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Abstract

A global symmetry of a quantum field theory is said to have an ’t Hooft anomaly if it
cannot be promoted to a local symmetry of a gauged theory. In this paper, we show that
the anomaly is also an obstruction to defining symmetric boundary conditions. This applies
to Lorentz symmetries with gravitational anomalies as well. For theories with perturba-
tive anomalies, we demonstrate the obstruction by analyzing the Wess-Zumino consistency
conditions and current Ward identities in the presence of a boundary. We then recast the
problem in terms of symmetry defects and find the same conclusions for anomalies of discrete
and orientation-reversing global symmetries, up to the conjecture that global gravitational
anomalies, which may not be associated with any diffeomorphism symmetry, also forbid the
existence of boundary conditions. This conjecture holds for known gravitational anomalies
in D ≤ 3 which allows us to conclude the obstruction result for D ≤ 4.
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1 Introduction

Given a quantum system with a global symmetry G, the ’t Hooft anomaly (henceforth

simply “anomaly”) is an invariant which represents the obstruction to promoting G to a local

symmetry, or equivalently coupling G to background gauge fields. Anomalies are important

for quantum field theory because they are preserved under renormalization group (RG) flows

of G-symmetric theories [1]. This provides us with a litmus test to see if two G-symmetric

fixed points are connected by a G-symmetric flow.

One canonical argument for anomaly-matching employs anomaly in-flow, the observation

that for many known anomalies, there is a G-symmetric invertible phase in one higher
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dimension,1 for which the anomalous theory defines a symmetric boundary condition, such

that the combined bulk-boundary system can be coupled consistently to a background gauge

field [2]. The anomaly can thus be identified with this invertible phase, also known as the

anomaly field theory. Anomaly-matching then follows because the RG flows of interest are

boundary RG flows for the combined system, and cannot affect the bulk fixed point (which is

in fact topological here). This picture is extremely useful also because a classification exists

for G-symmetric invertible phases, in terms of the cobordism invariants of the spacetime

manifold [3–5].

This picture of an anomalous theory as a boundary apparently does not work if we

want to consider boundary conditions of the anomalous theory itself, since that would be

a “boundary of a boundary”. A similar issue arises in lattice systems, where anomalous

symmetries cannot be realized by tensor product operators, and instead must be realized by

quantum circuits or evolution by a local Hamiltonian, meaning some arbitrary choices must

be made to even define the global symmetry action itself in the presence of a boundary [6].

These issues have lead to a kind of folklore in the subject that anomalous symmetries are

problematic at a boundary.

In this paper, we prove with mild assumptions (although without invoking anomaly in-

flow) that at any boundary of a quantum field theory (QFT), all anomalous symmetries must

be broken (either explicitly or spontaneously) at least to a subgroup which is anomaly-free.

For the well-known perturbative (a.k.a local) anomalies such as the chiral anomaly in

1+1D, the reason is intuitively clear: a purely left-moving current cannot be conserved at

a boundary because charge cannot flow through the boundary. We formalize this argument

and extend it to all dimensions in Section 2, building upon previous results in [7]. By analyz-

ing the Wess-Zumino consistency conditions and the anomaly-descent procedure, we show

that the existence of a symmetric boundary requires the corresponding Schwinger term in

the descent equations to trivialize, which in turn demands the anomaly polynomial for the

relevant symmetries to take a factorized form depending on central U(1) factors of the sym-

metry group. Furthermore, by analyzing the current Ward identities in the presence of a

symmetric boundary in the conformal limit, we prove an obstruction theorem which states

such anomalies must vanish for unitary theories. This argument also applies to systems with

local gravitational anomalies, which shows they cannot have any boundary conditions with-

1A (G-symmetric) invertible phase is a theory T with an inverse T −1 such that the “stack” T ⊗ T −1

(with the diagonal G action) is equivalent to a trivial theory (with trivial G action). We note that for some
gravitational anomalies, e.g. of chiral theories with multiple conformal blocks, there is no invertible bulk
phase which makes the bulk-boundary theory invariant. Instead one needs a theory with anyons to represent
the different conformal blocks, and such a theory is not invertible.
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out breaking the boundary Lorentz symmetry. We also comment on symmetric boundaries

for non-unitary theories which circumvent our obstruction theorem.

We then consider more general global anomalies including those which cannot be diag-

nosed by the divergence of currents and anomalies of discrete symmetries with no Noether

current at all. For these cases we adopt the picture of a global symmetry as a collection of

special defects possessing group algebra fusion rules and obeying a list of axioms [8], which

we review in Section 3. This formulation can be viewed as a generalization of Noether’s

theorem. The Wess-Zumino consistency conditions follow immediately from these axioms.

When these defects are topological (i.e. when there are no gauge-gravity anomalies2), these

conditions imply that the anomaly is described by a group cohomology class of G. In Sec-

tion 3.4 beginning from a symmetric boundary condition we show that the corresponding

cohomology class restricted to the subgroup preserved at the boundary is exact.

More general anomalies (such as gauge-gravity anomalies) must be treated with care,

which requires relaxing our conditions on the symmetry defects to allow mild metric and

tangent structure dependence, which we describe in Section 4. It is conjectured that the

solution to the Wess-Zumino consistency conditions for the anomaly describes a class in

a certain cobordism cohomology of the symmetry group G. For our arguments it is only

necessary that it describes a class in some generalized cohomology theory. We have tried to

achieve a balance between physical intuition and mathematical precision in the description

of these consistency conditions. We also comment on phenomena such as group cohomology

anomalies becoming trivial in this more general classification.

In Section 4.3 we extend our arguments to boundaries in this general framework, showing

once again that no symmetric boundary condition exists. This argument relies on the con-

jecture that systems with gravitational anomalies cannot have boundaries. We have proven

this for perturbative anomalies of Lorentz invariant theories in Section 2, and in Section 4.3

we are able to show it for enough global anomalies that we can conclude the main result for

spacetime dimensions D ≤ 7 for fermions and D ≤ 4 for bosons. To extend this result will

require a better understanding of the general gravitational anomalies in higher dimensions.

In Section 5 we comment on anomaly in-flow, and prove that all symmetries, as we have

defined them, satisfy anomaly in-flow. Finally in Section 6 we comment on extending our

results to higher form symmetries, domain walls, and consequences for emergent anomalies

2In this paper all gauge fields including the metric are non-dynamical backgrounds for global and space-
time symmetries. As is customary in the literature, we still refer to the relevant ’t Hooft anomalies as gauge
and gravity anomalies. There are also mixed anomalies that depend nontrivially on both the metric and the
background gauge fields, which we refer to as gauge-gravity anomalies.
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and gauge theories in 3+1D.

2 Perturbative Anomalies and Boundaries

Here we discuss the interplay between perturbative anomalies of a Lorentz invariant QFT

T with global symmetry G in even spacetime dimensions D = 2n and its possible Lorentz

invariant boundary conditions B. We will show that a continuous global symmetry subgroup

GB ⊂ G can be preserved at the boundary only if it has a trivial ’t Hooft anomaly (including

gauge-gravity anomalies whose anomaly polynomial involves the Riemann curvature as well

as gauge curvatures). Moreover, T will not admit any such boundary conditions if there is

a perturbative pure gravitational anomaly.

2.1 Review of Perturbative Anomalies

Let us first briefly review the perturbative anomalies of QFTs in the absence of boundaries.3

We denote collectively the continuous global symmetry G and Lorentz symmetry of the

theory T by

G = G× SO(2n) . (2.1)

Upon coupling the theory to background G gauge fields B, the perturbative ’t Hooft anoma-

lies manifest through the anomalous variation of the partition function,

A(v,B) ≡ −iδv logZ[B] , (2.2)

under a gauge transformation parametrized by v with δvB = dv + [B, v]. The anomalous

variation satisfies the Wess-Zumino (WZ) consistency condition [10]

δv1A(v2, B)− δv2A(v1, B) = A([v1, v2], B) . (2.3)

This equation ensures that the infinitesimal gauge transformations integrate to an action of

the group of gauge transformations. Solutions to this equation are given by the Stora-Zumino

descent procedure [11–13].

We follow [12] here. Let θα be a set of parameters parametrizing a family of gauge

transformations g(x, θ) with g(x, 0) = 1. We define the corresponding family of transformed

3See [9] for a comprehensive review including the mathematical background.
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background gauge fields

B̄(x, θ) = g−1(B + d)g, (2.4)

which satisfies B̄(x, 0) = B(x). We define the exterior derivative in the parameter directions

d̂ ≡ dθα
∂

∂θα
. (2.5)

The infinitesimal gauge parameters are given by the Maurer–Cartan one-form of G,

v̂ ≡ vαdθ
α = g−1d̂g , (2.6)

which satisfies

d̂v̂ = −v̂ ∧ v̂ . (2.7)

From (2.4) and (2.6) we see d̂ acts on B̄ and its curvature F (B̄) as a gauge transformation

with parameter vα

d̂B̄ = −DB̄ v̂, d̂F (B̄) = [F (B̄), v̂] . (2.8)

The Wess-Zumino consistency condition (2.3) follows from

d̂A(v̂, B̄) = 0 . (2.9)

Indeed if we choose g(x, θ) such that vα(x, θ)|θ=0 coincide with the gauge parameters in (2.3)

for α = 1, 2, equation (2.3) comes from the coefficient of dθ1 ∧ dθ2 at θ = 0 from the above

expression.

Locality requires A(v,B) to be written as an integral of a density
∫
MQ(v,B) on the

spacetime manifold M, and likewise A(v̂, B̄) =
∫
MQ(v̂, B̄). The equation (2.9) is then

equivalent to d̂Q being a total derivative on M. Solutions of this form come in a sequence

of differential forms satisfying the descent equations

d̂Q
(0)
2n+1 + dQ

(1)
2n =0 ,

d̂Q
(1)
2n + dQ

(2)
2n−1 =0 ,

...

d̂Q
(2n)
1 + dQ

(2n+1)
0 =0 ,

d̂Q
(2n+1)
0 =0 ,

(2.10)

where Q
(k)
m is a degree m polynomial in B̄ (which has degree 1) and its field strength F (B̄)
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(which has degree 2), and has degree k in the gauge parameter v̂. At the top of the descent

equations is Q
(0)
2n+1, a Chern-Simons-type term which represents the action of a D + 1-

dimensional bulk theory on the boundary of which T is gauge invariant. It is associated with

a degree 2n + 2 anomaly polynomial I2n+2[T ] = dQ
(0)
2n+1, a polynomial in the background

gauge field strength F (B̄) (which includes the Riemann curvature 2-form R). Note that the

terms Q
(k)
2n+1−k in (2.10) are subjected to ambiguities of the form

Q
(0)
2n+1 → Q

(0)
2n+1 + dα

(0)
2n , Q

(1)
2n → Q

(1)
2n + d̂α

(0)
2n + dα

(1)
2n−1, . . . (2.11)

but the solutions are physically equivalent [14].

The solution to (2.9) is readily obtained from the descent equations (2.10) as

A(v̂, B) =

∫
M
Q

(1)
2n

∣∣∣
θ=0

, (2.12)

where M is the closed spacetime manifold. The rest of the terms in the descent equations

(2.10) also have physical origins. In particular Q
(2)
2n−1 is responsible for the modification of

the equal-time commutation relation of the conserved currents acting on the Hilbert space of

T in the presence of background gauge fields [14–17]. Quantizing the theory on a time-slice

S of M, we define the (smeared) Gauss-law operator for G as usual

G(v) =

∫
S
(ji0(σ) +X i(σ))vi(σ) (2.13)

where σa are the coordinates on S, ji0 is the time-component of the corresponding Noether

current where i is the adjoint index for G and X i ≡ −(Da)
i
j
δ

δBja
generates space-dependent

gauge transformations of the background gauge field B. The commutator of the Gauss-law

operators can differ from that of the Lie algebra of G,4

[G(vα),G(vβ)] = G([vα, vβ]) +

∫
S
S(vα, vβ, B) (2.14)

where the correction term is known as the (integrated) Schwinger term, which captures the

contact term in the equal-time commutator of the conserved currents and equivalently the

projective representation of the symmetry transformations on the Hilbert space [14].5

Similar to how the anomalous variationA is constrained by the WZ consistency condition,

4The classical gauge transformation generators Xi(σa) obey the undeformed commutation relation.
5The Schwinger (contact) term for D = 1 + 1 is independent of background gauge fields as evident from

the central extensions of the current algebras. In higher dimensions, this is no longer the case.
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the Schwinger term is constrained by the Jacobi identity. Up to d̂-exact c-number ambiguities

due to redefinitions of the Gauss-law operators by terms involving the background gauge field,

the solution is determined by the anomaly and given by the following term in the descent

equations [14]

S(vα, vβ, B) = Q
(2)
2n−1(v̂, B)

∣∣∣
dθαdθβ

. (2.15)

This will be relevant to us later when we include a boundary for the spacetime manifold.

Perturbative anomalies also manifest in the modification of current conservation laws

by contact terms. For example, an anomalous symmetry current Jµ in D = 2n spacetime

dimensions is characterized by the following modification of the current Ward identity,

〈∂µJµ(x)Jµ1(x1) . . . Jµn(xn)〉 = − k

(n+ 1)!(2π)n
εµ1...µnν1...νn

n∏
i=1

∂

∂xνii
δd(x− xi). (2.16)

Note that the RHS is constrained to take the form above so that the anomaly is U(1)

invariant, a consequence of the Wess-Zumino consistency condition. When coupled to a

background U(1) gauge field A, it leads to an anomalous variation of the partition function,

under a gauge transformation A→ A+ dλ,

δλ logZ[A] =
ki

(n+ 1)!(2π)n+1

∫
M
λF n . (2.17)

Equivalently, the U(1) anomaly is characterized by a degree 2n+ 2 anomaly polynomial,

Id+2 =
k

(n+ 1)!(2π)n+1
F n+1 (2.18)

which reproduces the anomaly (2.17) through the descent equations (2.10),

I2n+2 = dQ
(0)
2n+1, δλQ

(0)
2n+1 = dQ

(1)
2n , δλ logZ[A] = i

∫
M
Q

(1)
2n . (2.19)

with Q
(1)
2n = k

(n+1)!(2π)n+1λF
n from (2.18). Here Q

(0)
2n+1 is the Chern-Simons 2n+ 1-form that

realizes the anomaly-inflow from a gapped auxiliary bulk theory in 2n+ 1-dimensions to the

physical theory on M.

More generally, through the descent equations (2.10), the anomaly polynomial Id+2[T ]

determines the anomalous variations under background gauge transformations and local
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Lorentz rotations parametrized by λ and θ respectively,

δλ,θ logZ[A, e] = iδλ,θ

∫
W

Q
(0)
2n+1(A, ω) = i

∫
M
Q

(1)
2n (λ, θ, F,R) , (2.20)

which solves the Wess-Zumino consistency conditions [10]. Here W is an auxiliary 2n + 1

dimensional manifold with boundary ∂W =M. In the above we use e to denote the vielbein

and ω is the spin-connection, which transform under the Lorentz rotation as,

δθe
a
µ = −θabebµ, δθω

ab
µ = ∇µθ

ab . (2.21)

As is well known, the Bardeen-Zumino counter-term [18] allows one to shift between Lorentz

and diffeomorphism anomalies. In the above, we have implicitly assumed the scheme where

the diffeomorphism anomaly vanishes. If instead, we insist on a symmetric stress-tensor in

correlation functions including at coincident points, the Lorentz anomaly gets replaced by a

diffeomorphism anomaly. Then instead of (2.20), under reparametrization δxµ = ξµ(x) we

have,

δλ,ξ logZ[A, g] = iδλ,ξ

∫
W

Q̃
(0)
2n+1(A,Γ) = i

∫
M
Q̃

(1)
2n (λ, ξ, F,Γ) , (2.22)

where Γµνρ is the Christoffel connection and Q̃2n+1 differs from Q2n+1 by an exact 2n+1-form.

2.2 Symmetric Boundaries and Vanishing Schwinger Terms

Let us now place the theory T with anomaly polynomial I2n+2[T ] on half space R2n
+ with

coordinates xµ = (σa, x⊥) and a putative Lorentz invariant boundary condition B at x⊥ = 0.

The coupled system is commonly referred to as a boundary field theory which we denote

by B[T ]. The symmetry preserved includes the Lorentz subgroup SO(2n − 1) acting on

the boundary directions and a subgroup of the bulk global symmetry GB ⊂ G, which we

denote collectively by GB. Below we will deduce constraints on the bulk anomaly polynomial

Id+2[T ] from the existence of such a boundary condition B.

We first observe that in the presence of a boundary Σ ≡ ∂M, (2.12) is not d̂-closed in

general and thus the WZ consistency condition is no longer satisfied. Instead one finds using

(2.10)

d̂A(v̂, B) = d̂

∫
M
Q

(1)
2n (v̂, B) = −

∫
Σ

Q
(2)
2n−1(v̂, B) , (2.23)

where the background gauge field B is restricted here to the symmetry subgroup GB preserved

by the boundary, similarly θα are restricted to be coordinates on GB (see around (2.5)). To fix

8



the WZ consistency condition with a boundary, we need to modify the anomalous variation

by boundary contributions [7]

AB(v̂, B) = A(v̂, B) +

∫
Σ

V (v̂, B) , (2.24)

such that

d̂AB(v̂, B) = 0 . (2.25)

This is only possible if ∫
Σ

d̂V (v̂, B) =

∫
Σ

Q
(2)
2n−1(v̂, B) . (2.26)

By regarding the orthogonal direction to the boundary as the Euclidean time, and taking S =

Σ to be the spatial slice, we see (2.26) requires the Schwinger term (2.15) on Σ to be trivial,

and thus can be set to zero after a redefinition of the charge densities. This is indeed natural

in the following sense. The boundary condition B corresponds to a particular state |B〉 in the

Hilbert space on Σ (in the presence of background gauge fields). The fact that B respects the

GB symmetry translates to the following condition for the corresponding Gauss-law operator

(after a c-number redefinition if necessary) that implements gauge transformations on the

boundary parametrized by a Lie algebra valued function v(σa),

G(v)|B〉 = 0 . (2.27)

Consistency with the algebra of G(v) in (2.14) then demands the Schwinger term to vanish.6

The triviality of the Schwinger term in the descent equations places strong constraints

on the anomaly I2n+2[T ]. Suppose there is an anomaly of the form

I2n+2[T ] = P (F (B)n+1) . (2.28)

Here P (X1, X2, . . . Xn+1) denotes a symmetric invariant polynomial of degree 2n + 2 in the

Lie algebra valued variables Xi (of degree 2). If some of the Xi are equal, e.g. X1 = X2 =

· · · = Xm = X, we write compactly

P (Xm, Xm+1, . . . Xn+1) . (2.29)

6This also means that the symmetry transformations of GB on the Hilbert space on Σ cannot be projective.
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The Schwinger term is determined by (up to coboundaries)

Q
(2)
2n−1 =

P (v̂, dv̂) n = 1

n(n−1)(n+1)
2

∫ 1

0
dt(1− t)2P ((dv̂)2, B̄, Ft(B̄)n−2) n ≥ 2

(2.30)

with Ft(B̄) ≡ tdB̄ + t2B̄ ∧ B̄ as given in [19]. To be compatible with (2.26), we must have

d̂

∫
Σ

Q
(2)
2n−1(v̂, B) = 0 , (2.31)

since d̂2 = 0. A quick inspection reveals that this is not possible unless (dv̂)2 = 0 which

requires the relevant gauge parameters to be abelian [7]. Therefore, pure non-abelian anoma-

lies are not compatible with the WZ consistency conditions. This lead us to the following

theorem, which was already argued for in [7] and we have re-derived here.

Theorem 1 A 2n-dimensional QFT T may admit a symmetric boundary condition B only

if its anomaly polynomial is a sum of monomials with the factorized form

I2n+2[B[T ]] =
∑
I

F I
U(1) ∧HI

2n(F,R) (2.32)

when restricted to the symmetry subgroup GB ⊂ G preserved by the boundary.

In the above F I
U(1) is the field strength of an abelian factor in the center U(1)I ⊂ Z(GB)

and HI
2n is a symmetric invariant polynomial of degree 2n in the background curvatures

(here F may include F I
U(1)). The Schwinger term simply vanishes in this case (up to the

ambiguities in the descent equations (2.11) as usual),

Q
(0)
2n+1 = AIU(1)H

I
2n(F,R), Q

(1)
2n = v̂IU(1)H

I
2n(F,R), Q

(2)
2n−1 = 0 , (2.33)

where v̂IU(1) contains the gauge transformation parameter for the U(1)I symmetry.

In particular if T has a pure gravitational anomaly which is possible for n ∈ 2Z+1 [12,20],

it cannot have a Lorentz invariant boundary condition if D > 2.

Corollary 1 For spacetime dimension D = 2n > 2, if the theory T has a pure gravitational

anomaly, it cannot admit a Lorentz invariant boundary condition B preserving the SO(2n−1)

subgroup.7

7We don’t lose information of the bulk pure gravitational anomalies upon reduction of the structure group
from SO(2n) to SO(2n−1) since the relevant Pontryagin classes p1, p2, . . . , pn+1

2
remain independent as long

as n ≥ 3. A similar reasoning applies to gauge-gravity anomalies for n ≥ 2.
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Note that the gravitational anomaly inD = 2 (i.e. n = 1) is not constrained by Theorem 1

since the Lorentz group is completely broken by the boundary. Nevertheless it has been

shown that such an anomaly is an obstruction to boundary conditions for 2d theories based

on a CFT argument [7]. In the next section we will extend this result to higher spacetime

dimensions.

Before we end this section let us comment on a caveat concerning unitarity and anomalies.

Thus far we have not demanded the QFT of interest T and its boundary condition B to be

unitary. However we have implicitly assumed that the perturbative anomalies of T are all

captured by the descent procedure. It is known that more exotic perturbative anomalies

that solve the WZ consistency conditions are possible in non-unitary theories [21, 22]. In

the rest of the paper, we will take the theory T and its boundary B to be unitary unless

explicitly stated otherwise. We comment on this point further in Section 2.4 after proving

Theorem 2 below.

2.3 Conformal Boundaries and Vanishing Anomalies

By studying the Ward identities, we will further demonstrate that Id+2[[B[T ]] = 0 in this

section, where we recall that Id+2[[B[T ]] denotes the bulk anomaly polynomial Id+2[T ] re-

stricted to symmetries preserved by the boundary B. Since the ’t Hooft anomalies are RG

invariants, it suffices to focus on the infra-red phase of the boundary field theory B[T ],

which is expected to be described by a conformal field theory (CFT) with certain conformal

boundary condition, also known as a boundary CFT (BCFT) [23–27] (see [28,29] for recent

reviews).

By assumption there is a global U(1) symmetry preserved by the boundary B[T ]. Its

Noether current satisfies

∂µJ
µ(x) = 0 , (2.34)

everywhere including at the boundary x⊥ = 0 away from other operator insertions, similarly

for the SO(2n− 1) Lorentz symmetry parallel to the boundary

∂µT
µa(x) = 0 . (2.35)

Note that in general the conserved current in (2.34) is a linear combination of bulk and

boundary operators,

Jµ(x) = Jµ(0)(x) +
∑
m≥1

δ(m)(x⊥)Jµ(m)(σ) , (2.36)
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where Jµ(m) is a boundary operator of scaling dimension ∆ = 2n − 1 − m which splits as

(J⊥(m), J
a
(m)) into a scalar and a vector under the residual SO(2n − 1) Lorentz symmetry.

Now unitarity bounds based on the boundary conformal algebra SO(2n, 1) implies8

∆(J⊥(m)) ≥
d− 2

2
, ∆(Ja(m)) ≥ d− 2 . (2.37)

Thus we conclude the sum in (2.36) truncates to

Ja(x) =Ja(0)(x) + δ(x⊥)Ja(1)(σ) ,

J⊥(x) =J⊥(0)(x) +

bd/2c∑
m=1

δ(m)(x⊥)J⊥(m)(σ) ,
(2.38)

where Ja(1) is a locally conserved current on the boundary. Let’s consider the integrated Ward

identity of the form

lim
ε→0

∫ ε

−ε
dx⊥(x⊥)m∂µJ

µ = 0 . (2.39)

With m ≥ 1, one finds J⊥(m) = 0 as x⊥ → 0. Next taking m = 0, it gives

lim
x⊥→0

J⊥(0) = −δ(x⊥)∂aJ
a
(1) = 0 . (2.40)

Consequently we have

lim
x⊥→0

J⊥ = 0 , (2.41)

as an operator identity. Note that this is consistent with the vanishing Schwinger term when

we treat the x⊥ direction as the Euclidean time, as discussed in the last section.

Importantly the anomalous Ward identity (2.16) cannot be modified in the presence of

a symmetric boundary. This is because such a modification is equivalent to a parity-odd

gauge-invariant density on the boundary, which is not possible in odd dimensions. On the

other hand, (2.41) implies

lim
x⊥n→0
〈Jµ(x)Jµ1(x1) . . . J⊥(xn)〉 = 0 , (2.42)

and thus

lim
x⊥n→0
〈∂µJµ(x)Jµ1(x1) . . . J⊥(xn)〉 = 0 , (2.43)

which implies k = 0 in (2.16) and this rules out pure U(1) anomalies in (2.32). From

8See [30] for a review on CFT techniques and in particular the conformal unitarity bounds.
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the argument leading to (2.41), it is clear that this continues to hold for general conserved

currents J iµ that generate symmetry GB. The corresponding anomalous Ward identity takes

the form

〈∂µJµ(x)Jµ1i1 (x1) . . . Jµnin (xn)〉 = − κ

(2π)n
Ki1...inε

µ1...µnν1...νn

n∏
i=1

∂

∂xνii
δd(x− xi) , (2.44)

where Ki1...in is a GB-invariant tensor. We conclude κ = 0 by taking the x⊥n → 0 limit and

using limx⊥n→0 J
⊥
in(xn) = 0. Therefore all but mixed U(1)-gravitational anomalies in (2.32)

are forbidden.

The anomalous Ward identity for such a gauge-gravity anomaly takes the following form

for D = 4,

〈∂αJα(x)Tµν(y)Tρσ(z)〉 =− kg
(2π)2

εµρ
αβ∂yα∂

z
β(∂y · ∂zδνσ − ∂yσ∂zν)δ4(x− y)δ4(x− z)

+ (ρ↔ σ) + (µ↔ ν) .

(2.45)

A parallel argument for (2.41) shows that (2.35) requires9

lim
x⊥→0

T a⊥ = 0 . (2.47)

Consequently by taking the limit and using

lim
z⊥→0
〈Jα(x)Tµν(y)Tρ⊥(z)〉 = 0 , (2.48)

we deduce that the mixed U(1)-gravitational anomaly must vanish for D = 4. A similar

argument shows this continues to hold in higher dimensions. This concludes the argument

for the following theorem.

Theorem 2 A unitary QFT T in dimension D = 2n can admit a unitary Lorentz invariant

boundary condition B that preserves a global symmetry subgroup GB only if the theory T does

not have perturbative gravitational and GB anomalies. In particular, the anomaly polynomial

9The boundary limit of the other component

lim
x⊥→0

T⊥⊥ = D(σ) (2.46)

defines a boundary operator D(σ), known as the displacement operator which is nontrivial if the boundary
is not topological.
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must trivialize

Id+2[B[T ]] = 0 , (2.49)

when restricted to bulk symmetries GB = SO(2n− 1)×GB preserved by the boundary.

2.4 Comments on Non-Unitary Theories and Exotic Anomalies

We emphasize that Theorem 2 does not apply to non-unitary theories, which may have

more general anomalies as mentioned at the end of Section 2.2. A familiar counter-example

from string theory is the non-unitary (non-chiral) bc ghost CFT in D = 2 described by the

following action (see [31] for details),

Sbc =
1

2π

∫
d2z(b∂z̄c+ b̄∂z c̄) , (2.50)

on the complex plane with coordinates (z, z̄) and z = σ + ix⊥. Here b, c are holomorphic

anti-commuting fields (ghost) and b̄, c̄ are their anti-holomorphic partners. The bc CFT is

parametrized by a real number λ which determines the holomorphic and anti-holomorphic

conformal weights (h, h̄) of the ghost fields,10

hb = h̄b̄ = λ, hc = h̄c̄ = 1− λ , (2.52)

and the conformal central charges

cL = cR = 1− 3(2λ− 1)2 . (2.53)

The bc CFT contains a ghost number current

(Jgh
z , J

gh
z̄ ) = (−bc,−b̄c̄) , (2.54)

and its dual which generate vector and axial U(1) ghost number symmetries. The b, c ghosts

have charges ∓1 respectively with respect to Jgh
z , while the b̄, c̄ ghosts have charges ∓1

respectively with respect to Jgh
z̄ . The vector ghost number symmetry has a gauge-gravity

10When the bc CFT is placed on a curved manifold, the λ parameter appears in the action through the
background charge coupling

1− 2λ

4π

∫
d2z
√
gφR . (2.51)

Here φ is a real scalar from the bosonization of the bc ghosts via Jgh
z = ∂zφ, J

gh
z̄ = ∂z̄φ.
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anomaly

∇µJgh
µ =

1− 2λ

2
R , (2.55)

where R is the Ricci curvature scalar. This is an exotic anomaly that solves the WZ con-

sistency condition but does not arise from the usual descent procedure [21, 22].11 Yet the

theory has a well defined boundary condition B at Im(z) = 0 (i.e. x⊥ = 0) given by

c(z) = c̄(z̄), b(z) = b̄(z̄) , (2.56)

that preserves the vector ghost number symmetry and is essential for formulating worldsheet

string theory on Riemann surfaces with boundaries.

At the special value λ = 1/2, the bc CFT is identical to a free Dirac fermion (and the

theory becomes unitary) and Jµgh is nothing but the fermion number current. Indeed the

anomaly (2.55) vanishes in this case in accordance with Theorem 2.

One may wonder where the CFT arguments in the last section fails for the general bc

CFT with the symmetric boundary (2.56) preserving the anomalous ghost number symmetry,

since the vanishing conditions (2.41) and (2.47) are obviously satisfied by the ghost number

current and bc stress-tensor in the boundary limit

lim
x⊥→0

J⊥gh(x) = lim
x⊥→0

T σ⊥(x) = 0 , (2.57)

away from other operator insertions. Recall earlier a tension between such vanishing con-

ditions and the anomalous current Ward identity in the presence of a boundary was what

led us to conclude that the anomaly must be zero. To this end, we emphasize an important

feature of the anomaly (2.55) (for λ 6= 1
2
) compared to the conventional ’t Hooft anomalies is

that it’s even under spacetime parity. Consequently when the theory is placed on a manifold

with boundary, there exists symmetric parity-even terms localized on the boundary that

modifies (2.55), which is not possible in the parity-odd case.

More explicitly, the relevant current Ward identity (compared to (2.16) and (2.45) for

the parity-odd anomalies) in the absence of a boundary takes the following form

〈∂µJµgh(x)Tαβ(x′)〉 =
1− 2λ

2
(∂α∂β − ∂2δαβ)δ2(x− x′) . (2.58)

With a symmetric boundary preserving the current Jµgh (e.g. as (2.56) in the bc CFT), the

Ward identity (2.58) admits the following modification localized on the boundary (which

11On general grounds, they are not admissible in a unitary theory with a normalizable vacuum [22].
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obeys the WZ consistency condition)

〈∂µJµgh(x)Tαβ(x′)〉B ⊃
κ

2
(δαβδγ⊥ − 2δγ(αδβ)⊥)∂γ(x′)δ

2(x− x′)δ(x′⊥) . (2.59)

It is equivalent to the the following local modification of (2.55) upon coupling to background

metric,

∇µJ
µ
gh =

1− 2λ

2
R(x)− κK(x)δ(x⊥) , (2.60)

where K(x) is the extrinsic curvature.

In the bc CFT, the value of κ is fixed

κ = 2λ− 1 . (2.61)

For λ = m+1 ∈ Z, this follows from counting zero modes of the b, c ghosts with the boundary

condition (2.56) (see e.g. [32]). For general λ, one should be able to derive this by analyzing

the two-point function of Tµν and Jgh
µ in the presence of the boundary, but we will not pursue

it here. Consequently

∇µJ
µ
gh =

1− 2λ

2
(R(x) + 2K(x)δ(x⊥)) , (2.62)

and ∫
M

√
g∇µJ

µ
gh = 2π(1− 2λ)χ(M) , (2.63)

where h denotes the induced metric on the boundary Σ = ∂M and the above follows from

the Gauss-Bonnet theorem.

Therefore for the bc CFT, the full current Ward identity in the presence of the boundary

gives

lim
x′⊥→0
〈∂µJµgh(x)Tσ⊥(x′)〉B =

1− 2λ

2
∂

(x′)
⊥ ∂(x′)

σ (δ2(x− x′)θ(x′⊥)) . (2.64)

Note that by a c-number redefinition of the ghost current

J̃µgh(x) = Jµgh(x)− 1− 2λ

2
δµ⊥K(x)θ(x⊥) , (2.65)

we can completely absorb the RHS of (2.64)

lim
x′⊥→0
〈∂µJ̃µgh(x)Tσ⊥(x′)〉B = 0 , (2.66)

which is indeed consistent with (2.57).
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In fact we have the stronger result

〈∂µJ̃µgh(x)Tνρ(x
′)〉B = 0 , (2.67)

on flat space after using the Gauss-Codazzi equation in D = 2. Note that the anomaly

(2.55) and (2.62) implies that the symmetry defect for the U(1) ghost number symmetry

Lη = eiη
∮
?Jgh has an isotopy anomaly [22,33]. The redefinition of the ghost number current

(2.65) and consequently the condition (2.67) ensure that the modified symmetry defect L̃η =

eiη
∮
?J̃gh is topological in the presence of the boundary.

The parity-even exotic anomaly (2.55) straightforwardly generalizes to higher dimensions

[22],

d ? J = ke(R) , (2.68)

where e(R) denotes the Euler class in D = 2n dimensions and its integral over a closed

manifold M
χ(M) =

∫
M
e(R) (2.69)

computes the Euler characteristic of M. Such anomalies naturally arise in supersymmet-

ric QFTs upon (partial) topological twist [34].12 Perhaps the most well-studied examples

come from the Donaldson-Witten twist of N = 2 supersymmetric QFTs in D = 4 [35–38].

The physical theory before twisting has U(1)R × SU(2)R R-symmetry. Here J corresponds

to the U(1)R current of the supersymmetric theory, and k is proportional to the mixed

U(1)R -SU(2)R anomaly. After twisting (which identifies the SU(2) components of the spin

connection with the SU(2)R background gauge field), k corresponds to a mixed U(1)R -

gravity anomaly as we have also seen in the bc CFT.13 If the D = 4 theory is conformal, k

is proportional to a combination 2a− c of the conformal anomalies a and c [39].

In the case with boundary, similar to the bc CFT, we can imagine a modified (integrated)

current Ward identity of the following form,

d ? J = k(e(R) + Φδ(x⊥)dx⊥) , (2.71)

12The bc CFT is related to the Dirac fermion CFT (and supersymmetric cousins) by a similar twist that
involves shifting the stress tensors by the (anti)holomorphic derivatives of the ghost number currents.

13To be more precise, the full Ward identity for the U(1)R current in the Donaldson-Witten theories take
the following form [39]

d ? J = ke(R) + k′p1(T ) , (2.70)

where k′ is positive in physical CFTs (before twisting). This is because k′ is proportional to the coefficient
of the unique conformal structure (conformal c-anomaly) in the stress-tensor two-point function which is
reflection positive.
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where Φ is a 2n− 1-form that participates in the Gauss-Bonnet-Chern theorem for manifold

M with boundary Σ [40,41]

χ(M) =

∫
M
e(R) +

∫
Σ

Φ . (2.72)

As before, upon a redefinition of the current by

J̃ = J − ?Φθ(x⊥) , (2.73)

we have topological symmetry defects from eiη
∮
?J̃ with the putative symmetric boundary.

It would be interesting to see if such symmetric boundary conditions arise in anomalous

non-unitary QFTs (either from topological twist or not).14

Finally we emphasize that, in principle our Theorem 2 can fail in more dramatic ways

for non-unitary theories (since unitarity was explicitly used in the proof). However our

knowledge of non-unitary QFTs is rather limited and the familiar examples are often non-

unitary only in mild ways. It would be interesting to explore more systematically non-unitary

QFTs including their anomalous symmetries and boundary conditions.15

2.5 Implications for Unitary CFTs

Our general results in the previous sections give rise to strong constraints on possible bound-

ary conditions of a given CFT T , without relying on any Lagrangian descriptions. Here we

discuss a few examples for illustration.

First of all, a theory T with pure gravitational anomalies cannot admit Lorentz invariant

boundary conditions (see Corollary 1 and discussions therein). This includes familiar 2d

CFTs with non-vanishing cL − cR (e.g. chiral bosons and fermions),

I4[T ] ⊃ cL − cR
24

p1(T ) , (2.74)

but also the mysterious strongly-coupled 6d N = (2, 0) superconformal field theory (SCFT)

labelled by an ADE Lie algebra g, whose anomaly polynomial takes the form [20,46–48]

I8[T ] ⊃ 1

4!

rg
8

(p1(T )2 − 4p2(T )) , (2.75)

14Note that the presence of a parity-odd anomaly in (2.70) suggests that such a symmetric boundary
condition is likely not possible for the Donaldson-Witten theories.

15See [42–45] for recent studies of complex CFTs, which are non-unitary is a more dramatic fashion than
the non-unitarity Virasoro minimal models and the bc CFT in D = 2.
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where rg denotes the rank of g.

While there is no pure perturbative gravitational anomalies for D = 4 theories, there

can be mixed U(1)-gravitational anomalies. This happens for a large class of D = 4 CFTs

with N = 1 supersymmetry (e.g. the super-QCD in the conformal window) whose anomaly

polynomial takes the form

I6[T ] ⊃ 1

3!

(
kRc1(FU(1)R)p1(T ) + kRRRc1(FU(1)R)3

)
(2.76)

where the U(1)R denotes the R-symmetry which is a part of the N = 1 superconformal

symmetry. From Theorem 2, we deduce that anN = 1 SCFT T may have a U(1)R preserving

boundary condition only if kR = kRRR = 0, which is not possible unless the SCFT contains

no local degrees of freedom.16 The N = 4 super-Yang-Mills (SYM) with gauge algebra

g is a particular N = 1 SCFT with enhanced superconformal symmetry and an anomaly

polynomial free from gauge-gravity anomalies,

I6[T ] =
dg
2
c3(FSU(4)R) , (2.77)

where SU(4)R is the enhanced R-symmetry and dg is the dimension of g. The N = 4 SYM is

known to admit a large family of half-BPS boundary conditions [52,53] that preserve half of

the supersymmetries and the R-symmetry maximal subgroup SU(2)H × SU(2)C ⊂ SU(4)R.

It is easy to check that the anomaly (2.77) indeed trivializes in this subgroup, in agreement

with our general results.17

3 Symmetry Defects and Group Cohomology

Now and in the remainder of the paper we will generalize to the case where the global

symmetry G is not necessarily continuous, and thus a Noether current may not be available.

We will still need some notion of locality for the symmetry action, and so we will associate the

symmetry generator with special defect operators and consider correlation functions defined

16Here we have used the relation between the conformal central charges and the ’t Hooft anomalies [49,50]
and the bounds on the conformal central charges in unitary CFTs [51].

17Moreover, inside another maximal subgroup SO(2)R × SU(2)R × SU(2)F ⊂ SU(4)R, the SU(2)F
subgroup has a global Witten anomaly [54] (see also [55] for such an anomaly in general strong coupled
D = 4 CFTs) which in modern perspective is captured by the nontrivial element of the bordism group

ΩSpin
5 (BSU(2)) = Z2. Looking ahead, as we will argue in Section 4.3, such an global anomaly also obstructs

a symmetric boundary condition preserving this SU(2)F . Indeed the SU(2)F symmetry is broken by the
known boundary conditions [52,53]. This anomaly occurs at height k = 1 in the notation of Section 4.3.
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in the presence of networks of these operators. In this section, we will suppose these defect

operators are topological, which precludes so called gauge-gravity anomalies we will discuss

in Section 4 below.

3.1 G-foams and Background Gauge Fields

We want to say that a theory T has an unbroken G-symmetry if we can define correlation

functions in the presence of a network of G-symmetry defects. The specific kind of network

we want is what we will call a G-foam, which consists of a collection of co-oriented embedded

closed hypersurfaces labelled by elements of G, meeting transversely along their boundaries.

This means that in any small open neighborhood, the foam is Poincaré dual to a triangula-

tion. Any collection of embedded closed hypersurfaces can be infinitesimally perturbed to

satisfy this property. Furthermore, we will require the labels to satisfy the following axiom.

Axiom 0 (Flatness) At a codimension-two junction (where three hypersurfaces of the G-

foam meet) the path-ordered product of the G labels along an oriented loop linking the junction

is the identity, where a hypersurface with label g contributes g to this product if its co-

orientation agrees with the orientation of the loop and g−1 otherwise.

Correlation functions are allowed to depend on local operator insertions, the metric and

tangent structure of spacetime, etc., but the dependence on the G-foam is constrained to

obey the following axioms.

Axiom 1 Correlation functions are invariant under passing a local operator from one side

of a g-hypersurface to the other while transforming the local operator by the group element g

or g−1 if it goes with or against the co-orientation, respectively.

Axiom 2 Correlation functions are invariant under introducing or removing spherical com-

ponents of the foam whose interior doesn’t contain any foam or other operator insertions.

Axiom 3 Correlation functions are invariant under smooth isotopies of the foam. (This

axiom is relaxed in cases with gauge-gravity anomaly in Section 4.)

Axiom 4 We can perform a recombination of the G-foam, changing its local topology and

only affecting the correlation function by a phase.

We will consider two realizations of G-symmetries of the same theory T (meaning two

definitions of correlation functions satisfying the above axioms) equivalent if they are related

20



by redefining these correlation functions by phase factors associated with the point-like

singularities of the foam. We will see this ambiguity corresponds to adding a local gauge-

invariant counterterm to the action. We call a G-symmetry anomalous if it is not equivalent

to one that assigns trivial phase factors to recombinations of the G-foam in Axiom 4.

One way to define correlation functions in the background of a G-foam is to divide

spacetime up into the open regions cut out by the foam, and then impose boundary conditions

such that the limit of a field from one side of a hypersurface labelled by g equals the limit of

the same field transformed by g coming from the other side of the hypersurface, according to

the co-orientation. This is captured by Axiom 1. For a symmetry associated with a Noether

current, these topological defect operators are given by integrating the component of the

current normal to the hypersurface. In a Hamiltonian picture, we can create these defects

by applying a symmetry generator in a fixed region [56].

We can associate a G gauge field A to such a foam by defining the holonomy Pe
∮
γ A along

a closed oriented loop γ to be g1 . . . gn where gj are the labels of hypersurfaces encountered

along γ (contributing g or g−1 depending on whether γ’s orientation agrees or disagrees with

the co-orientation of the corresponding hypersurface) in the order that they are encountered.

The holonomy Pe
∮
γ A only depends on the choice of the starting point up to a conjugation

in G. These holonomies determine A up to gauge transformations. We can thus think of the

G-foam as a kind of Poincaré dual of a G gauge field.

The flatness Axiom 0 corresponds to the condition that the curvature of this gauge field

vanishes, or in other words that
∮
γ
A = 0 around any contractible loop. This forbids the

scenario with a g-hypersurface simply ending somewhere. Such an object is like a magnetic

flux, and while it may be possible to define correlation functions in the presence of these,

for our purposes we will not need to. In fact, for compact G, the anomaly is completely

determined by its finite subgroups, and hence it suffices to study only flat connections. This

follows from the result proven in [57]. This ensures that the G-foam approach is sufficient

to characterize anomalies of all compact Lie groups.18

In terms of the Poincaré dual gauge field A, Axioms 2, 3, and 4 capture the gauge

invariance of the correlation functions. Axiom 2 corresponds to applying a local symmetry

transformation in some region away from any operator insertions. Axiom 3 corresponds

to applying a local symmetry near another defect, causing it to move. Below, we will see

that this axiom is violated in systems with gauge-gravity anomalies. For symmetries with a

Noether current jµ, these conditions are equivalent to ∂µj
µ = 0 in any region not containing

18In particular, as we will see, this gives another proof for the obstruction theorems in Section 2 for
symmetric boundaries in the presence of perturbative anomalies.
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a defect.

3.2 Group Cohomology Anomalies and Wess-Zumino Consistency

Axiom 4 encodes the anomaly of the relevant symmetries. To understand it, we first make

the following observation.

Lemma 1 (Wess-Zumino Consistency) Any sequence of isotopies and recombinations oc-

curring in a small region which takes a G-foam back to itself results in a trivial phase factor.

Proof. Suppose this were not the case. Then in any correlation function, away from any of the

operator insertions, we would be able to apply Axioms 2, 3 and 4 to create and then destroy a

“bubble” of the foam which undergoes the offending recombination and then disappears the

same way it came to be. The result is an identity relating the original correlation function

to itself with a nontrivial phase factor. Thus, the correlation function (which was arbitrary)

must vanish.

We will use a very similar argument to show our main result for boundaries in subsequent

sections. We note that this is the discrete analog to the Wess-Zumino consistency conditions

(2.3) in Section 2. Indeed, (2.3) says that the action of infinitesimal gauge transformations

integrates to an action of the group of gauge transformations. In particular, if we have a

loop of infinitesimal gauge transformations that ends in the identity, it must produce a trivial

phase factor in the correlation functions, or else they must vanish.

It follows from Lemma 1 that we can perturb our recombinations to be generic without

changing the phase factors in Axiom 4. Generic recombinations of G-foams are sequences of

one elementary recombination, known as a Pachner move [58], analogous to the F -move or

crossing relation in 2D foams (which are networks of line defects). To see this, it is useful

to think about the “movie” of a sequence of isotopies and recombinations as a G-foam in

D + 1 dimensions. This foam still satisfies the flatness axiom. Perturbing our sequence of

recombinations to be generic makes this G-foam locally Poincaré dual to a triangulation. In

particular, the point-like singularities where recombinations occur are all Poincaré dual to a

D+1-simplex, such that each incident hypersurface is associated with one of the D(D+1)/2

edges. Let us order the vertices of this D + 1 simplex x0, . . . , xD+1. Because of flatness, the

G labels on hypersurfaces are all determined by those hypersurfaces passing through the

edges (x0x1), (x1x2), . . . , (xD, xD+1) since every vertex-to-vertex path on the boundary of
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the simplex can be deformed to one that runs only along these edges. We can thus write our

phase factor in Axiom 4 as e2πiω with ω a function

ω : G×D+1 → U(1) = R/Z , (3.1)

evaluated on these particular labels. We return to this point of view when we derive anomaly

in-flow in Section 5. The elementary recombination for D = 2 and its “movie” are shown in

Fig. 1.

Figure 1: The elementary recombination for D = 2 (sometimes called an F -move or crossing
relation), drawn here as relating the red foam at bottom to the red foam at top, is captured by
a point-like singularity of a three dimensional foam which is Poincaré dual to a tetrahedron
and for which the initial and final foams form the top and bottom boundaries.
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Lemma 1 implies the group cocycle equation for ω [59]:19

(δω)(g1, . . . , gD+2) :=

ω(g2, . . . , gD+2) +

(
D+1∑
j=1

(−1)jω(g1, . . . , gj−1gj, gj+2, . . . , gD+2)

)
+ (−1)D+2ω(g1, . . . , gD+1) = 0,

(3.2)

modulo 1, since it appears in e2πiω. MacLane’s coherence theorem (see Chapter 7 of [60] as

well as [61]) tells us that this is in fact the only condition contained in Lemma 1. This is quite

analogous to the fact that there is a single elementary recombination we need to consider

in Axiom 4. Indeed, this equation is associated to the single elementary “recombination of

recombinations”. This point of view is key in anomaly in-flow, which we return to in Section

5.

We now consider redefining our correlation functions in a backgroundG-foam by assigning

phase factors to point-like junctions.20 The point-like junctions are Poincaré dual to a D-

simplex and as above the G labels of the incident hypersurfaces are determined by a D-tuple

of G elements. A choice of phase factor for each point-like junction is thus a function

α : G×D → U(1). The effect of this redefinition is to shift ω 7→ ω + δα, where once again

the group coboundary operator δ appears. This redefinition of the correlation functions

is equivalent to adding a counterterm i
∫
α(A) to the action. Thus, while ω is somewhat

arbitrary, its cohomology class [ω] ∈ HD+1(BG,U(1)) is invariant under these redefinitions.

If we think about our G-foam as a gauge field, and recombinations as gauge transfor-

mations, [ω] 6= 0 means we cannot find a counterterm of the form ei
∫
α(A) which allows us

to gauge the theory. Thus [ω] captures the ’t Hooft anomaly. We will refer to this type of

anomaly as a group cohomology anomaly to contrast with a slight generalization of the above

which we will discuss later. For an alternative description of the group cohomology anomaly

in a similar spirit but in the Hamiltonian picture, see [56]. By anomaly in-flow (see Section

5) these anomalies are related to group cohomology SPT phases [6, 62,63].

For finite G, there is an isomorphism HD+1(BG,U(1)) = HD+2(BG,Z) given by ω 7→
δω (recall δω ∈ Z). The anomaly polynomial ID+2[T ] defined in Section 2, for a pure

gauge anomaly, defines a class in HD+2(BG0,Z) for a connected Lie group group G0, and

the group cohomology anomaly for each of its finite subgroups G ⊂ G0 is obtained by

19This cocycle condition is slightly modified when certain symmetries of G are spacetime-orientation
reversing. We revisit this point below.

20It is possible to locally assign phases to higher dimensional defects in a correlation function by invoking
the embedded geometry or tangent structure of the defect, slightly violating our axioms. We do exactly this
in Section 4 and find there are more ambiguities for ω than are described in this section.
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restriction and then inverting the isomorphism above. The collection of these restrictions

actually determines ID+2[T ] exactly [57]. The constructions of this section allow us to

define ω also for continuous symmetry groups directly, subject to the condition that ω and

the counterterms α are measurable functions on G. This extra condition ensures that we

can integrate our extended correlation functions over the gauge group. This defines the so-

called Borel measurable group cohomology H, which for any compact Lie group also satisfies

HD+1(G,U(1)) = HD+2(BG,Z) [64, 65], capturing both the anomalies of finite groups as

above, but also the anomaly polynomials of the connected parts.

3.3 Spacetime-Orientation-Reversing Symmetries

Above we tacitly assumed that the symmetries of G were internal, unitary symmetries. More

generally we can consider spacetime-orientation-reversing (SOR) symmetries, such as time

reversal or reflection symmetries. An advantage of the spacetime picture is that it is more

or less clear how to generalize G-foams and gauge fields to this setting [3, 66].

Essentially to define correlation functions we must choose an orientation inside each open

region cut out by the G-foam and define the theory inside with respect to that orientation,

such that across a hypersurface labelled by an SOR symmetry, the local orientation flips.

This local orientation has two main effects. First, the global structure of the foam is

constrained by the topology of spacetime, such that a curve along with the orientation flips

an odd number of times must be an orientation-reversing cycle of spacetime. Otherwise,

Axioms 0, 1, 2, and 3 are unmodified.

Second, the phase factor ω from Axiom 4 can depend on this local orientation, but must

satisfy the property that if we reverse all the local orientations surrounding the junction

where the recombination occurs, keeping everything else the same, then ω 7→ −ω (this holds

for the counterterms as well). This is a consequence of Lemma 1. In fact, redoing the

argument for consistency of recombinations, we find that for bosonic systems ω defines a

class in the twisted group cohomology HD+1(BG,U(1)T ), where U(1)T indicates that SOR

elements of G act by conjugation on U(1), which matches the group cohomology classification

of SPTs [63]. With this generalization understood, and all coefficient groups appropriately

twisted, we will not explicitly refer to SOR symmetries again.
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3.4 Boundaries for Group Cohomology Anomalies

Now let us consider the case with a boundary. We will say the symmetry GB ⊂ G is unbroken

at the boundary B if correlation functions in the theory T can be defined in the presence of

a GB-foam which terminates along the boundary, satisfying the five Axioms in Section 3.1.

In addition to the elementary recombination which can occur among junctions in the bulk,

there is a second elementary recombination, which for the boundary foam looks like the

bulk elementary recombination in one lower dimension, and for the bulk foam looks like a

point-like junction being absorbed or emitted by the boundary. See Fig. 2.

Theorem 3 If a theory has a boundary condition with unbroken GB symmetry, as we have

defined it, then furthermore the ’t Hooft anomaly restricted to GB is also trivial, i.e. j∗[ω] =

0 ∈ HD+1(BGB, U(1)T ), where j : GB ↪→ G is the inclusion map for the subgroup GB and

[ω] ∈ HD+1(BG,U(1)T ) is the anomaly class.

Proof. First we observe that there is a compactly supported “bubble” of GB-foam associated

to any D+1-tuple (g0, . . . , gD) ∈ G×D+1
B which has the key property that it can be created or

destroyed inside any correlation functions while changing its phase by e±2πiω(j(g0),...,j(gD)) =

e±2πij∗ω(g0,...,gD). This bubble is obtained by taking the elementary recombination singularity

(as in Fig. 1), intersecting with a small SD encircling the singular point, and then stereo-

graphically projecting it onto a D-ball. The key property follows from the fact that by a

single recombination we can reduce the bubble to one which occurs as the boundary of a

GB-foam on BD+1 with no singularity. Such a GB-foam can be created or destroyed without

introducing any phase factors.

We can then introduce this bubble into any boundary correlation function and then

push the bubble through the boundary until its gone, recovering the original correlation

function. Either the correlation function (which is arbitrary) must vanish or the phase

factors accrued while pushing the bubble through the boundary must cancel ω. These extra

phase factors appear when point-like junctions of the bulk GB-foam are pushed through

the boundary (see Fig. 2). As we’ve said these lead to recombinations of the boundary

GB-foam. Each of these junctions is associated with a D-tuple of GB elements, and if we

write the phase factors as α : G×DB → U(1), the condition that these phase factors cancel

e2πij∗ω is j∗ω = δα, where δ is the (twisted) group coboundary operation. In other words,

j∗[ω] = 0 ∈ HD+1(BGB, U(1)T ).

26



Figure 2: The argument for Theorem 3 illustrated for D = 2. At top left we have the special
bubble introduced near the boundary. From left to right, top to bottom, this bubble is
absorbed by the boundary. In purple we have indicated where absorbing a point-like junction
causes a recombination of the boundary defects, and produces compensating phases. The
condition that the boundary correlation function is non-vanishing requires that these phases
precisely cancel e2πiω of the original bubble. This requires ω be exact in group cohomology,
hence that there is no anomaly.

4 Gauge-Gravity Anomalies

It is known that the anomalies described above are not the most general kind. In fermionic

systems for instance, there could be fermions bound to the 1-dimensional junctions in the

foam that modify the cocycle equation for ω (e.g. into the Gu-Wen equation [67]), meaning

that we must go beyond group cohomology to describe them. There could even be more

dramatic effects like chiral modes bound to the defects (such as at the boundary of a ν = 1
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topological superconductor in 3+1D) which leads to a violation of the isotopy condition in

Axiom 3. Most generally, we have to assume that the defects themselves host modes with a

gravitational anomaly. For this reason, these more general anomalies are sometimes called

gauge-gravity anomalies. In this section, we generalize the symmetry defect picture from

the previous section to this setting and prove again that a symmetric boundary condition is

only possible if the anomaly is trivial.

4.1 Generalized G-foams

To account for the gauge-gravity anomalies we must generalize our definition of a G-foam.

Axioms 0, 1, and 2 still hold, but Axiom 3 must be modified to account for the possibility

that the junctions themselves can host a gravitational anomaly. This has been appreciated

in the SPT literature through the discovery of “beyond cohomology” SPT phases [67–71].

Axiom 3′ Each k − 1-dimensional defect or junction is associated with an element of the

group Ωk of k-dimensional invertible phases,21 such that under isotopies, the correlation

functions transform according to the boundary gravitational anomalies of these defect or

junction labels.

Axiom 4′ Upon recombination, we obtain a phase factor which is the product of the iso-

topy contribution above and a contribution that depends only on the combinatorics of the

recombination.

Axiom 3′ refers both to phase factors accrued by small isotopies of defects (when they

carry a perturbative gravitational anomaly) as well as large isotopies, such as taking a defect

around a nontrivial cycle of the spacetime, for which there may be phase factors associated

with global gravitational anomalies. For instance, a fermionic operator insertion at a point-

like defect is characteristic of certain gauge-gravity ’t Hooft anomalies [67]. Taking the point-

like defect around a loop of the spacetime with a non-bounding spin structure produces a

minus sign.

As before we will consider two realizations of the G-symmetry in a given theory T to be

equivalent if they are related by a redefinition of the correlation functions by phase factors at

point-like singularities. Because we allow our correlation function to depend on the details

of the embedding of the foam, we will also allow redefinition of them by decorating higher

dimensional defects and junctions with invertible phases.

21These phases have no specified symmetry.
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4.2 Beyond Cohomology Anomalies andWess-Zumino Consistency

The Wess-Zumino consistency conditions of Lemma 1 still apply, although the conditions

they impose on the isotopy phases in Axiom 3′ and the recombination phases in Axiom 4′

are not completely understood. It is conjectured however that all of the data encodes a

certain generalized cohomology invariant for D+ 1 manifolds equipped with a G gauge field

through a mathematical construction known as the Atiyah-Hirzebruch spectral sequence

(AHSS) [72–76].22

Let us briefly discuss the structure of the AHSS which will be relevant for us. We can

consider the labels on k − 1-dimensional defects as a function αk : GD+1−k → Ωk. With the

convention Ω0 = U(1), the full anomaly is specified by the functions α0, . . . , αD.23

The redefinition of the correlation function by phase factors and invertible phases is

described by a collection of maps βk : GD−k → Ωk, k = 0, . . . , D. The αk are modified

according to

αk 7→ αk + δβk + ∆D
k (β>k) , (4.1)

where the notation indicates that ∆D
k is a function depending only on βj for j > k. The

physical origin of this function is that invertible phases may also host gravitational anomalies

along higher codimension defects, not just at their boundary. See Fig. 3 for an example.

By the AHSS, the complete conditions of Axiom 4′ can be stated as

δαk + ∆D+1
k+1 (α>k) = 0 , (4.2)

where the functions ∆D+1 describe the ambiguities in dimension D + 1. This has an inter-

pretation in anomaly in-flow that our anomalous G-foam is associated with an anomaly-free

G-foam in one higher dimension, but with nontrivial decorations by invertible phases and

phase factors (i.e. the αk’s play the role of the βk’s in one higher dimension). We return to

this in Section 5 below.

Thus, understanding the functions ∆D
k is the key to computing the classification of anoma-

lies. They are encoded in the differentials of the AHSS, and satisfy many stringent naturality

conditions, but for spin cobordism they are still not completely known. See [78] for some

review and recent progress.

22In particular the whole anomaly is expected to be expressed as an element of a certain cobordism group
ΩD+1(BG) which encodes the partition function of a D + 1-dimensional SPT phase, but actually which
generalized cohomology appears is not important for our arguments.

23If there were a gravitational anomaly, then additionally we would have an additional constant function
αD+1 ∈ ΩD+1 which encodes it.
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Figure 3: Here we have a spatial picture of a 2+1D fermionic system with a unitary symmetry
C2 = (−1)F . At the white circle, two co-oriented C defects (green) fuse to a fermion parity
defect (dashed). This junction may trap a Majorana fermion. However, if it does, then by
layering a p+ ip superconductor (so taking β3 = 1 ∈ Ω3

Spin), since the fermion parity defect
ends at the fusion junction, the p + ip superconductor sees a vortex there (red star), which
also traps a Majorana fermion [77]. This Majorana may be paired with the other one to
create a featureless fusion junction. Thus, this decoration does not actually contribute an
anomaly in this symmetry class. With more work, one can show that for this symmetry class
and dimension, there are in fact no nontrivial anomalies (see Appendix C.4 of [76]).
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Group cohomology anomalies are included in these more general anomalies by taking

α0 = ω, αk = 0 ∀k > 0 . (4.3)

We see that the ambiguity we have encountered previously is still there, given by β0. However,

there are extra ambiguities which we did not previously consider, given by βk for k > 0. This

can cause a group cohomology class to become trivial after suitable decorations of the G-foam

with invertible phases on the defects or junctions. That is, we may find βk such that

0 = α0 + δβ0 + ∆D
0 (β>0) 0 = δβk + ∆D

k (β>k) ∀k > 0 . (4.4)

In terms of anomaly in-flow (and focusing on Ωk given by smooth cobordisms) this

amounts to a Dijkgraaf-Witten term which is trivial on all smooth manifold spacetimes. It is

known that the first time this can happen is for six dimensional manifolds, i.e. for anomalies

in D = 5 spacetime dimensions [79,80]. It is rather wonderful that all the conditions imposed

by smoothness amount to the purely algebraic conditions above, which demystifies this fact:

if a Dijkgraaf-Witten term is trivial on all smooth manifolds, then there is a decoration of

the boundary by invertible phases which cancels the anomaly.

4.3 Boundaries for General Anomalies

Let us consider the largest k for which αk can not be eliminated by decorating the G-foam

with invertible phases. We will call this the height of the anomaly. By the AHSS, in this

case we can take αj = 0 ∀j > k. It follows from Lemma 1 that δαk = 0 (cf. (4.2)). We will

interpret this as a generalized conservation law, show that it is violated at a hypothetical

symmetric boundary, and argue that this is unphysical. Although the AHSS implies this

conservation law, we feel that a physical formulation and proof would be quite desirable,

and so we will make the conjecture

Conjecture 1 A system with a gravitational anomaly admits no boundaries.

Theorem 4 Assuming the conjecture, if a theory T has a boundary condition which preserves

a symmetry GB ⊂ G, then GB is anomaly-free.

Proof. It is apparent that our argument for Theorem 3, which amounts to the case k = 0,

must be modified to account for gauge-gravity anomalies at the boundary. Indeed, we used

isotopy invariance of the boundary defects to conclude α0 = j∗ω is exact. In a more general
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foam, according to our modified axioms, the boundary defects are not necessarily isotopy

invariant, but can carry modes with a gravitational anomaly. This gravitational anomaly in

turn may be associated with an invertible phase in one higher dimension, which is naturally

associated with the bulk defect which ends on the boundary, giving us a set of βk’s as above.

The condition that the phase factor we obtain in spawning our defect bubble and then

absorbing it into the boundary is one amounts to the condition that if we decorate these

bulk defects according to the βk’s (including β0), the anomaly is trivial.

To see this, we can picture the boundary as an interface, where on the other side of the

boundary, which we will call the “subliminal” side, we allow a GB-foam whose contribution

to the correlation function is given by the invertible phases −βk defined above. See Fig. 4.

When we push defects from the bulk into the boundary, we can let these defects pass into

the subliminal side as well as leaving defects on the boundary as before. Because of the

decoration by invertible phases, the isotopy non-invariance of the boundary defects is restored

for the whole foam by in-flow. If we create one of our special bubbles and push it through

the boundary, the correlation function does not change, but the bubble is now entirely on

the subliminal side and so its associated phase factor is completely accounted for by the

decorations and boundary recombination phases accrued while pushing the bubble through

the boundary, giving β0.

Let us consider the next nontrivial example k = 1, which is associated with Ω1
Spin = Z2,

corresponding to a 0+1D invertible phase which is merely a state with odd fermion parity

(there is no such phase for bosons as Ω1
SO = 0). These anomalies occur at the boundary of

the so-called Gu-Wen supercohomology phases [67].

Fermion parity is an unbreakable symmetry in any local fermionic system. Indeed, it is

not possible for any charged order parameter to have long range order, since it anti-commutes

with itself at separated points. This also applies when we have a boundary. However, we

will see that at a GB-symmetric boundary of a system with this anomaly, fermion parity

cannot be conserved.

The interpretation of the k = 1 anomaly is that α1(g1, . . . , gD) ∈ Z2 describes point-like

junctions of GB domain walls that carry fermion parity. Conservation of fermion parity

requires δα1 = 0 (as we expected from the AHSS). Otherwise we would be able to perform a

recombination of the GB-foam and change the total fermion parity of a correlation function.

Note that here we use the fact that the height is k = 1. If there were anomalous defects

of higher dimension, it would be possible for fermions to be absorbed or emitted by them

under these recombinations.
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Figure 4: A bubble halfway absorbed into a symmetric boundary condition drawn for D = 2.
The bulk GB-foam is drawn in green. Where it ends on the boundary (white circles) there
is a possible gravitational anomaly, described by a function β1 : GB → Ω1, which in a spin
theory could be a fermionic operator, Ω1

spin = Z2. This gravitational anomaly means that
the GB-foam with boundary is not isotopy invariant, and so we cannot apply the argument
we gave in Section 3 for Prop. 3. However, by introducing the subliminal GB-foam (orange)
carrying the invertible phase corresponding to β1 (for Ω1

spin it is a fermionic world line) the
gravitational anomaly is cured and the entire object is isotopy invariant.

Analogous to the previous section, if we have a symmetric boundary, it can absorb these

junctions, disintegrating into a number of point-like boundary defects. Let us first suppose

there are no gravitational anomalies of higher height that occur along the boundary. Then

for fermion parity to be conserved, these boundary defects must carry an odd total fermion

parity. The assignment of fermion parity to the defects is a function β1 : G×2n−1
B → Z2 and

fermion parity conservation then amounts to δβ1 = α1, contradicting our assumption of a

nontrivial bulk anomaly.

Suppose more generally that there are also higher dimensional boundary defects with

gravitational anomalies which an absorb these fermionic defects. These boundary anomalies

define a set of functions βj. Analogous to the k = 0 case and Fig. 2, we can use these βk to

define an extension of the correlation functions to GB-foams crossing an interface, where each

anomalous boundary mode is associated with an invertible phase decorating the GB-foam

on the subliminal side. We find

0 = α1 + δβ1 + ∆D
1 (β>1). (4.5)
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Indeed, by pushing a compact bulk foam (which may contain fermionic defects) to the

subliminal side of the boundary, we see the fermionic defects are entirely accounted for by

the invertible phases on the GB-foam on the other side. Thus, using them as decorations in

the bulk removes all fermionic defects from the bulk foam. This contradicts our assumption

that the height is k = 1. Therefore, there is no symmetric boundary condition.

For k > 1 the argument is exactly the same, except we are now concerned with the

“conservation” of extended objects which host special modes. More precisely, a generic

k − 1-dimensional junction of domain walls is described by a tuple (g1, . . . , gD+1−k) and the

anomaly says that this defect carries the boundary modes of the k-dimensional invertible

phase αk(g1, . . . , gD+1−k) ∈ Ωk. For example, for k = 2, the invertible phase generating

Ω2
Spin = Z2 for fermions is the Kitaev string, and its boundary hosts a single Majorana zero

mode. For k = 3 we may have defects decorated by holomorphic CFTs, and so on with

higher dimensional systems with gravitational anomalies.

The conservation law tells us that these objects must always occupy (images of) closed

submanifolds in spacetime, in other words, it is Conjecture 1. Indeed, for k = 2 a single

Majorana mode has no Hilbert space, so we cannot let it terminate on a state, and for k = 3 a

holomorphic CFT admits no boundary conditions because it is chiral [7] (see also Section 2).

This is equivalent to the cocycle condition δαk = 0.24

To conclude the argument, we observe that at a symmetric boundary, the k−1-dimensional

junctions which carry these anomalous modes can break open, disintegrating into a number

of k−1-dimensional boundary junctions. As before, these anomalous modes must be carried

by the k − 1-dimensional boundary defects or be absorbed into anomalous defects of higher

dimension. The condition that these modes are conserved at the boundary defines a set of

βj such that

0 = αk + δβk + ∆D
k (β>k), (4.6)

contradicting the assumption that the height is k. Thus, there can be no symmetric bound-

ary.

Above we have given justification for Conjecture 1 for gravitational anomalies in small

dimensions, enough to conclude the theorem in dimensions D ≤ 4. Unfortunately it is dif-

ficult to extend these arguments to all dimensions without an intrinsic characterization of

24Recall that the cocycle condition only necessarily applies to αk, where k is the height, since it is possible
for certain anomalous defects of lower dimension to end on other, bigger anomalous defects, modifying the
cocycle condition to (4.2).
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gravitational anomalies (rather than defining them as the boundaries of invertible phases and

risking making a circular “boundary of a boundary” argument). For perturbative anomalies

of Lorentz invariant systems we can use the methods in Section 2, but for global anomalies

things are more subtle. One might for example study certain diffeomorphisms in the pres-

ence of a boundary to deduce the vanishing of correlation functions, similar to what we have

done in the k = 0 case with our special bubbles. This can likely be done for the next known

gravitational anomaly, which occurs for k = 5 in bosonic systems and is associated with a

large diffeomorphism of CP2 (complex conjugation of the homogeneous coordinates). For

fermionic systems the next known gravitational anomaly has k = 7 and is a perturbative

anomaly, for which our results of Section 2 apply. However, it is not even clear that all

the gravitational anomalies encoded in the cobordism classification are detectable by diffeo-

morphisms (i.e. that the corresponding Spin and SO bordism classes are represented by

mapping tori). In fact it seems rather unlikely to be the case. We therefore need a better in-

trinsic characterization of global gravitational anomalies. We leave this interesting question

to future work.

We used unitarity implicitly above in formulating the anomaly as a class in generalized

cohomology. Indeed, the main TQFT justification for the cobordism classification relies on

it [5]. In Section 2.4 we discussed the non-unitary bc system which has a gauge-gravity

anomaly but also a symmetric boundary condition. This anomaly has a similar feature to

the ones we have described here, in particular it says that spacetime curvature binds vector

charge. We can attempt a similar no-go argument as above in this case, by considering a

flat disc which is deformed into a round hemisphere. In this process, bulk vector charge is

created, but by the Gauss-Bonnet theorem, it can be balanced by vector charge associated

with the extrinsic curvature of the boundary (see around (2.65)). Thus, we cannot conclude

the anomaly is trivial, in accordance with what happens in the bc CFT.

5 Anomaly In-Flow Revisited

We did not use anomaly in-flow in the above arguments, but in fact a form of anomaly in-

flow follows from our axioms. The basic idea is to draw the “world-volume” of isotopies and

recombinations of a G-foam on spacetimeM as a G-foam inM×[0, 1]s. The flatness Axiom 0

implies the same for this foam. Bubble creation/annihilation in Axiom 2 corresponds to

critical points of s in the foam of Morse index 0 or D + 1. The phase factors in Axioms 3

and 4 define a phase e2πiΩ associated with the foam, given by the product of e2πiω for

35



each singularity. This phase is evidently local in the sense that the recombination phases

(Axiom 4) are associated with the 0-dimensional singularities of this foam and the isotopy

phases (Axiom 3) can be expressed as an integrated density on the defects.

Lemma 1 is equivalent to isotopy and recombination invariance of this phase e2πiΩ while

holding the boundary G-foams fixed. Indeed, suppose there were two G-foams A and B on

M× [0, 1]s which are related by isotopies and recombinations with phase factors e2πiΩ(A)

and e2πiΩ(B) respectively. Since A and B have the same boundary foam, we can glue A to

an s-reversed copy of B to obtain a foam on M× [0, 2] which has the same boundary on

M×{0} asM×{2} and a nontrivial phase factor e2πi(Ω(A)−Ω(B)) (here we use locality so the

phases multiply). Because the two boundaries of this glued foam are the same, it represents

a series of isotopies and recombinations which take the foam back to itself. By Lemma 1,

e2πi(Ω(A)−Ω(B)) = 1.

The phase associated with this auxiliary foam is usually considered to define a topolog-

ical action of a background gauge field in D + 1-dimensions, which might be obtained by

integrating out some gapped matter with an anomaly-free G-symmetry. If we define our

anomalous theory T on the boundary of one with the topological action e−2πiΩ, meaning

we consider correlation functions of boundary operators in the presence of a bulk G-foam

extending the boundary G-foam by defining the correlation function as the product of the

boundary correlation function and e−2πiΩ of the bulk foam, then by construction these cor-

relation functions satisfy the desired axioms and are moreover isotopy and recombination

invariant. Thus we say the bulk has cancelled the anomaly.

6 Discussion

Let us comment on some applications and extensions of our obstruction theorems for sym-

metric boundary conditions in the presence of bulk ’t Hooft anomalies.

We have already explained in Section 2.5 how our results are consistent with known

boundary conditions of QFTs in the case of perturbative anomalies. As a simple application

for non-perturbative anomalies, we can consider free non-chiral fermions in D = 1+1, which

have an anomalous ZL2 × ZR2 chiral fermion parity symmetry. The anomalies are captured

by the D = 2 + 1 SPT associated to Ω3
Spin(BZ2) = Z8 and the theory is anomaly free if the

number of the Majorana fermions satisfies Nf ∈ 8Z [81–84]. Therefore ZL2 × ZR2 preserving

boundary conditions are only possible for Nf ∈ 8Z. Recently conformal boundary conditions

for an even number of Majorana fermions (with Nf = 2N) preserving an anomaly free U(1)N
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global symmetry have been classified in [85], and indeed it was found that the chiral parity

is preserved if and only if N ∈ 4Z.

The arguments we have described readily extend to higher form symmetries [86]. The

definition of a G-foam is more or less the same except that there can be defects of codimension

greater than one which are not junctions of hypersurfaces. For example, a 1-form symmetry

will be associated with symmetry defects of codimension two. Anomalies are again described

as either phases associated with recombinations of the foam or gravitational anomalies along

certain junctions. The former is described by the ordinary cohomology of the classifying

space of the higher form symmetry n-group, and the latter by a generalized cohomology

thereof, most likely spin or oriented cobordisms.

Our results also apply to domain walls between theories each with a different ’t Hooft

anomaly. A simple way to see this is to realize that any domain wall defines a boundary

condition of the “folded” theory, and if the two sides of the domain wall have different

anomalies, the folded theory will be anomalous as well, and our results apply.

This can be used to derive interesting properties of domain walls. For example, it is

known that the D = 4 Yang-Mills theories with a (1-form) center symmetry, such as with

SU(2) gauge group and adjoint matter, have a mixed anomaly between time reversal and

the center symmetry at θ = π [87], while meanwhile at θ = 0 there is no anomaly. Our

results imply that at a domain wall between the two, there must be symmetry breaking.

In particular, if time reversal is preserved, we must have center symmetry breaking, hence

deconfinement on the wall. This differs from other mechanisms of deconfinement on domain

walls studied in [88], in which the domain wall itself is formed by breaking one of the

anomalous symmetries (see also [89]).

It may happen that there is some (normal) subgroup H of the global symmetry G such

that all H-charged states are gapped, and we have an effective field theory of the low energy

degrees of freedom with global symmetry G/H (that acts faithfully). It is possible in this case

that the G/H symmetry of the effective field theory is anomalous, while the “microscopic”

G-symmetry is anomaly-free. This is called an emergent anomaly. In [90], the authors

(including one of us) proposed that systems with emergent anomalies have certain SPT-like

properties, including boundary conditions which must either break the symmetry or carry

localized modes. Our results imply that if the G/H-symmetric effective field theory can

describe the boundary condition, then there must be G/H symmetry breaking. There are a

few situations where this might not be the case. For example, if the gap to the H charged

states goes to zero at the boundary, we will find some gapless edge modes. On the other
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hand, there could be H symmetry breaking or H-enriched topological order at the boundary.
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