-point

function of S (Sec. VI). The function f(z) includes a
z-independent constant contribution, which arises from
nonuniversal short-distance correlations.11

11 To see that Eq. 25 holds, recall that L3 Var(S) is given by the
integral over the connected two-point function of S(r). If we ne-
glect terms of size (xS − 3/2) logL, then it is sufficient to replace
the power-law r−2xS occuring in this integral with r−3:

L3 Var(S) '
∫
[0,L]3

d3r r−3H
( r
L
, z
)

+B. (26)

Here H is a scaling function for the correlator in the finite system,
and H(0, 0) = α2

S . The integral is cut off at r of order 1, and
the constant B represents a short-distance contribution. This
integral gives Eq. 25, in which the nonuniversal constant B has
been absorbed into the function f(z).
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FIG. 15. Scaling collapse for L3xSκ3(S) versus scaling vari-

able z = (x − xc)L1/ν , where 1/ν = 3 − xS . The blue line
corresponds to the fitted scaling function using B-splines with
10 degrees of freedom.

We have performed fits to this form keeping ν = 2/3
fixed (in line with the approximation above) so that only
the critical coupling xc and the coefficient C = 4πα2

S of
the logarithm can be adjusted to obtain scaling collapse.
The scaling function is shown in Fig. 14. We obtain a
good fit, even when data from small system sizes are in-
cluded. The estimated xc is again very similar to previous
estimates. Also, the constant C = 10.05(23) obtained is
consistent with our calculation of the correlation function
in the next section. In summary, the fit to Var(S) is con-
sistent with the correlator of S obeying scaling with xS
very close to 3/2 (indeed, allowing ν to be free in this fit,
instead of fixed to 2/3, did not improve the fit quality).

An alternative way to avoid dealing with the regu-
lar contribution is to analyze higher-order cumulants.
The singular contribution near a critical point scales
as κn(S) = L−nxSf(z), while the regular contribution
should scale as κn(S)regular ∝ L−d(n−1). For xS ≈ 3/2
and n = 2 both contributions scale in the same way,
but for n = 3 the singular contribution should dominate.
Indeed the data for κ3(S) can be collapsed, as shown in
Fig. 15. We obtain xc and xS values fully consistent with
previous results (Tab. I), although it is worth noting that
the statistical error of xS is much smaller.

C. Summary of exponents from the fits

We have provided clear evidence that the Ising gauge-
Higgs model has a scale-invariant multicritical point.
Simulations are inevitably restricted to finite length-
scales, so can never rigorously exclude an extremely weak
first-order transition; but all of the observables we have
examined exhibit good scaling collapse, with fairly mod-
est finite-size effects.

As there are some finite-size effects, we consider a rea-
sonable confidence interval for the critical point to be

xc ∈ [0.63665, 0.6367]. For the study of correlation func-
tions in the next sections we round to four digits and
consider critical behaviour at xc ≈ 0.6367.

For the exponent xS , the value obtained from κ3(S)
(Table I) has the smallest statistical error and we take
it as a reference in the following. Our statistical error
bars do not take into account possible systematic errors
related for example to finite size effects, so a realistic
confidence interval should be larger; however, we have
verified that dropping the smaller system sizes in the fit
only very slightly increased xS , remaining within the sta-
tistical error bars.

Our estimate of xS leads to ν = 0.669(4). This is
not too far from estimates ν ≈ 0.7 [14] and ν ≈ 0.69
[65] based on the calculation of the gap in the toric code
using small-field series expansions (up to eighth order).
However, a basic issue with the series expansion method
is that it cannot detect a first-order transition [14], i.e. it
must assume a continuous transition rather than demon-
strating one. Ref. [65] attempts to rectify this by com-
paring estimates of the ground state energy from series
expansion with a variational wavefunction, but we expect
that the accuracy with which this method could detect
a weak first order transition is severely limited by the
accuracy of the variational wavefunction.

A realistic confidence interval for xA should again be
larger than the statistical one in Tab. I. We note that the
xc estimates obtained from

√
〈A2〉 and 〈|A|〉 are slightly

larger than for the other fits; if we estimate xA keeping
xc = 0.63666 fixed, then the value drops to 1.20, slightly
below the statistical confidence interval.

Standard scaling relations [74] imply that the order

parameter exponent β, defined by
√
〈A2〉 ∼ (xc − x)β in

the infinite system, is β = xA/(3− xS) (compare Fig. 7).
Asymptotically close to the self-dual critical point, the
shape of the Higgs and confinement lines in the in-
set to Fig. 2 should be y− ∼ ±|δy+|(3−xA)/(3−xS), where
y± = (y ± y′) gives the self dual and anti-self-dual cou-
plings. Since (3− xA)/(3− xS) is a little larger than
one, the Higgs and confinement lines are asymptotically
parallel as they approach the critical point.

The values obtained for the critical exponents clearly
differ from Ising values, but they are surprisingly close to
certain exponents in the XY model. This point will be
discussed in Sec. X.

VI. TWO-POINT CORRELATORS

We now show that two-point functions of the local op-
erators A(r) and S(r) are consistent with scale invari-
ance,

〈A(0)A(r)〉 =
α2
A

r2xA
, 〈S(0)S(r)〉conn =

α2
S

r2xS
. (27)

Fig. 16 compares data for the critical two-point functions
to such power-law fits, giving good agreement at larger
separations. The exponents xA and xS in the fits have
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FIG. 16. Two-point correlators for the operators A (top) and
S (bottom). The displacement between the two operators is
taken parallel to a lattice direction. Dashed lines are fits of
the L = 64 data in the range r ∈ [10, 15] to the forms in
Eq. 27 with xA = 1.224, xS = 1.506 fixed and αA,S free,
giving α2

A = 0.72 and α2
S = 0.77.

been fixed to the values 1.224 and 1.506, respectively (see
Tab. I), while the nonuniversal constants αA,S , which we
will require in Sec. VII, have been left free.

The simulations also give access to dynamical correla-
tion functions in Monte-Carlo time, which we analyze in
Sec. VIII. These also encode the exponents xA and xS ,
together with a dynamical exponent z.

VII. THREE-POINT FUNCTION AND
CONFORMAL INVARIANCE

Conformal invariance fixes the three point functions
in terms of the fields’ scaling dimensions and operator
product expansion (OPE) coefficients [74]. Conversely,
data for three-point functions allow a direct numerical
test of conformal invariance.

The OPE coefficients for the fields A and S that are
allowed by duality symmetry to be nonzero are CAAS
and CSSS . Here we examine the three-point function
〈A(0)A(r)S(r′)〉conn and give a very rough estimate of
the corresponding OPE coefficient CAAS . Data for
〈S(0)S(r)S(r′)〉conn was too noisy for a similar analysis.

The form dictated by conformal invariance for the
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FIG. 17. Test of conformal invariance: ratios of the three-
point correlators defined in the text. Assuming exponent val-
ues xA = 1.224, xS = 1.506, conformal invariance requires
these ratios to converge at large r to the values indicated by
dashed lines (error bars are from variation between 6 sam-
ples). We find agreement with the predicted value, within
error bars, once r & 3. Error bars become too large for a
useful comparison once r > 4.

three-point function is

〈A(0)A(r)S(r′)〉conn =
CAAS × α2

AαS
|r|2xA−xS |r′|xS |r− r′|xS . (28)

where αA,S are the same operator normalization con-
stants that appear in the two-point functions (27).

We consider four possible spatial arrangements for the
three points in the correlator, lying either on a line (L)
or on the vertices of a right triangle (D):

LAAS(r) ≡ 〈A(0, 0, 0)A(r, 0, 0)S(2r, 0, 0)〉conn , (29)

LASA(r) ≡ 〈A(0, 0, 0)S(r, 0, 0)A(2r, 0, 0)〉conn , (30)

DAAS(r) ≡ 〈A(0, 0, 0)A(r, 0, 0)S(r, r, 0)〉conn , (31)

DASA(r) ≡ 〈A(0, 0, 0)S(r, 0, 0)A(r, r, 0)〉conn . (32)

We use ratios of these three-point functions to test for
conformal invariance. The CFT prediction depends only
on xA and xS (and on the arrangement of points in the
correlator), so this test does not require an independent
estimate of the nonuniversal constants αA,S in Eq. 28.

Fig. 17 compares each of the three independent 3-point
function ratios with the CFT prediction (for xA = 1.224,
xS = 1.506), which is marked with a dashed line. Modulo
uncertainty in the exponent estimates, the data should
converge to these lines at large r. Statistical errors limit
us to small r, because of the rapid decay of the 3-point
functions with r. Despite this, there is agreement, within
errors, with the CFT prediction once r & 3.

Motivated by this consistency, we make a very prelim-
inary estimate of the universal constant CAAS . Fig. 18
shows finite-r estimates obtained from Eq. 28 (for each
geometry of 3-point function). The data suggest that
CAAS ∼ 1.5. The uncertainty is large, because of the
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FIG. 18. Main panel: Finite-r estimates of the OPE coef-
ficient CAAS using 3-point functions with four different ge-
ometries, using data from system size L = 48 (error bars are
from variation between 6 samples). Inset: Average of the four
estimates for L = 48 and also for L = 32.

very small range of r, and because the uncertainty in
αA,S (obtained from the 2-point function in Sec. VI) is
hard to estimate. It would be worthwhile to improve this
estimate. Refs. [75] and [76] discuss methods for numer-
ical estimation of OPE coefficents.

VIII. STOCHASTIC DYNAMICS OF
MEMBRANES

So far we have discussed the gauge theory as a prob-
lem of equilibrium statistical mechanics in either 2+1 or
3+0 dimensions. But our simulations involve a fourth
coordinate, which is Monte Carlo time (denoted t). The
Monte Carlo dynamics may be interpreted physically as
a model for stochastic thermal motion of classical mem-
branes (Sec. II B), or alternately of classical spins in 3D
(Sec. II A). These dynamics contain additional universal
data beyond the data in static correlations: most impor-
tantly, the dynamical exponent z that dictates how the
typical relaxational timescale τ scales with system size
L at the critical point, τ ∼ Lz.12 Two-time correlation
functions in this dynamics are also an alternative means
of determining the exponents xA and xS , as shown below.

A. Universal dynamics and duality

There is great freedom in the microscopic definition
of the stochastic dynamics, i.e. the choice of update
for our Monte Carlo Markov chain. But we expect to
find a dynamical fixed point that embraces a large class

12 The dynamical exponent z of the 3+1D stochastic dynamics
should not be confused with the dynamical exponent zQM = 1
of the 2+1D quantum system.

of microscopic updates that are local and preserve de-
tailed balance (our updates are local and are described in
Sec. VIII C below). This is analogous to, say, the critical
3D Ising model which shows a robust universality class
for spin-flip dynamics with no conservation laws (the uni-
versality class of “Model A” [77–92]).

As in the Ising model, the dynamical universality class
may change if we introduce conservation laws [78]. For
example, dynamics that conserve the total membrane
area (the total number of occupied plaquettes) could be
relevant to some experimental settings. The dynamical
universality class may also change if we include nonlocal
updates in the Monte Carlo simulations: finding a non-
local update that speeds up simulations by reducing z is
a challenging open problem (Sec. XI).

The present dynamical critical point has one subtlety
that arises from self-duality. We have argued that self-
duality is a Z2 symmetry of the 3D fixed point, allowing
us to classify scaling operators as Z2 even or odd (S and
A respectively). The mixed correlator 〈AS〉 therefore
vanishes in the equilibrium ensemble.13 But the Monte-
Carlo dynamics itself is not Z2-symmetric [12]. To define
the dynamics we had to choose one of the two dual rep-
resentations, either on the original cubic lattice or on its
dual, breaking the symmetry between them. As a result,
the mixed correlator 〈AS〉 can be nonzero for non-equal
times.

Assuming that the scaling operators A(r) and S(r) of
the three-dimensional theory are lifted to scaling opera-
tors A(r, t) and S(r, t) in the dynamical theory, standard
dynamical scaling [78] at large |r| and t gives:14

〈A(r, t)A(0, 0)〉 = t−2xA/zFAA(t/|r|z, t/Lz), (33)

〈S(r, t)S(0, 0)〉 = t−2xS/zFSS(t/|r|z, t/Lz), (34)

〈A(r, t)S(0, 0)〉 = t−(xA+xS)/zFAS(t/|r|z, t/Lz). (35)

The Z2 symmetry of the equilibrium critical point ensures
that the last line vanishes at equal time.

B. Dynamical scaling collapse

First we obtain the dynamical exponent from the typ-
ical relaxation timescale τ(L) of a sample of size L. We
estimate this timescale from the exponential decay of var-
ious two-time correlators, in particular those of S and A
(inset to Fig. 19). The various estimates are consistent
with each other,15 and fitting τ(L) to a power law gives:

z ' 2.48. (36)

13 As discussed in Sec. III A, the lattice operators are only self-dual
or anti-self-dual up to derivative terms.

14 Detailed balance implies that the correlator is invariant under
t→ −t so we take t > 0.

15 At first glance we might have expected the relaxation times for
duality-odd and duality-even operators to differ by a nontrivial
order-one factor, due to coupling to eigenstates of the Markov



16

t/L2.48

100

101
L

2x
A
〈A

(0
)A

(t
)〉

t/L2.48

100

101

L
2x

S
〈S

(0
)S

(t
)〉 32

48

64

96

0.000 0.002 0.004 0.006 0.008 0.010 0.012
t/Lz

10−1

100

L
x
S
+
x
A
〈S

(0
)A

(t
)〉

30 40 60 100
L

102

103

τ

FIG. 19. Main panels: Scaling collapse of autocorrela-
tion functions for 〈A(0)A(t)〉 (top), 〈S(0)S(t)〉 (center) and
〈S(0)A(t)〉 (bottom) as a function of t/Lz (using xA = 1.224
and xS = 1.506). Inset: Autocorrelation time as a function
of system size for 4 different correlators: 〈E(0)E(t)〉 (blue tri-
angle), 〈A(0)A(t)〉 (orange triangle), 〈S(0)S(t)〉 (green pen-
tagon), 〈S(0)A(t)〉 (red star). Straight line fits all the data
points to a power-law τ = ALz with z = 2.48.

For comparison, this is larger than the dynamical expo-
nent for spin flip dynamics in the 3D Ising model [79–92],
for which a recent estimate is z = 2.0245(15) [92].

The main panel of Fig. 19 demonstrates scaling col-
lapse for the temporal correlators of the spatially av-
eraged operators A and S, using this exponent. (The
relevant scaling forms are given by integrating Eqs. 33–
35.) Results are consistent with expectations from
Sec. VIII A, including the continuous vanishing of the
scaling function for 〈S(0)A(t)〉 as t→ 0.

C. Monte-Carlo updates

The simplest Monte Carlo update is one that flips the
state of a single plaquette with the appropriate Metropo-
lis probability. However, a notable feature of configura-
tions close to the multi-critical point is that only a very
small fraction (≈ 2.5%) of links are occupied. When oc-
cupied links are rare, an attempted plaquette update has
a high chance of creating four new occupied links, signifi-
cantly increasing the energy, and therefore a high chance
of being rejected.

This suggests that while plaquette updates are neces-
sary for allowing occupied links to move, they are in-

matrix with different symmetry under duality. But the Monte-
Carlo dynamics is not in fact symmetric under duality, so all
operators can couple to the lowest excited state, whose eigenvalue
determines τ .

efficient at moving surfaces around. To speed up the
equilibration of surfaces we therefore combine plaquette
updates with a second update that flips the state of all
six surfaces of a cube. Since this move never changes the
number of occupied links, it does not face the problem
above. Since this move is still a local update we do not
expect it to change z, as we have confirmed numerically.
See App. C for further details including the scheme for
parallelization.

IX. MEMBRANE PATCHING, EMERGENT
ONE-FORM SYMMETRY, AND WORLDLINE

PERCOLATION

In this section we widen our focus to transitions out
of the deconfined phase generally. We give a construc-
tion for the “fictitious” Ising order parameters (that are
the key feature of Ising∗ transitions) on the Higgs and
confinement lines. We find that these fictitious order pa-
rameters can be constructed all the way along the Ising∗

lines, but not at the self-dual critical point. The disap-
pearance of the fictitious order parameter at the self-dual
critical point is associated with the emergence of a scale-
invariant ensemble of loops there.

Studying this ensemble of loops with percolation-like
observables [6, 74] allows another numerical test of scale-
invariance at the self-dual critical point, and gives an-
other critical exponent with which to characterize it
(Secs. IX B, IX C).

A. Patching membranes

The fact that the e and m condensation transitions
have Ising exponents (away from the self-dual line) is
easy to understand at the boundaries of the phase dia-
gram (Fig. 2), as reviewed in Sec. II E [3, 11]. In these
limits the partition function can be written as a sum over
closed membrane configurations. Mapping these closed
membranes to Ising domain walls gives the relation to
Ising.

Moving away from this extreme limit, the membranes
acquire “holes” [6]. (We use the term “hole” loosely:
more precisely, we mean any connected cluster of links
in ∂M, as defined in Sec. II B.) But it is natural to
think that, if these holes have a finite typical size, coarse-
graining beyond this size may restore a picture in terms
of closed membranes that can be interpreted as Ising do-
main walls.16 This is a heuristic explanation for why an
effective Landau theory is useful even some distance away
from the boundary of the phase diagram.

Here we wish, first, to give an explicit construction
of these emergent degrees of freedom. Our approach is

16 Analogs of this phenomenon may also be found in 2D [93].
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simply to “repair” the membranes M in a given config-
uration. We will be schematic, deferring further details
and a numerical demonstration to Ref. [66]. Second, we
wish to understand what happens to the fictitious order
parameter when move along the Ising∗ transition line to-
wards the self-dual critical point. This issue is closely
connected to the question of where in the phase diagram
emergent “one-form” symmetries [33–35] exist.

We consider the membrane ensemble in Eq. 3, which
is convenient for describing one of the two dual one-form
symmetries. By duality, analogous considerations apply
for the dual symmetry. (The Ising∗ transition that we
discuss below is the m condensation line.)

Let us briefly make the connection with a formal point
of view. The fictitious Ising order parameter will make
sense if (perhaps after coarse-graining) we can consis-
tently define string operators VP = ±1, supported on ar-
bitrary paths P in spacetime, that count the parity of the
number of membranes that intersect P . Let us assume
that we can define such operators which are functions of
the membrane configuration M, and whose value is un-
changed if the shape of the path P is deformed (while
preserving the locations of the endpoints, if P is not a
closed loop). We can then define a coarse-grained Ising
variable φr, up to a global Z2 ambiguity, by identifying
φrφr′ with VP for any path P between r and r′. (Here
for simplicity we consider an infinite system.17)

Such string operators, obeying an invariance under de-
formations, define a Z2 one-form symmetry (see Ref. [34,
35] for definitions).18 Switching briefly to the language
of 2D quantum states, the analogous quantum opera-
tors in the toric code are simply the familiar topological
string operators [22] which can be used to create pairs
of m anyons at their endpoints (a similar dual operator
creates pairs of e anyons). Perturbing away from the
solvable limit of the toric code, dressed versions of these
string operators are expected to exist in principle so long
as the other anyons, which braid nontrivially with m,
remain gapped [35, 94].1920

17 If the original system is finite with periodic boundary conditions,
then we must sum over periodic and antiperiodic boundary con-
ditions for φr.

18 Formally, the relation between the models with Z2 global and
Z2 one-form symmetries is via gauging of these symmetries with
flat gauge fields [34].

19 Ref. [94] gives a rigorous result for the case when all excitations
are gapped.

20 The various string operators can be connected to the Freden-
hagen Marcu order parameter [95] and the Huse-Liebler horse-
shoe [6, 59], long used as diagnostics for deconfinement. The
dressed string operators above obey the property of invariance
under deformations. “Bare” string or Wilson line operators do
not, and their correlators generically include a product of lo-
cal contributions from along the length of the string. However,
universal data can still be extracted by dividing an appropriate
open expectation value for an open Wilson line by the expec-
tation value of a closed Wilson line, in order to cancel the UV
contributions [6, 95].

FIG. 20. Membrane patching process (schematic). A config-
uration M of membranes, with a non-empty boundary ∂M
made up of finite clusters of occupied links (shown red) is
“patched” by attaching finite surfaces (blue) to the compo-
nents of ∂M. In the resulting ensemble of closed membranes,
line operators may be defined, specifying an emergent one-
form symmetry. A “fictitious” scalar field φ = ±1 may also be
introduced, whose domain walls are the patched membranes.
The Ising∗ transition is the ordering transition for this ficti-
tious field.

Returning to the membrane picture, how would we ex-
plicitly define such string operators, or the φr configura-
tion, in a simulation? A natural approach is to start with
the membrane configuration, and try to “patch up” the
holes, to give closed membranes. This is not a strictly lo-
cal process, since holes can be of any size. We also have
some freedom in the convention, or algorithm, for con-
structing the patching surfaces.21 But, if holes have a
finite typical size, and large holes are exponentially rare,
we expect the nonlocality in the patching operation to be
mild. Each finite “loop” (cluster of links) in ∂M may be
patched by attaching a finite surface of comparable size.
This is illustrated in Fig. 20.

Having done this, we may define φr (again with a
global Z2 freedom). Because of the nonlocality of the
patching operation, this effective field only really makes
sense on lengthscales larger than the typical size of a
loop. (It will therefore be most useful as an effective
field in a Lagrangian when it has a correlation length that
is parametrically larger than this loop size, or infinite.)
This construction allows us in principle to compute the
“two-point” correlation function of φr in a simulation,
and extract the corresponding anomalous dimension, de-
spite the fact that φr is not a local gauge invariant quan-
tity [66].

We may also define thickened string operators. Let P
be, say, a straight path of length ` � 1. In order to
determine how many domain walls P passes through af-
ter patching, we must check how many loops P threads
in the unpatched configuration M. This requires us to
examine a cigar-shaped region around P , wide enough
to contain (with probability close to one) all the loops

21 We defer a discussion of numerical implementation to Ref. [66].
To have a simple convention in mind, we can define the surface
associated with a given connected cluster of links in ∂M as the
(possibly self-intersecting) surface traced out when the cluster is
shrunk down onto its centre of mass.
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FIG. 21. Phase diagram showing the phase boundary for per-
colation of e worldlines (defined as clusters of links in ∂M, see
Eq. 3). The deconfined phase lies within the non-percolating
phase. The self-dual line is shown dashed.

which P threads. The operator VP is therefore a func-
tion of the degrees of freedom within this cigar-shaped re-
gion. When large loops are exponentially suppressed, the
largest loop that P threads will typically be of size ∼ ln `
(due to rare large loops), so the typical width of the cigar
should be of this order. However, close to the endpoints
of P , it is sufficient for the width to be only somewhat
larger than the typical loop size (i.e. `-independent).

The above pertains to the case where the “holes” have
a finite typical size ξh. If on the other hand ξh diverges,
so that samples of arbitrarily large size L contain holes of
size comparable with L, then this procedure for defining
the string operator and effective Ising order parameter is
liable to fail (since φr and VP can become highly nonlo-
cal). That is, a sufficient22 condition for this procedure
to work is that the appropriate set of worldlines, ∂M,
is in the non-percolating phase when viewed as a bond
percolation configuration.

For this reason it is interesting to revisit the question
of where in the phase diagram these worldlines percolate
[6], which we do next. For example, as we move along
the confinement transition line, starting at y = 0 (where
there are no worldlines) and moving towards the self-dual
critical point, where does the fictitious order parameter
φr — as defined by the above simple algorithm — stop
making sense? The results below indicate that it makes
sense all the way along the confinement line, but not at
the self-dual critical point where that line terminates.
They are consistent with the simplest expectation: that
the one-form symmetry which exists at y = 0 persists as
an emergent symmetry all the way along the confinement
transition line, but disappears at the self-dual critical

22 This is only a sufficient condition: see e.g. the comment on
doubled strands in Sec. IX B below.

FIG. 22. Loops in a sample of system size L = 32 at
x = 0.6367. A spanning loop is highlighted in red (note pe-
riodic B.C.s). Our definition of a “loop” allows for junctions
where 4 or 6 occupied links meet, but as can be seen they are
relatively rare at the critical point.

point. Therefore, the RG flow from the self-dual fixed
point to the Ising∗ fixed point involves the emergence of
the one-form symmetry. Similar considerations apply for
the dual one-form symmetry along the Higgs line.

B. Percolation summary

Our result for the percolation phase diagram is shown
in Fig. 21 and explained in Sec. IX C. Within our numer-
ical precision, the percolation phase boundary matches
the thermodynamic boundary of the deconfined phase
along the entire Higgs transition line (to the right of the
self-dual line), and passes through the self-dual critical
point. (The percolation transition line also lies very close
to the first order line, though closer examination indi-
cates that these two lines do not entirely coincide, see
App. D.)

The fact that the percolation line passes through the
self-dual critical point agrees with the scenario in Ref. [6].
A far as we are aware, however, this result is not guaran-
teed a priori: the geometrical percolation transion could
have separated from the Higgs transition at some point
along the Higgs line, with the multicritical point lying in
the interior of the percolating phase (see footnote23).

23 This is because there are in principle two ways for the loops
∂M to undergo a percolation transition. Heuristically these cor-
respond to proliferation either of single strands or of doubled
strands (thin ribbons). The former results in a Higgs transition,
but the latter does not. This can be made slightly more precise
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It is also striking that the self-dual critical point lies on
the percolation phase boundary despite having a very low
fraction of occupied links, around 2.5%. Despite their low
density, these links make up a scale-invariant ensemble
of clusters. Fig. 22 shows the loops ∂M in an example
configuration.

This scale invariance allows us to define a new expo-
nent at the self-dual critical point, namely the fractal
dimension df of the critical loops. A priori, this expo-
nent is independent of the scaling dimensions of local
operators discussed above: df = 3− xconn is determined
by the scaling dimension xconn of a nonlocal geometri-
cal operator of the type familiar from percolation [74].24

Interestingly, though, our numerical result for df below
(Sec. IX C),

df = 1.77(2), (37)

is consistent with xconn
?
= xA, perhaps hinting at addi-

tional hidden symmetry structure at this critical point.
(See Sec. X A for an argument that xA ≤ xconn.)

C. Percolation observables

We locate the boundary between percolating and
short-loop (non-percolating) phases using the spanning
probability, Ps. This is the probability that the sam-
ple contains a loop which spans the sample in a given
axis direction.25 In the thermodynamic limit, this quan-
tity converges to zero and to one in the nonpercolating
and percolating phases respectively, and it is expected to
take a universal value in between 0 and 1 at a continuous
transition between the two phases.

We estimate the percolation phase boundary from
crossings in Ps, plotted as a function of y, using small
system sizes L = 8, 12 and 16 (data not shown). We use
larger sizes to analyse the transitions at x = 1, at y = 1,
at the multicritical point and in the region around it. We
may also obtain the correlation length exponent from a
scaling collapse of Ps.

The phase diagram Fig. 21 shows three different
phases. The deconfined phase has short loops, while the

by extending the lattice gauge-Higgs theory to include a replica
index α = 1, . . . , n on the matter field τ , with the limit n → 1
recovering the initial problem. Condensation of τα results both
in percolation and in a Higgs transition, while condensation of
the composite field τατβ , which is gauge neutral but charged
under replica symmetry, results in percolation but not a Higgs
transition [96] (in this case the percolation transition has no ther-
modynamic effect [74]). The “double-line” percolation transition
does not necessarily obstruct the membrane-patching procedure,
since there is no large-scale ambiguity about patching the surface
between two nearby lines.

24 The probability that two links separated by a distance r � 1 lie
on the same cluster decays as r−2xconn .

25 A loop is defined to span the system in (say) the x direction if it
visits each of the L distinct planes of x-directed links.

FIG. 23. Scaling collapse of Ps as a function of (x− xc)L1/ν

with xc = 0.63666 fixed. Inset: flow of Ps as a function of
the system size for several x values close to the multicritical
point, showing approximate scale invariance at x = 0.6367.
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FIG. 24. Mass of the largest cluster (number of links) as a
function of the system size at x = 0.6367. The dashed line
fits system sizes as a power-law ALdf , with df = 1.77(2).

thermodynamically trivial phase splits into a percolating
and a non-percolating phase (this is possible because the
percolation transition need not have any thermodynamic
signature). Note that here we are considering percola-
tion of e worldlines: the phase diagram for percolation
of m worldlines (in the dual membrane representation)
may be obtained by duality.

As a check, we first examine the percolation transitions
on the boundary of the phase diagram, where we expect
to see standard universality classes (data in App. D).
At x = 1 results are as expected from the Ising mapping,
with a fractal dimension consistent with the known value
for critical Ising worldlines [97, 98], and correlation length
exponent consistent with the Ising value. At y = 1, where
the percolation transition is purely geometrical (has no
thermodynamic signature) exponents are consistent with
the standard 3D percolation universality class.

Fig. 23 shows data on the self-dual line, close to the
self-dual critical point. The data are compatible with a
critical point very close to x = 0.6367 (inset of Fig. 23),
i.e. with geometrical criticality coinciding with the self-
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dual critical point at the corner of the deconfined phase.
A scaling collapse of Ps as a function of (x − xc)L

1/ν ,
leaving xc and ν free (not shown) gives xc = 0.63664(10)
and ν = 0.69(6) compatible with our best estimates for
the self-dual multicritical point. In Fig. 23, we show the
scaling collapse when xc is fixed to our previous best
estimate xc = 0.636660 (Sec. V A). We use B-splines with
5 knots and obtain ν = 0.70(6) for a fit that gives χ2 = 27
for 24 degrees of freedom. Using ν−1 = 3 − xS , this
result for ν is consistent with our previous estimate of
xS , though with lower precision.

At the self-dual critical point, loops are fractal, and
exist on all scales (Fig. 22). The fractal dimension df
can be estimated from fitting the total mass of the largest
loop to a power-law in L, Fig. 24. The straight line fits
the whole range of system sizes from 8 to 64, providing
the estimate df = 1.77(2) quoted above.

X. RELATED MODELS

The previous section concludes our analysis of nu-
merical data. We now consider some variations of the
model, and relations to other models. Sec. X A con-
nects the self-dual critical point to another partition func-
tion, for a “topologically constrained” ensemble of loops,
which it may be interesting to study further. Sec. X B
and Sec. X C discuss perturbations and crossovers in the
gauge-Higgs model. Sec. X D discusses our numerical ob-
servation that the exponents xA and xS are close to ex-
ponents in the XY model.

A. An unusual self-dual loop model

In Sec. II C we considered a representation of the
gauge-Higgs partition function as a “loop model”, for
two species of “loops”,26 with a topological sign factor
(−1)linking in the Boltzmann weight. In that model the
two species of loops live on distinct cubic lattices. Here
we consider a modified loop model in which the loops live
on the same cubic lattice. This allows the partition func-
tion to be re-expressed in a form involving a topological
constraint rather than a topological sign factor.

Let Ce and Cm be two species of loops on the cubic
lattice. Here we define the allowed loop configurations
differently to those in Sec. II C: now we insist that the
loops are strictly self-avoiding and mutually avoiding (a
loop may visit a given site at most once, for example).

With this definition the linking number X̂ is well-defined.
The partition function is

Zmod = 4
∑

Ce,Cm
y|Ce|y′|Cm|(−1)X̂(Ce,Cm). (38)

26 Recall that the “loops” in Eq. 5 are really clusters, since any
even number of occupied links can meet at a node.

(|Ce| is the number of occupied links in Ce, etc., and the
loops in Ce ∪ Cm are mutually avoiding.) We do not yet
know the full phase diagram of this new model, but it is
plausible that it may also show a self-dual critical point,
in the same universality class as the lattice gauge theory
studied above.

As an aside, we note that the model could be varied in
many ways. We could allow the “loops” to be clusters (as
in the previous model, Eq. 5), by allowing the number of
occupied links adjacent to a site to be any even number
(rather than just 0 or 2 as in Eq. 38). With this choice
the model maps on to the original gauge-Higgs model in
the limit y → 0 and in the limit y′ → 0. This choice may
have advantages for simulations (as may other choices
of lattice as noted below). These changes do not affect
the points we make here, so we consider the more easily-
visualized ensemble of strictly self-avoiding loops.

Let C denote the full loop configuration, without regard
to species labels, and let us specialize to the self-dual line
where y = y′:

Zmod = 4
∑

C
y|C|

∑

species
labels

(−1)X̂(Ce,Cm). (39)

The final sum is over assignments of the loops in C to
species e or m, i.e. over splittings of C into Ce and Cm.
For simplicity, let us choose (non-periodic) boundary con-
ditions such that loops cannot end on the boundary or
wind around the system.

We can sum over the species assignments explicitly, for
a fixed C. The result is simple:27

Zmod = 4
∑

C
y|C| × 2(# loops in C) × χC . (40)

Here χC = 0, 1 depends only on the topology of C, and
simply imposes a restriction (constraint) on the allowed
topologies. χC = 1 so long as every loop in the config-
uration links with an even number of other loops, and
χC = 0 otherwise.28

Strikingly, this expression is sign-free, and could be
sampled with Monte-Carlo, using a local update that pre-
served the mod 2 total linking number of each loop. It
would be interesting to know the phase diagram of this
model or variants of it. (For an efficient numerical study,
it might be useful to modify the lattice geometry of the

27 To see this, let i, j be indices running over the distinct loops in C.
Let si be a species index, with si = 1 for an e worldline and si =
−1 for an m worldline. Finally let ni,j = 0, 1 be the Z2 linking
number of loops i and j, which is straightforwardly defined since
all loops contract to a point. The linking sign for Ce and Cm may

be written (−1)X̂(Ce,Cm) = e
iπ
2

∑
i<j ni,j(2−si−sj). Summing

over the si gives the result in the text. The sum vanishes unless∑
j(6=i) ni,j is even for every i.

28 If the topological constraint in Eq. 40 is relaxed (by removing
the factor χC) we have the partition function for a version of the
XY model [99].
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FIG. 25. Schematic: some of the configurations contribut-

ing to the correlator 〈Ã(r)Ã(r′)〉 in the model (40). Circles
indicate locations r, r′.

model so that loops can form nontrivial links on a shorter
lengthscale.29)

This model also allows an interesting topological in-
terpretation for correlation functions of the anti-self-dual
operator.

In the ensemble (38), let us define the operator Ã(r)
at a site r to take the value 0 if the site is not visited by
a loop, 1 if the site is visited by an e loop, and −1 if the
site is visited by an m loop. This operator is odd under
duality, so analogous to the operator A(r) defined for the
gauge-Higgs model in Sec. III A.

By again explicitly summing over the loops’ species

labels, we may write correlators of Ã in the formulation

of Eq. 40. First, an insertion of Ã(r) forces a loop to pass

through r. Second, the Ã(r) insertion forces the total
linking number of this anchored loop (with other loops)
to reverse its parity. In the original ensemble (40) every

loop has even linking. In the presence of Ã insertions,
the linking number of a loop that passes through an odd

number of Ã operators must instead be odd (while the
linking number of a loop that passes through an even

number of Ã operators remains even).
In Fig. 25 we illustrate some of the configurations that

contribute to 〈Ã(r)Ã(r′)〉. For simplicity, we show the
schematic situation at small y, where loop length is sup-
pressed. The first term involves a single loop (with zero
linking) that passes through both insertions. The other
terms involve a chain of linked loops, with the loops at
the two ends of the chain, passing through r and r′, hav-
ing odd linking. (This picture shows that in the limit of
small y the correlation length ξ for this correlator is pro-
portional to | ln y|−1, since we must pay a factor of y for
every unit of loop length.) Moving away from the regime
of small y, it remains true that there are two types of

terms: those where the two Ã insertions lie on the same
loop, and those where they lie on distinct loops which
(unlike all the other loops in the configuration) have odd
linking.

Assuming this model has a self-dual critical point, then

this topological picture for 〈ÃÃ〉 yields an inequality for
the fractal dimension df of loops. This sheds some light
on the coincidence of exponents that we found numer-
ically in Sec. IX. Recall that the connectivity correla-
tor, Pconn(r, r′) ∼ r−2xconn , is the probability that two

29 In the model (38) as it stands, the smallest loop that can be
nontrivially linked by another loop is a square of side length 2.

distant sites are connected by a loop. Above we have
shown that these connected configurations are a subset

of the configurations that contribute to 〈ÃÃ〉. That is,

〈ÃÃ〉 = Pconn +R, where R is the sum over the remain-
ing configurations and is positive. Therefore

xA ≤ xconn, (41)

or equivalently df ≤ 3− xA.
We expect that when the model above is perturbed

away from the self-dual line, an Ising∗ transition can take
place, as in the original gauge-Higgs model. In the lan-
guage of Eq. 38 this occurs in the same manner discussed
in Sec. II E: if one of the loop species has a finite typi-
cal size, it can be integrated out at large scales, leaving
a simple ensemble of Ising-like worldlines (topologically
unconstrained loops with a fugacity 1 per loop). It is also
possible to see this crossover in the language of Eq. 40:

adding the duality-breaking perturbation Ã relieves the
topological linking constraint in Eq. 40 and leads to an
ensemble where large loops have a fugacity of 1.30

B. Perturbations of the gauge-Higgs model

After this detour, we return to the standard gauge-
Higgs model to discuss some remaining questions.

We have characterized the leading self-dual and anti-
self-dual scalar (spin-zero) operators at the self-dual crit-
ical point numerically, but it remains to characterize the
subleading operators in these sectors, as well as operators
with higher spin. One motivation for this is to formally
determine the number of relevant scaling parameters once
duality is broken, as we explain below.

On the appropriate line in parameter space, self-
duality is an exact property of the standard gauge-Higgs
model. But in many settings where the gauge-Higgs
model is a useful effective theory, exact self-duality will
be broken in the ultraviolet by additional interactions.
It is natural to conjecture that the phase diagram struc-
ture in Fig. 1 can nevertheless survive, with self-duality
appearing as an emergent symmetry at the corner of the
deconfined phase, where Higgs and confinement transi-
tions meet. In order for this to be the case, A and S
should be the only relevant scalar operators at the self-
dual critical point.

At first glance this is demonstrated by the fact that
we only had to tune two parameters to reach this criti-
cal point. However this is not quite correct: the micro-
scopic self-duality symmetry of the self-dual line forces

30 We can see this by summing over all possible spatial patterns of
insertions of Ã (obtained by expanding in this perturbation) for a
given configuration of loops. Since a large loop may lie on either
an even or an odd number of Ã insertions, its linking number
may be either even or odd. Further, summing over patterns of
insertions on an asymptotically large loop, with a fixed parity
for the number of insertions, yields a factor of 1/2 that cancels
the fugacity 2 in Eq. 40.
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all anti-self-dual perturbations to vanish there (not only
the leading A perturbation). Therefore, in principle we
should separately check whether the subleading duality-
odd scalar operator is relevant or irrelevant. Since A itself
has a large scaling dimension, we might expect that this
subleading operator will be irrelevant, but this should be
checked.

The subleading duality-even operator is irrelevant, but
a sufficiently large duality-even perturbation may yield a
“self-dual tricritical” point with an additional relevant
direction.

In Ref. [65] it was argued, using series expansions, that
the toric code with X, Y and Z fields had a critical line,
with varying exponents, in the hx = hz plane. This
will be interesting to investigate further, as continuously-
varying exponents in 3D are rare. However, it should
be noted that, in the present language, the perturbation
hy breaks both internal and spatiotemporal symmetry.
The toric code Hamiltonian with hx = hz, discussed in
Sec. II D, has a duality symmetry D that we may take
to be X → T (Z), Z → T (X), Y → −T (Y ), where T
represents a translation by (1/2, 1/2). It also has an an-
tiunitary time-reversal symmetry which we may take to
act as X → X, Z → Z, Y → −Y , i→ −i. Adding the
hY field breaks both of these symmetries. (It preserves
their product.) It would be interesting to identify the
leading continuum perturbation of the self-dual critical
point that is induced by the hy coupling.

Recent work has demonstrated infinite-randomness
scaling for a range of Higgs transitions in 2+1D quantum
gauge theories with quenched disorder in the couplings
[100]. It would be interesting to study the effect of dis-
order on the self-dual topological phase transition. The
exponents xS and xA imply that spatially uncorrelated
quenched disorder is a strongly relevant perturbation of
the self-dual critical point in its 2+1D quantum man-
ifestation, regardless of whether this disorder preserves
duality or not.31

C. Dimensional crossovers

Various dimensional crossover effects may also be
worth studying. By making one of the three lattice direc-
tions finite and of width 1/T � 1 (with periodic bound-
ary conditions) we may study the effect of a low but
nonzero temperature in the quantum problem [74]. Stan-
dard considerations show that on the boundaries of the
phase diagram (at y = 0 or y′ = 0), the 3D Ising∗ tran-
sitions give way to 2D Ising transitions, but that in the

31 In the classical interpretation of the critical point (where disorder
is uncorrelated in all three directions, rather than being transla-
tionally invariant in the imaginary time direction) disorder that
breaks self-duality is relevant (even if it preserves self-duality on
average) while since xS ' 1.5 disorder that preserves self-duality
is close to being marginal [74].

interior of the phase diagram these transitions become
crossovers, with a finite correlation length [101]. This
correlation length is exponentially large in 1/T at small
T . In the worldline representation (5) this scaling is
associated with closed worldlines of the massive anyon
which are of length 1/T and wrap around the temporal
cycle.32 (This exponential scaling may be why a numer-
ical study of the Z2 gauge-Higgs model instead reported
finite-temperature transitions [102].) A line of first-order
transitions on the self-dual line will remain at small fi-
nite temperature. What happens to the self-dual critical
point at nonzero temperature is less clear. The simplest
possibility is that it becomes a conventional critical end-
point, so that the interior of the phase diagram contains
only a first-order line, bounded by two conventional crit-
ical endpoints.

Other boundary condition choices for the finite dimen-
sion give other phase diagrams. For example, consider
the loop model (5) in a slab geometry of thickness `, with
open boundary conditions in the finite direction, with
loop strands forbidden from terminating on the bound-
ary. Physically this can be obtained by taking a 2D quan-
tum system deep in the deconfined phase (corresponding
to y, y′ � 1) and then varying the couplings inside a strip
of width ` to allow anyons to proliferate there. Isolated
strands that span the finite direction are now forbidden,
so the mechanism that rendered the correlation length
finite in the previous quasi-2D geometry is removed. In-
stead, after coarse-graining to scales � ` we may argue
for an effective 2D loop model with two species of loops
(and with no nontrivial topological sign factor). Away
from the self-dual line, 2D Ising transitions are likely,
associated with proliferation of a single loop species (a
single anyon type). It may also be possible to have a
gapless Ashkin-Teller-like regime on part of the self-dual
line, where both species are critical.

If we think of the length-` direction here as imaginary
time instead of space, this setup may be related to the
interesting finding of 2D Ashkin-Teller criticality in a de-
formed toric code wavefunction, for which equal-time cor-
relators map to correlators in a 2D classical model [103].
This deformed wavefunction is given by a finite-depth
non-unitary circuit acting on the toric code wavefunction.
This can be visualized in a path integral representation.
In the zero-temperature path integral for the deconfined
phase, the evolution for imaginary times (−∞, 0) can be
viewed as preparing the ground state ket and the evolu-
tion for times (0,∞) as preparing the corresponding bra.
To obtain equal-time correlators in the deformed wave-
function, we insert a “slab” of finite temporal extent in
between these two pieces, representing the action of the
nonunitary circuit on bra and ket. This is reminiscent

32 Such configurations are suppressed by a factor ∼ exp(const./T )
due to the line tension of the worldlines. This factor
can be mapped to an exponentially weak magnetic field
h ∼ exp(const./T ) in an effective 2D Ising model [101].
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of the setup for the quasi-2D loop model above (since in
the spactime region outside the slab we set y = y′ = 0,
meaning that, in the loop model picture, worldlines are
forbidden except inside the slab).

It will also be interesting to characterize boundary
critical phenomena, and conformally invariant boundary
conditions, for the self-dual topological transition.

D. Comparison with XY exponents

A striking feature of our numerical results is that the
values for scaling dimensions are close to certain values
for the 3D XY universality class. Below we discuss why
this is surprising.

At first sight (however, see below) a relationship with
XY appears a natural guess [6], by analogy with con-
ventional ordering transitions,33 where two Ising critical
lines (together with a first order line) can meet at an XY
critical point. Given two conventional Ising-like order pa-
rameters ϕx and ϕy, and an additional Z2 symmetry that
exchanges them, XY criticality for ϕ = (ϕx, ϕy) can arise
by tuning one parameter because the symmetry-allowed
“cubic” anisotropy ϕ4

x + ϕ4
y − 6ϕ2

xϕ
2
y is a (weakly) irrel-

evant operator at the XY fixed point [104, 105].
In the present model, we know that the Ising∗ lines

can be understood as ordering transitions for “ficti-
tious” (non-gauge invariant) Ising-like order parameters.
Therefore at first sight it is tempting to make the above
analogy. We would then identify the operator S with
the thermal operator ϕ2, and the operator A with the
symmetry-breaking mass operator ϕ2

x − ϕ2
y. The scal-

ing dimensions of these operators in the XY model are
xϕ2 = 1.51136(22)) and xϕ2

x−ϕ2
y

= 1.23629(11) [106–108].

Strikingly, the differences between these values and our
results for xS and xA in Tab. I are small, comparable
in size with the (statistical) error bars quoted in the ta-
ble.3435

The problem with this analogy is that it ignores the
nontrivial mutual statistics between e and m excitations
[13, 14, 37] that are the key feature of the transition.
These mutual statistics do not affect critical exponents on
the Ising∗ lines, because only one of the two excitations
is massless on these lines. But both excitations become
massless at the self-dual critical point.

33 As well as “starred” (weakly gauged) versions of such transitions.
34 Our result for the fractal dimension of an e worldline is also

consistent with the value for an XY worldline, but it is unclear
at present whether this is an independent exponent or whether
df = 3− xA (see the discussion below Eq. 37 and in Sec. X A).

In the XY model, dXY
f = 3− xϕ2

x−ϕ2
y

by virtue of known scaling

relations.
35 Our data for the OPE coefficient CAAS in Fig. 18 is not sufficient

to make a very useful comparison, but the known XY OPE co-
efficient value Cϕ2

x−ϕ2
y,ϕ

2
x−ϕ2

y,φ
2 = 1.25213(14) [76, 106] cannot

be ruled out.

For example, any consistent description of the fixed
point should correctly reproduce the spectrum of low-
lying anyonic quasiparticles that exists when we perturb
slightly away from the self-dual critical point, into the
deconfined phase. It is hard to see how this could be
consistent with a mapping that related the present fixed
point and the XY fixed point.

The obstacle to making a connection with XY can also
be seen in the geometrical pictures. In the membrane
picture, the possibility of defining a fictitious Ising or-
der parameter is associated with the membranes being
effectively closed on large scales, as discussed in Sec. IX.
But at the self-dual critical point, we have “holes” in
these membranes on all scales, as we have demonstrated
explicitly. Therefore the attempt to make a connection
with a simple Landau theory, at least in this manner,
fails at this critical point.

It therefore seems likely that the exponents xA and
xS at the self-dual critical point are numerically close to
XY exponents, but distinct from them. If on the other
hand the exponents are the same as those of the XY
fixed point, this relationship between a topological phase
transition and a simple ordering transition would have to
be of a fundamentally new kind. We plan to return to
these questions elsewhere.

XI. OUTLOOK

The three-dimensional Z2 gauge-Higgs model is the
simplest nontrivial lattice gauge theory [3, 11, 13, 14,
23, 24, 109]. Its remarkable duality property allows for
a self-dual topological phase transition whose properties
have long been unresolved. We have given direct evi-
dence for scale invariance at this transition, exploring
system sizes up to two orders of magnitude larger than
the lattice spacing. Exciting directions remain open, on
the computational, experimental, and theoretical fronts.

First, there are many intriguing questions that could
be addressed using further simulations. At the basic
level, armed with the accurate estimate of xc, further
characterization of the critical point will be possible, ex-
amining the scaling dimensions of a wider range of opera-
tors (Sec. X B), and pinning down OPE coefficients more
precisely (Sec. VII).

We have also proposed new models that could be sim-
ulated. The loop model in Sec. X A has a simplified ac-
tion of self-duality. It has a sign-free reformulation of a
nonstandard kind, as an ensemble of loops with a simple
“topological constraint”. (This connects, heuristically, to
the longstanding question from polymer physics of how
to think about the renormalization group for models with
topological constraints [56, 110–118].) This sign-free for-
mulation could be exploited to determine the model’s
phase diagram, and may suggest a more general strat-
egy for obtaining sign-free lattice models for topological
transitions.

In the context of the standard lattice gauge theory,
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a range of perturbations and crossovers may be studied
(Sec. X B and Sec. X C), for example to search for self-
dual tricriticality.

The self-dual topological phase transition can be
viewed as a paradigmatic challenge for Monte Carlo algo-
rithm design. Although it is Monte-Carlo sign-free (un-
like many other lattice gauge theories [119–122]), the lack
of a nonlocal cluster update [36] for ensembles of mem-
branes, and the large dynamical exponent (Sec. VIII),
make it expensive to simulate. Creative algorithmic im-
provements would be valuable. We might consider up-
dates acting on larger finite clusters, perhaps optimized
using machine learning [123, 124].

If we are in the deconfined phase, but close to the self-
dual critical point, various features of the spectrum of
massive quasiparticles [14, 65] will be universal and could
perhaps be examined using Monte Carlo [125], series ex-
pansion [14, 65] or tensor network techniques [126, 127].
For example, does the fermionic ε excitation exist as a
stable bound state in this regime, or inevitably decay
into an e and an m?

Even away from the self-dual point, interesting ques-
tions remain. The existence of “fictitious” Ising order
parameters on the Higgs and confinement transition lines
is the key to the theoretical understanding of these tran-
sitions [3, 6, 11, 59]. We have argued that we can con-
struct these field configurations explicitly by a quasi-local
patching process in the membrane representation of the
partition function, so that for example the Ising “two-
point function” G(r, r′) can be computed numerically.
Formally, this is the expectation value of a dressed string
operator that extends from r to r′ (Sec. IX). In separate
work we will analyze the emergence of this structure in
more detail [66].

The self-dual critical point may be accessible experi-
mentally, either in its 3D classical or its 2 + 1D quantum
manifestation. It would be exciting to see the full struc-
ture of the gauge-Higgs phase diagram, with the meeting
of the two Ising∗ lines, in experiments on amphiphilic
membranes (verifying a longstanding conjecture [6]). In
order to access this point, the membranes must have free
edges, i.e. a nonempty membrane boundary ∂M. How-
ever, by analogy with results in App. B, the required
density of free edges may be relatively small.

Strategies for quantum simulation of lattice gauge the-
ories are under intensive development [128–136], so it
may one day be possible to explore the self-dual critical
point and its real-time quantum dynamics experimen-
tally.

Perplexing theoretical questions remain. Why are our
estimates for xA and xS so close to XY values (Sec. X D)?
Further numerical characterizations of the critical point
mentioned above may shed light on this. Significant in-
put may also come from the conformal bootstrap [137–
140], by exploring the space of theories with the requisite
Z2 symmetry.

There remains the fundamental question that we
started with: can we formulate a useful continuum field

theory for the self-dual topological transition? Criteria
for “usefulness” could include the possibility of calculat-
ing exponents in a systematic expansion, as well as the
possibility of deriving the structure of phase diagram an-
alytically. More generally, the time seems ripe for a nu-
merical and theoretical attack on phase transitions where
multiple species of anyons, with nontrivial statistics, si-
multaneously condense [13, 14, 37, 38].
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Appendix A: Membrane representation of Z

We now review the standard relationship between the
Ising gauge theory partition function and partition func-
tions for membranes on either the original cubic lattice or
its dual [6]. In the interpretation as a 2D quantum system
in imaginary time, these membranes are worldsurfaces of
either electric or magnetic strings (cf. Fig. 5), depending
on whether we use the original lattice or the dual lattice.
In general the strings (which live in a 2D spatial plane)
can be open lines, terminating at e or m particles in the
respective cases. Therefore the membranes (which live in
3D spacetime) are not closed in general, but rather have
boundaries, which are the wordlines of e or m particles
respectively. The “action” of a given membrane configu-
ration (the logarithm of the Boltzmann weight) is, up to
constants, the area of the worldsurfaces plus the length
of the worldlines.

1. Membranes on the original lattice

Using the fact that the variables take only the values
±1, Z in Eq. 1 can be rewritten in a form convenient for
a standard graphical expansion:

Z(x, y) ≡ 1

24L3

∑

{σ},{τ}

∏

�

(
1 + x

∏
σ
)∏

`

(1 + yσττ) ,

(A1)

with K = 1
2 ln 1+x

1−x and J = 1
2 ln 1+y

1−y . We expand out the

products over (1) plaquettes � and (2) links ` in Eq. A1,



25

and represent a given term by colouring plaquettes of the
lattice and highlighting links in bold, as in Fig. 3. A pla-
quette is coloured (“occupied”) iff we pick the “x

∏
σ”

term for that plaquette and similarly a link is bold if we
pick the “yσττ” term. For a given term in the expan-
sion, the collection of occupied plaquettes constitutes the
membrane configuration M.

Now for each term we must sum over σ and τ . The
term will vanish if there is any link ` where the terms
we have chosen contribute σ` an odd number of times in
total. This means that the set of bold links must coincide
with the membrane boundary ∂M to have a nonvanish-
ing term (∂M is defined as the set of links where an odd
number of coloured plaquettes meet). If this is satisfied,
then the sums over σ and τ are both nonvanishing, giving

trivial factors 23L
3

and 2L
3

respectively that cancel the
normalization term chosen in Eq. A1. We are left with
the partition function as sum over membrane configura-
tions weighted by x|M|y|∂M|, Eq. 3.

From this expansion we also see that the face and edge
operators defined in Sec. III may be written as

F(p) =
x

1− x2
(∏

σ − x
)
, E(`) =

y

1− y2 (σττ − y) ,

(A2)

for a plaquette p and link ` respectively.36

The expansion above is the standard high-temperature
expansion, meaning that terms are weighted by powers
of the “fugacities” x and y which are small when K and
J are small. Since the lattice is finite the expansion may
be done exactly, to all orders: i.e. one may think of it
as a reformulation of the partition function and not as
a perturbative series. It is a generalization of the high-
temperature expansion of the Ising model, which would
obtain if the σ field was absent and we just had loops
associated with yττ .

2. Membranes on the dual lattice

Eq. A1 can be related to membranes on the dual lattice
even more directly.

Let us choose the gauge τ = 1 so that the partition
function is a sum over only the σ = ±1 on each link. We
can represent a given term by a collection of occupied
links, where a link ` is occupied iff σ` = −1. (Note that
this notion of a link being occupied is unrelated to the one
in the previous subsection.) Next, recall that plaquettes
of the dual lattice are in 1:1 correspondence with links of
the original lattice, so a configuration of occupied links is

equivalent to a configuration of occupied plaquettes M̃

36 For example, F(p)(1− x
∏
`∈p σ`) = x

∏
`∈p σ`, so that inserting

F(p) in a correlator has the effect of restricting the expansion to
terms where plaquette p is occupied. Equivalently, F(p) is 1 if p
is occupied and 0 otherwise.

on the dual lattice. What is the Boltzmann weight of

M̃? Each occupied plaquette costs x′ ≡ (1− y)/(1 + y)
(from the ratio of the 1 + yσ term in Eq. A1 with σ = −1
to that with σ = +1). Further a link of the dual lattice
where an odd number of occupied plaquettes meet means
a square on the original lattice where

∏
σ = −1. So each

link in ∂M̃ contributes y′ ≡ (1− x)/(1 + x). Including
the normalization,

Z(x, y) =
(1 + x)3L

3

(1 + y)3L
3

23L3

∑

M̃

x′
|M̃|

y′
|∂M̃|

. (A3)

3. Manifestly self-dual representation

Next we demonstrate the reformulation in terms of two
species of loops (or more precisely, clusters), cf. Fig. 4.

In addition to the degrees of freedom σ and τ on the
links and sites (respectively) of the original lattice, let us
add degrees of freedom σ̃ and τ̃ on the links and sites of
the dual lattice. Let us denote the links of the original

lattice by L and those of the dual lattice by L̃. Define

Z ′ =
∑

σ,τ,σ̃,τ̃

e−Stop[σ,σ̃]
∏

`∈L
(1 + yσττ)

∏

˜̀∈L̃

(1 + y′σ̃τ̃ τ̃) .

(A4)

The “topological” action Stop[σ, σ̃] is both gauge invari-

ant and symmetric between σ and σ̃: e−Stop = (−1)X̂ ,

where X̂ is the Z2 linking number of the flux lines of σ
with those of σ̃. However it is convenient here to define
it as

e−Stop =
∏

˜̀∈L̃

(
δσ̃˜̀,1 + δσ̃˜̀,−1

∏
σ
)

(A5)

where these properties are not manifest.
To see the equivalence to the original Ising gauge the-

ory (A1) we simply pick the gauge τ̃ = 1 and do the sum
on σ̃ separately for each link,
∑

σ̃

(
δσ̃˜̀,1 + δσ̃˜̀,−1

∏
σ
)

(1+y′σ̃) = (1+y′)
(

1 + x
∏

σ
)
,

(A6)
so that

Z ′ = 2L
3

(1+y′)3L
3 ∑

{σ},{τ}

∏

�

(
1 + x

∏
σ
)∏

`

(1 + yσττ) .

(A7)
To obtain the expression in terms of Ce and Cm in Eq. 5

we first perform the graphical expansion of the two prod-
ucts in (A4), giving the sum over “loop” configurations
Ce and Cm (Fig. 4). In addition to the fugacities y and
y′ these are weighted by

∑

σ,σ̃

e−Stop

(∏

`∈Ce
σ`

)
 ∏

˜̀∈Cm

σ̃˜̀


 = 2(4L

3+2)(−1)X(Ce,Cm).

(A8)
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FIG. 26. b4(A) = −(1/2)κ4(A)/Var(A)2 as a function of x
for three system sizes. The lines are cubic polynomial fits.

We can see this by using (A5) to make a graphical expan-
sion of the left hand side above, in terms of a membrane
configuration M on the original lattice with boundary
∂M = Ce. For a given term in the expansion, the σ̃ are
fixed by the Kronecker deltas, which dictates the sign of
the product

∏
˜̀∈Cm σ̃ on the LHS of (A8). There are,

for periodic boundary conditions, 2L
3+2 choices ofM for

fixed ∂M = Ce, but they all give the same sign. Alto-
gether,

Z ′ = 2(6L
3+2)

∑

Ce, Cm
(−1)X(Ce,Cm)y|Ce|y′

|Cm|. (A9)

Summarizing, Z ′ can be related to Z in Eqs. 3, A1 by

Z = 4 c
∑

Ce, Cm
(−1)X(Ce,Cm)y|Ce|y′

|Cm|, (A10)

where c = 2L
3

(1 + y′)−3L
3

= 2−2L
3

(1 + x)
3L3

.

Appendix B: First-order coexistence

Although we have concentrated our study on the vicin-
ity of the multicritical point, we can extract from the data
some information related to the first-order coexistence
region along the self-dual line. Starting from the decon-
fined phase (large x) this region starts at the multicritical
point, xc, and ends at a critical endpoint, xcep. The esti-
mate xc ≈ 0.6367 was obtained in Secs. IV and V. The lo-
cation of xcep is, in principle, easier to determine because
in this region b4(A) (defined in Eq. 21) behaves monoton-
ically and presents a crossing, as shown in Fig. 26. From
the figure we roughly estimate xcep ≈ 0.605. Though this
is a rough estimate, it is worth noting that the value of
b4(A) at the crossing point is consistent with standard
Ising universality (as for the liquid-gas critical endpoint),
for which b4(A) ≈ 0.7 [141].

In between xc and xcep, histograms of A or of the to-
tal membrane Area or membrane boundary Length have
two peaks, corresponding to the two coexisting phases.
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FIG. 27. Top: Average plaquette occupation number versus
x obtained from 〈|A|〉 and 〈S〉 on the self-dual line (see text).
The limits of these curves as L → ∞ give the two equa-
tions of state for the two coexisting phases. The colors in
the legend indicate different system sizes. The dashed black
line is the average of the two coexisting phases, determined
by 〈A〉 = 0, and the black stars indicate the locations of xcep
and xc (xcep < xc). Lines are just a guide to the eye. Bottom:
Similarly for the average link occupation number.

For large system sizes our MC scheme will not properly
sample both minima, so it could become hard to obtain
equations of state for each phase. However, we can ex-
ploit the symmetry properties of A and S. Denoting
expectation values in the two equilibria by 〈. . .〉±, in the
thermodynamic limit we have 〈A〉± = ±〈|A|〉. Therefore
by Eqs. 9 and 10,

〈Area〉±
3L3

=
±〈|A|〉+ 〈S〉

12
(B1)

〈Length〉±
3L3

=
1− x2

2x

±〈|A|〉 − 〈S〉
12

+
1− x

2
, (B2)

on the coexistence region of the self-dual line and in the
thermodynamic limit. These equations give equations of
state for each phase. The results are shown in Figs. 27.
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Appendix C: Details of MC scheme and of fits

For most of our simulations, each MC step consists in
updating all of the plaquettes (taking each of the three
orientations in turn) and then updating all of the cubes.
To allow parallelization we divide plaquettes parallel to
the (x, y) plane into 2 sublattices, and similarly for pla-
quettes in the (y, z) and (x, z) planes. We also divide
cubes into two sublattices. We used one MC step as our
unit of time. We studied system sizes up to L = 96 and
our longest simulations had 4×109 MC steps. Error bars
for cumulants of A and S are calculated using bootstrap
methods [36] (for this purpose the correlation time is esti-
mated as the time for the correlation to decay by a factor
of 10).

For the fits in Sec. V the scaling functions were de-
scribed using B-splines with 8 to 12 degrees of free-
dom. The data used for the fits were restricted to
x ∈ [0.633, 0.640] and to scaling variable z ∈ [−0.5, 0.5],
although the particular intervals could slightly change
from fit to fit. The system sizes included correspond to
the best statistical fit, in the sense that the p-value (prob-
ability of getting a χ2 value below the one obtained from
the fit, for the degrees of freedom used) was maximized.

Appendix D: Further percolation data

1. Percolation at the Ising∗ transition (x = 1)

The transition at x = 1 maps to 3D Ising. Up to
a difference in boundary conditions, the wordlines are
those in a standard high-temperature expansion of the
Ising model, and the percolation transition happens pre-
cisely at the Ising critical point for the cubic lattice,
y = 0.21809. We indeed find that curves for the span-
ning probability Ps cross close to this value, and can
be collapsed by plotting as a function of (y − yc)L

1/ν ,
using known Ising critical values, yc,I = 0.21809 and
νI = 0.63012 [97], Fig. 28. We also check that the mass of
the largest loop (number of links, Mmax) follows a power-
law with a fractal dimension consistent with the known
value df,I = 1.7349(65) for Ising worldlines [97]. The in-
set of Fig. 28 shows Mmax as a function of the system
size at y = 0.218.

2. Percolation on the y = 1 boundary

When the percolation transition takes place in within
the thermodynamically trivial phase we expect conven-
tional percolation universality.37 As an example we con-

37 To see conventional percolation exponents here it is important
that the geometrical objects we are considering are really clusters
rather than strict loops: we have nodes where where> 2 occupied
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FIG. 28. Main Panel: scaling collapse of Ps as a func-
tion of (y − yc,I)L

1/νI , for x = 1, with yc,I = 0.21809 and
νI = 0.63012. Inset: Mmax as function of the system size L
at x = 1, y = 0.218. Straight-line shows a power-law using
the fractal dimensions of Ising worldlines df,I = 1.7349.

FIG. 29. Main Panel: scaling collapse of Ps as a function
of (x − xcP )L1/νP , for y = 1, with xcP = 0.0865 and νP =
0.8762 Inset: Mmax as function of the system size L at at x =
0.087. Straight line shows power-law with fractal dimension
of percolation universality class, df,P = 2.53.

sider the case y = 1. An attempt to obtain scaling col-
lapse of Ps suggests that finite size effects are important
for this range of system sizes. Fig. 29 shows an attempt
at scaling collapse using νP = 0.8762 [143]. An estimate
of the fractal dimension of the loops from Mmax (inset to
Fig. 29) gives df = 2.56 (to be compared with 2.53 for
the percolation universality class).

links connect at a site. If we adopted a definition where the
geometrical objects were strictly loop like, we would obtain a
different universality class for unoriented loops [96, 142].
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3. Percolation on the self-dual line

The phase diagram Fig. 21 in the main text shows that
we encounter several percolation transitions as we move
along the self-dual line. We have shown data close to the
self-dual critical point xc in the main text. For smaller x
we encounter the first-order line where two phases coex-
ist, one with A > 0 and one with A < 0. To separate the
properties of the two coexisting phases, we may average
Ps separately for configurations with A > 0 and A < 0.
The phase with A > 0 appears to percolate through-
out the entire range of the first-order line. Therefore the

phase with A < 0 must also percolate for some region of
the first-order line close to the critical endpoint (since the
two phases become identical there). One possibility (at
first sight the more natural) is that the phase with A < 0
undergoes a percolation transition at some intermediate
x lying on the interior of the first-order line. Another
possibility is that this transition is pushed all the way to
xc, with the A < 0 phase having an extremely weak but
nonzero percolation order parameter for x . xc. Data for
small sizes do not allow us to determine which of these
occurs.
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straete, and Jutho Haegeman, “Excitations and the
tangent space of projected entangled-pair states,” Phys-
ical Review B 92, 201111 (2015).

[127] Laurens Vanderstraeten, Jutho Haegeman, and Frank
Verstraete, “Simulating excitation spectra with pro-
jected entangled-pair states,” Physical Review B 99,
165121 (2019).

[128] Marcello Dalmonte and Simone Montangero, “Lattice
gauge theory simulations in the quantum information
era,” Contemporary Physics 57, 388–412 (2016).

[129] Erez Zohar, Alessandro Farace, Benni Reznik, and J Ig-
nacio Cirac, “Digital lattice gauge theories,” Physical
Review A 95, 023604 (2017).

[130] Erez Zohar, Alessandro Farace, Benni Reznik, and J Ig-
nacio Cirac, “Digital quantum simulation of z2 lattice
gauge theories with dynamical fermionic matter,” Phys-
ical Review Letters 118, 070501 (2017).

[131] Christian Schweizer, Fabian Grusdt, Moritz Berngru-
ber, Luca Barbiero, Eugene Demler, Nathan Goldman,
Immanuel Bloch, and Monika Aidelsburger, “Floquet
approach to 2 lattice gauge theories with ultracold
atoms in optical lattices,” Nature Physics 15, 1168–1173
(2019).

[132] Luca Barbiero, Christian Schweizer, Monika Aidels-
burger, Eugene Demler, Nathan Goldman, and Fabian
Grusdt, “Coupling ultracold matter to dynamical gauge
fields in optical lattices: From flux attachment to 2
lattice gauge theories,” Science advances 5, eaav7444
(2019).
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