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ABSTRACT Stress and driving are a dangerous combination which can lead to crashes, as evidenced by the 

large number of road traffic crashes that involve stress. Motivated by the need to address the significant costs 

of driver stress, it is essential to build a practical system that can classify driver stress level with high accuracy. 

However, the performance of an accurate driving stress levels classification system depends on 

hyperparameter optimization choices such as data segmentation (windowing hyperparameters). The 

configuration setting of hyperparameters, which has an enormous impact on the system performance, are 

typically hand-tuned while evaluating the algorithm. This tuning process is time consuming and often 

depends on personal experience. There are also no generic optimal values for hyperparameters values. In this 

work, we propose a meta-heuristic approach to support automated hyperparameter optimization and provide 

a real-time driver stress detection system. This is the first systematic study of optimizing windowing 

hyperparameters based on Electrocardiogram (ECG) signal in the domain of driving safety. Our approach is 

to propose a framework based on Particle Swarm Optimization algorithm (PSO) to select an optimal/near 

optimal windowing hyperparameters values. The performance of the proposed framework is evaluated on 

two datasets: a public dataset (DRIVEDB dataset) and our collected dataset using an advanced simulator. 

DRIVEDB dataset was collected in a real time driving scenario, and our dataset was collected using an 

advanced driving simulator in the control environment. We demonstrate that optimising the windowing 

hyperparameters yields significant improvement in terms of accuracy. The most accurate built model applied 

to the public dataset and our dataset, based on the selected windowing hyperparameters, achieved 92.12% 

and 77.78% accuracy, respectively.  

INDEX TERMS Intelligent driver assistance system, Driver stress classification, Particle swarm 

optimization, Windowing hyperparameter optimization, ECG signal 

I. INTRODUCTION 
 

Driving is a perceptual motor skill that involves multiple 

situations and consequently results in varying levels of stress. 

Stress can increase crash risk nearly tenfold according to 

Virginia Tech Transportation Institute (Brown et al., 2016). 

Australian national crash reports also show that feeling 

stressed is a contributing factor to fatal crashes (Beanland, 

Fitzharris, Young, & Lenné, 2013). Thus, stress is an 

important factor in driving which can result in poor driving 

performance and reduce road safety. A key strategy to 

enhance safety is to provide an in-vehicle assistance system 

that can detect a driver’s stress level with high accuracy. 

It is generally accepted that analyzing the autonomic nervous 

system (ANS) activity is essential for building a stress level 

detection system. ANS activities related to stress are 

categorized into momentary and dynamic activities which are 

monitored through physiological body responses. Most of the 

studies in the domain of driver stress classification use several 

physiological signals to monitor drivers’ stress levels (J.A. 

Healey & Picard, 2005; Soman, Sathiya, & Suganthi, 2014; 

Lanatà et al., 2015). Despite the fact that a fusion of 

physiological signals has been shown to be an efficient and 

effective approach to build a reliable driver stress detection 

system (J. Healey & Picard, 2000; Katsis, Katertsidis, 

Ganiatsas, Fotiadis, & others, 2008; Singh, Conjeti, & 
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Banerjee, 2013), this approach presents a serious challenge to 

acceptability of the system by drivers in real-world situations. 

This is because wearing several body contact physiological 

sensors is not only obtrusive, but also can easily distract the 

driver and decrease road safety (Rastgoo et al., 2018). 

Regarding the acceptability issue, building a driver stress 

level detection system based on a single physiological 

modality has received much attention in recent years. 

Electrocardiogram (ECG) signal, which represent the heart 

electrical activity over time, is known as a reliable and 

accurate physiological indicator for driver stress 

classification (Rastgoo et al., 2018). Heart rate variability 

(HRV) that is directly extracted from ECG signal, is an 

important heart activity parameter related to stress. 

Although ECG signal is a reliable stress indicator, extracting 

high quality features to build an accurate model to classify 

driver’s stress levels is a challenging task. The process of 

building driver stress classification model using ECG signal 

is divided into four main steps: pre-processing, signal 

segmentation/ windowing, feature extraction, and 

classification. In the first step, the raw ECG signal is pre-

processed using noise reduction techniques, and then low-

level features such as HRV parameters are extracted from the 

cleaned ECG data. In the second step (signal segmentation/ 

windowing), the cleaned raw ECG signal or low-level 

extracted features are divided into sequences of windows 

with a fixed size and a certain degree of overlap between the 

adjacent windows. Then, a set of higher-level features are 

extracted from each window and finally fed into a classifier 

to discriminate different stress levels. 

Most of the studies in the domain of stress detection focused 

on extracting new features or applying the state-of-the-art 

classifiers and used the traditional method (manual 

hyperparameter selection) for signal segmentation (second 

step) (Wang, Lin, & Yang, 2013). In the manual 

hyperparameter optimization approach, the hyperparameter 

values are selected by an expert. However, this approach can 

potentially lead to the selection of non-optimal 

hyperparameters values and reduce the accuracy of 

classification models. In the process of extracting features, 

the signal segmentation/ windowing step plays a key role. 

This is because the quality of the extracted features and 

consequently the performance of the classifier depend on the 

windowing hyperparameter values (window size and degree 

of overlap values). Moreover, there are no generic optimal 

hyperparameter values that can be used for different 

classification problems. It is therefore important to identify 

the best possible values for these hyperparameters to achieve 

an accurate ECG-based driver stress level detection model. 

Another approach is automatic hyperparameter selection, 

which employs optimization techniques to find appropriate 

hyperparameters values. Although optimization techniques 

suffer from high computational costs, the techniques 

guarantee near optimal solutions which can lead to higher 

classification performance. Therefore, an automatic 

hyperparameter approach is a preferred choice to obtain 

appropriate values and increase the performance of detection 

system.  

One of the efficient optimization algorithms is particle swarm 

optimization (PSO). The PSO algorithm can optimize the 

hyperparameters by assessing different values. The key 

advantages of using the PSO algorithm to solve optimization 

problem is that it is easy to implement, highly efficient in its 

search strategy and can convergence fast (Lorenzo et al., 

2017a; Bahareh Nakisa, Ahmad Nazri, et al., 2014; Bahareh 

Nakisa, Rastgoo, et al., 2014a). In this work, we propose a 

framework based on the PSO algorithm to optimize the 

windowing hyperparameters (window size and the degree of 

overlap) and improve the performance of ECG-based driver 

stress level detection models. To the best of our knowledge, 

this is the first systematic study to build an accurate ECG-

based stress detection model based on optimising windowing 

hyperparameters. The proposed method is evaluated on two 

different datasets, a public dataset (DRIVEDB dataset) and 

our dataset. DRIVEDB dataset was collected in a real time 

driving scenario (J. Healey & Picard, 2000), and our dataset 

was collected using an advanced driving simulator. 

Moreover, to evaluate the efficiency of the proposed 

framework, different ECG feature sets from time and 

frequency domains are considered. Evaluating the 

performance of the proposed framework on different feature 

sets can help to identify suitable hyperparameter values for 

each feature set. The following are the primary contributions 

of this study: 

• Proposing an enhanced framework for driver stress level 

classification that includes the optimization of 

windowing hyperparameter values. This study shows 

that optimising windowing hyperparameters (window 

size and the degree of overlap) using the PSO algorithm 

can significantly improve the performance of driver’s 

stress level classification.   

• Evaluating the performance of the proposed framework 

using state-of-the-art hyperparameter optimization 

methods (Random search and PSO) on two datasets. We 

use a public dataset, collected in real time driving 

scenarios, and our dataset, collected using an advanced 

driving simulator. The effectiveness of the proposed 

framework is also evaluated using different ECG feature 
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sets to identify the suitable windowing hyperparameters 

values for each feature set.  

• Conducting various experiments to compare the 

performance of a driver stress classification system 

designed using the proposed framework with other 

existing techniques on two datasets. We show that the 

proposed framework results in better performance than 

previously published results for three stress level 

classification of driver stress.  

 

This paper is structured as follows: section II presents an 

overview of related work. Section III discusses the proposed 

framework. Section IV presents the experimental method, 

including the data collection and adjustment of the algorithm. 

Section V presents and discusses the experiment results. 

Finally, section VI presents our conclusions and suggestions 

for future work. 

 

II. RELATED WORK 

 

One of the crucial steps in the process of building an accurate 

driver stress level detection model is signal segmentation/ 

windowing. Segmentation corresponds to the process of 

dividing signals into smaller segments and these smaller 

segments are called window sizes. Several studies take 

advantage of combining physiological signals using different 

window sizes to build an accurate driver stress level detection 

model (Healey & Picard, 2000; Katsis et al., 2008; R. R. Singh 

et al., 2013; Urbano, Alam, Ferreira, Fonseca, & Simíões, 

2017). However, none of the studies consider the degree of 

overlap between successive windows. Urbano et al. (2017) 

fused nine features extracted from ECG and electrodermal 

activity (EDA) signals to detect two stress levels. The extracted 

features were fed to a linear discriminant analysis classifier to 

build a personal model for six drivers. The built models 

achieved 81–97% accuracy. In the study, the signals were 

segmented into 60-second windows with no degree of overlap. 

In another study (R. R. Singh et al., 2013), 

photoplethysmogram (PPG), EDA and respiration (RSP) 

signals were segmented into 10-second windows with no 

degree of overlap. The extracted features from the signals were 

fed to a recurrent neural network classifier to discriminate three 

levels of drivers’ stress. For a group of 19 drivers, the precision, 

sensitivity, and specificity of the proposed model were reported 

89.23%, 88.83% and 94.92%, respectively. Healey and Picard 

(2000) collected ECG, EDA and RSP signals from 10 drivers 

to detect four levels of stress using a k-nearest neighbor (KNN) 

classifier. The collected signals were segmented into 60-

second windows with no degree of overlap. The built model 

achieved 86% accuracy. In another study (Katsis et al., 2008), 

12 features were extracted from EDA, ECG, RSP and 

electromyography (EMG) signals from 10 drivers to detect 

four stress levels using a support vector machine (SVM) 

classifier. The signals were segmented into 10-second 

windows with no degree of overlap. The proposed model 

achieved 79.3% detection accuracy.  

Although building multimodal model based on the fusion of 

different physiological signals is successful to classify driver’s 

stress levels, there are some serious challenges for acceptability 

and usefulness of this system for real-world applications. This 

is because most of the physiological signals are recorded by 

body contact sensors. Since wearing several body contact 

sensors simultaneously restricts drivers’ movements, increases 

their awareness of being monitored and easily distracts them, 

the system using multiple modalities may not be practical for 

continuous driver stress monitoring. Therefore, to build an 

accurate driver stress level classification model with high 

system acceptability, it is essential to use a single physiological 

signal.  

 

A. ECG-based driver stress level detection 

 

Among studies on physiological signals, some of them have 

evaluated the effectiveness of ECG signal to classify driver’s 

stress levels (Bichindaritz et al., 2017; Keshan et al., 2015; 

Rastgoo, 2019; Rastgoo et al., 2019; Wang et al., 2013). 

Wang et al. (2013) proposed a model based on several time-

domain features extracted from ECG signal to detect two 

stress levels of drivers. The signal was divided into 5-minute 

windows with 50% overlap and 56 features were extracted 

from each window. The proposed model is evaluated on 

DRIVEDB dataset and achieved 97.78% accuracy using a 

KNN classifier. In another study (Keshan et al., 2015), a 

group of statistical features were extracted from ECG signal 

to classify driver’s stress into two and three levels. The ECG 

signal was segmented into three different window sizes 

ranging from 14 to 38 minutes, and 14 features were extracted 

from each window. The performance of the study using 10 

classifiers was compared on DRIVEDB dataset and the 

highest accuracies to detect two and three stress levels were 

97.92% (using a decision tree classifier), and 67.16% (using 

a multilayer perceptron (MLP) classifier) respectively. 

Bichindaritz et al. (2017) used ECG signal to detect three 

stress levels of drivers. The ECG signal was divided into three 

different window sizes, ranging from 14 to 38 minutes, and 

10 features (6 statistical and 4 non-linear) were extracted 

from each window. The extracted features were fed into 12 

classifiers. The result showed that MLP has the best 

performance (80.60% accuracy) among all the applied 

classifiers.  
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Based on the reviewed literature, most of the works have 

selected manually the window size for ECG signal. However, 

selection of optimal hyperparameters requires a high level of 

domain knowledge and expertise. In addition, the process of 

searching for optimal values is time consuming and error 

prone.  

B. Hyperparameter Optimization 

 

As discussed earlier, most studies in the domain of stress 

detection used the manual hyperparameter approach to select 

the window size and the degree of overlap. In the manual 

hyperparameter approach, the hyperparameters values are 

selected by the expert. However, this can result in selecting 

non-optimal hyperparameter values and low classification 

performance. Another efficient and effective approach that 

windowing hyperparameters can benefit from is automatic 

hyperparameter optimization. Automatic windowing 

hyperparameter selection can improve the performance of 

driver stress level classification system. Hyperparameter 

optimization can be interpreted as an optimization problem 

where the objective is to find hyperparameter values that 

maximizes the performance and yield of an accurate model. 

The automatic hyperparameter selection approach has been 

successfully used in different research domains (Bergstra & 

Bengio, 2012; Bergstra et al., 2011).  

Optimization techniques such as simple grid search, random 

search (J. S. Bergstra et al., 2011b; Krstajic et al., 2014) and 

evolutionary computation (EC) algorithms (Hutter et al., 

2011; B. Nakisa et al., 2018; Qin et al., 2017) have been 

applied to different hyperparameters optimization problems. 

The grid search algorithm is one of the traditional 

optimization algorithms which is based on an exhaustive 

search. In grid search the set of trials is formed by assembling 

every possible combination of values. However, this 

algorithm takes a long period of time to find the global 

optimum because it searches all the possible solutions. Using 

grid search algorithm with large search space is not 

promising. Another hyperparameter selection algorithm is 

random search which is based on the direct search algorithm. 

It is a popular technique because of good prediction in low 

dimensional numerical input spaces. Random search first 

initializes random solutions and then computes the 

performance of the initialized random solutions. Finally, it 

selects the best possible solutions based on the problem 

objective (maximization or minimization). Random search is 

more efficient than grid search. Although this algorithm is 

easy to implement, it suffers from slow convergence (Van 

Der Maas et al., 2005). The main drawback of random search 

is that it doesn’t utilize the updated information from each 

new trial point, and they rely on the predetermined search 

strategy. Random search are slightly less distributed in the 

original space, but far more evenly distributed in the 

subspaces (J. Bergstra & Bengio, 2012). Therefore, Random-

based search techniques are less efficient than more 

sophisticated optimization methods.  

Other existing approaches to optimize hyperparameters are 

Evolutionary Computation (EC) algorithms. These 

algorithms are beneficial because they are conceptually 

simple and can often achieve highly competitive performance 

in different domains (Dasgupta & Michalewicz, 2013; B. 

Nakisa et al., 2018; Nakisa et al., 2014; B. Nakisa et al., 2014, 

2017, 2018; B. Nakisa, Rastgoo, et al., 2014b; Rastgoo et al., 

2015). One of the most powerful EC algorithms is the PSO 

algorithm. The PSO algorithm was inspired by the social 

behavior of fish schooling and bird flocking (Kennedy & 

Eberhart, 1995). Because of its simplicity and effectiveness, 

PSO has been applied in different optimizations domains 

such as robotics (Couceiro et al., 2011; Nakisa et al., 2014a; 

Nakisa et al., 2014b; Rastgoo et al., 2015), job scheduling 

(Sha & Hsu, 2006; Zhang et al., 2009) and feature selection 

(Nakisa et al., 2017). Recently, PSO has been applied 

successfully in optimising hyperparameters such as number 

of inputs, hidden nodes and learning rate on classification 

problems (Lorenzo et al., 2017b; B. Nakisa et al., 2018; B. 

Nakisa, 2019; Ye, 2017). 

In this study, we investigate the performance of PSO 

algorithm on ECG-based driver’s stress levels classification 

and find the optimal/near optimal windowing hyperparameter 

values. To our knowledge, there is no study that focuses on 

selecting windowing hyperparameter values automatically in 

the domain of stress detection. This study proposes an 

enhanced framework based on the PSO algorithm to optimize 

windowing hyperparameter values (the window size and 

overlap hyperparameters) and improve the performance of 

ECG-based driver’s stress level detection model. 

 

III. METHODOLOGY 

In this section, the proposed driver stress classification 

framework using the PSO algorithm to optimize the 

windowing hyperparameters (window size and the degree of 

overlap) is presented. 

The framework contains three main stages: pre-processing, 

segmentation/windowing hyperparameter optimization and 

driver stress detection model (see Figure 1).  

In the first stage, the pre-processing stage, ECG data are 

cleaned, and then heart rate variability (HRV) is measured  
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Figure 1. Driver stress levels classification framework using PSO-based windowing hyperparameters optimization (window size and degree of overlap 

between windows).   

 

 

. In the second stage, the PSO algorithm is applied to find 

the best possible windowing hyperparameter values 

(window size and degree of overlap).  

To evaluate the performance of the selected hyperparameter 

values, a driver stress detection model is built (third stage). 

The selected hyperparameter values are fed into the driver 

stress detection model to evaluate the performance of the 

built model based on the selected values. 

The PSO algorithm explores different hyperparameter 

values, in an iterative process, to find the best possible values 

(solution). At each iteration, based on the selected 

hyperparameter values, an ECG-based stress level detection 

model, which contains feature extraction and classification 

steps, is built. Then, the performance of the built model, in 

terms of accuracy, is evaluated to determine the efficiency of 

the hyperparameters.  

The next sections describe each stage in more detail. 

 

A. Pre-Processing 

The ECG signal is usually weak and feature undesired noise 

resulting from baseline wander, muscle movement, and 

electrode misplacement. Therefore, in the pre-processing 

stage, the raw ECG data is first downsampled to 200 Hz and 

then a Butterworth band-pass filter (5–15 Hz) is applied to 

reduce the noise.  

After noise reduction step, HRV data is extracted from the 

raw ECG signals. This due to the fact that, the relevant ECG 

features for driver’s stress detection are generally extracted 

from HRV data (Rastgoo et al., 2018). HRV is defined as the 

time fluctuations between sequences of successive heart 

beats. To measure these parameters in this study, first R-

peaks are extracted from the ECG signal using the Pan-

Tompkins algorithm (Pan & Tompkins, 1985), and then the 

HRV data based on the extracted peaks are measured.  

 

B. Segmentation/ windowing hyperparameter 
optimization 

 

After cleaning the data and extracting HRV data from the 

raw ECG signal, the segmentation/ windowing 

hyperparameter optimization stage is applied. In this process, 

the PSO algorithm is used to find the best possible values for 

the windowing hyperparameters (the window size and the 

degree of overlap). Based on the Figure 1, PSO algorithm 

starts to select the hyperparameter values randomly and 

passes these values to the driver stress detection model to 

evaluate. To assess the efficacy of the selected 

hyperparameter values, the accuracy of the built model is 

measured.  

This process is done iteratively until the PSO algorithm finds 

the best possible values. The next step, the driver’s stress 

level detection model, contains feature extraction and 

classification. 

In the following subsections, first the process of adapting the 

PSO algorithm to find the potential windowing 

hyperparameter values is explained, and then the process of 

modelling for drivers’ stress level detection is presented. 
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Particle swarm optimization (PSO) 

In this study, the PSO algorithm is used to find the best 

possible set of windowing hyperparameter values to enhance 

the performance of an ECG-based drivers’ stress level 

classification system. The PSO algorithms consists of a set 

of particles and a fitness function.  

To apply PSO algorithm for windowing hyperparameter 

optimization, three main steps should be followed: 

initialization, evaluation, updating.  

In the first step, initialization, a population of particles is 

initialized: 𝑥𝑖
𝑡 = {𝑥1,𝑖

𝑡 , 𝑥2,𝑖
𝑡 , … , 𝑥𝐷,𝑖

𝑡 }, 𝑖 = 1, … , 𝑁, where N is 

the population size, 𝑡 is the current iteration and 𝐷 is the 

dimension of problem space. In this study, PSO algorithm 

consists of 5 particles. The initialization iteration is zero.  

Each particle starts to search with randomized positions 𝑥𝐷,𝑖
𝑡 , 

and velocity 𝑣𝐷,𝑖
𝑡 , in the D-dimensional problem space. As 

the aim of this study is to optimize the window size and the 

degree of overlap hyperparameters, the dimension of the 

problem space is two (D=2). It should be noted that each 

particle represents a solution. Particles are spread over the 

problem space randomly; therefore, particles’ positions 

represent the window size and the degree of overlap values 

in the problem space. The search space is defined as between 

the minimum and maximum values for the window size and 

the degree of overlap: 𝑥𝐷
𝑙𝑜𝑤𝑒𝑟 ≤  𝑥𝐷 ≤ 𝑥𝐷

𝑢𝑝𝑝𝑒𝑟
, D=1, 2.  

As we evaluate the performance of the proposed method on 

two datasets, DRIVEDB dataset and our dataset, we need to 

adapt the window size and the degree of overlap on each 

dataset individually. This is because the experiment duration 

for each dataset is different. For DRIVEDB dataset, the 

window size values are selected to range from 5 to 520 

seconds 𝑥1
𝑙𝑜𝑤𝑒𝑟 = 5 and 𝑥1

𝑢𝑝𝑝𝑒𝑟
= 520 and the values for the 

degree of overlap were selected to range from 0 to 95 

percent: 𝑥2
𝑙𝑜𝑤𝑒𝑟 = 0, 𝑥2

𝑙𝑜𝑤𝑒𝑟 =95. The total data points in the 

problem space for DRIVEDB dataset is 48,925.  

For our dataset, the window size values are selected to range 

from 5 to 60 seconds: 𝑥1
𝑙𝑜𝑤𝑒𝑟 = 5 and 𝑥1

𝑢𝑝𝑝𝑒𝑟
= 60, and the 

values for the degree of overlap were selected to range from 

0 to 95 per cent: 𝑥2
𝑙𝑜𝑤𝑒𝑟 = 0 and 𝑥2

𝑙𝑜𝑤𝑒𝑟 = 95. The total data 

point in the problem space for our dataset is 5,225. 

Once the particles are distributed into the search space, the 

current position of each particle (window size and the degree 

of overlap) needs to be evaluated. In the second step, 

evaluation, based on the current position of each particle, a 

stress level detection model is built to evaluate the 

performance (accuracy) of the built model.  

In the third step, updating, the next position and velocity of 

each particle are updated using equations 1 and 2. The 

velocity vector (eq. 1) is calculated using the particle’s 

personal best position (𝑝𝑏𝑒𝑠𝑡), the global best position (𝑔𝑏𝑒𝑠𝑡) 

and the current velocity vector. The particle’s personal best 

value is the best position that each particle has visited so far 

and the global best (𝑔𝑏𝑒𝑠𝑡) is the best visited position among 

all particles in the population. These two values (𝑝𝑏𝑒𝑠𝑡 , 𝑔𝑏𝑒𝑠𝑡) 

can be controlled by some learning factors. The following 

equations update the particle’s velocity and position. 

𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡) (1)                               

                                                       

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1               (2)                                                                                        

                          

Where 𝑡 represents the current search iteration, 𝑣𝑖
𝑡 and 𝑥𝑖

𝑡 are 

the current particle’s velocity and position vectors 

respectively, 𝜔 is the inertia weight, 𝑐1, 𝑐2 are learning 

factors and 𝑟1, 𝑟2 are random numbers uniformly distributed 

between [0, 1].  

The last two steps, evaluation and updating, are iteratively 

done until the termination criteria are met. The termination 

criteria could be the maximum number of iterations (30 

iterations) or finding the optimal set of window size and 

degree of overlap that maximize the accuracy (100% 

accuracy) of driver stress model. Figure 2 presents the 

pseudo-code for windowing hyperparameter optimization 

using PSO algorithm.  

 
Figure2. The pseudo-code for windowing hyperparameter optimization 

using PSO algorithm. 
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Table 1. The proposed ECG feature sets 

Feature set Domain Extracted features 

 

Statistical HRV features 

 

Time  

Mean of RR, standard deviation RR, mean 

absolute of RR, SDNN, RMSSD, NN20, NN50, 

and PNN50 

Non-linear HRV features Time  SD1, SD2, and SD1/SD2 

Frequency-domain HRV 

features 

Frequency  HF, LF, and LF/HF 

 

Drivers’ stress level detection model 

To evaluate the performance of generated solutions (window 

size and the degree of overlap) using the PSO algorithm, a 

drivers’ stress level detection model is built. The process of 

building the model is explained in more detail in the next 

section. 

Segmentation and feature extraction 

 

The ECG low-level data (HRV feature) is segmented based 

on the selected window size and the degree of overlap. Then, 

high-level ECG features are extracted. In our previous work 

(Rastgoo et al., 2018), a list of ECG features extracted from 

HRV data in relation to drivers’ stress levels is reviewed. To 

optimize the feature extraction process, the most widely used 

ECG features are extracted (tabulated in Table 1). These 

features are extracted from the time and frequency domains. 

In the HRV time domain features, there is a significant 

negative correlation between the HRV signal and the driver 

stress level (Eilebrecht et al., 2012; Miller & Boyle, 2013). 

The most common extracted time-domain features from the 

HRV data to use for drivers’ stress detection are the mean of 

first difference, average normal-to-normal (NN) and 

intervals, standard deviation of normal-to-normal intervals 

(SDNN), square root of the mean squared difference of 

successive normal-to-normal intervals (RMSSD), and 

number of pairs of successive normal-to-normal intervals 

that differ by more than 50 MS (PNN50) (J. Healey & Picard, 

2000; J.A. Healey & Picard, 2005; Katsis et al., 2008; Lanatà 

et al., 2015; Munla et al., 2015; Wang et al., 2013). Poincaré 

plot is one of the most important non-linear parameters of the 

HRV signals. Two important statistical Poincaré plot 

features in relation to stress level detection are the standard 

deviation of the short-term HRV, known as SD1, and the 

standard deviation of the HRV, known as SD2. In the HRV 

frequency-domain features, the most widely used parameters 

to detect drivers’ stress levels are high frequency (HF) power 

spectrum (ranging from 0.2 to 0.4 Hz) and low frequency 

(LF) power spectrum (ranging from 0.05 to 0.2 Hz) (J. 

Healey & Picard, 2000; Lanatà et al., 2015; Munla et al., 

2015; Rodrigues et al., 2015). 

An increase in a driver’s stress level can lead to an increase 

in LF values and a decrease in HF values. The LF/HF ratio 

is also considered to be a common stress indicator (Lanatà et 

al., 2015; Miller & Boyle, 2013; Heikoop et al., 2017). In 

addition, total power is another feature which is used in the 

detection of a driver’s stress level (Munla et al., 2015).  

Classification 

Random Forest (RF) (Breiman, 2001) is an ensemble 

learning algorithm which provides significant advantages for 

the classification problem. 

An RF classifier is a combination of multitude random forest 

tree classifiers which each classifier predicts a class label for 

each input vector. After that, the class label which is selected 

more than the others will be selected as the final class label. 

The random trees are grown using different training data sets 

and random sets of features which increase the diversity of 

the tree classifiers and create a robust classification model to 

deal with outliers and noises.  

RF has been shown to be an effective classifier for 

discriminating different stress levels of drivers using 

physiological signals (Katsis et al., 2008; Soman et al., 

2014). Therefore, in this study, the extracted feature set from 

the HRV signal, using the selected window size and the 

degree of overlap based on PSO algorithm, is fed to a 

Random Forest (RF) classifier to classify stress levels. The 

performance of the proposed model is evaluated using a 10-

fold cross-validation.  

IV.  EXPERIMENTAL PROCESS 

Extensive experiments are conducted to determine if 

optimising the windowing hyperparameters using the PSO 

algorithm is an effective strategy to improve the performance 

of an ECG-based driver stress level detection model. The 

performance of the proposed framework is evaluated on two 

different datasets: a public dataset and our dataset. 

Moreover, the performance of the proposed framework on 

each dataset is evaluated on different sets of ECG features to 

investigate the efficacy of different window sizes using 

different feature sets. 
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A. Database 

 

In this study, two datasets are used to evaluate the 

performance of the proposed framework. The first dataset is 

a public dataset which contains ECG data collected in real 

time driving scenarios. The second dataset is collected using 

an advanced driving simulator in our lab. These datasets are 

explained in below. 

DRIVEDB dataset 

 

The experiments used a publicly available drivers’ stress 

level detection database collected by Healey and Picard 

(2000). The database is called “the Stress Recognition in 

Automobile Driver” database or DRIVEDB and can be 

downloaded from MIT Media Lab (Healey & Picard, 2008). 

DRIVEDB contains a collection of different physiological 

data including ECG, EMG, EDA and RSP from 17 drivers 

who were driving around for at least one hour in the designed 

streets and highways in the city of Boston. The sample rate 

for ECG signal is reported to be 496 Hz. There are three 

different driving sessions in the dataset, which induced 

different stress levels. Only 10 drivers were selected for data 

analysis. It is asked the participants to express their stress 

levels (low, medium, and high stress) during Rest, highway 

and City driving. 

Table 2 shows the details related to the selected drivers’ 

sessions. Further details of the study protocol can be found 

in Heikoop et al. (2017). Based on the questionnaire, the least 

stressful situation is the rest scenario, and the highway 

driving are more stressful and the city driving is the most 

stressful situation.  

 
Table 2. DRIVEDB dataset information 

Driving session Stress level Rating 

𝜇 𝜎 

Rest before driving Low stress 1.6 

 

0.88 

Highway Medium stress 2.00 0.92 

City high stress 2.55 1.02 

 

Our dataset 

 

The dataset used in this study was recorded in response to 

different stressful situations in the context of driving. The 

experiment was conducted in an advanced driving simulator 

(Figure 2). The simulator consists of a car with an automatic 

transmission, front view (180-degree), rear-view mirrors, 

audio system, a hydraulic system to simulate vehicle motion 

and SCANeR™ studio software. The surround-sound such 

as engine, road noise and other traffic interactions sounds are 

simulated accurately by the audio system. The physiological 

signals such as the ECG signal and vehicle dynamics data are 

acquired using the BIOPAC MP150 and SCANeR™ studio. 

BIOPAC MP150 was used to acquire physiological signals 

such as ECG signal with a sampling rate of 1000 Hz. The 

ECG signal was downsampled to 250 Hz. It should be noted 

that all the data from the SCANeR™ and BIOPAC software 

are synchronized. Further information on the of a car with an 

automatic transmission, front view (180-degree), rear-view 

mirrors, audio system, a hydraulic system to simulate vehicle 

motion, and BIOPAC system to acquire ECG signal. 

Information about the driving simulator can be found in 

https://research.qut.edu.au/carrsq. In this study we used only 

the ECG data for analysis. 

The data were collected from 27 participants aged 21–40 

years (55% male). All participants were required to have a 

valid Australian driving license, and to regularly drive for a 

total of at least one hour every week. The total session for 

each participant took about one hour on average. 

Data collection Scenario 

 

The experimental protocol was structured into two phases: 

pre-experiment and driving scenario experiment. Prior to the 

commencement of experiments, all participants were 

emailed instructed about the experiment (task details, 

wearable sensors, data acquisition, driving routes, and safety 

instructions). Some restrictions such as to avoid drinking 

caffeine and alcohol prior to data collection were applied to 

the participants.  

Before starting driving, each participant was asked to relax 

for 2–3 minutes to record their physiological baseline. Then, 

the participant drove through six driving scenarios. Each 

scenario takes 5 minutes. Along with all the experimental 

scenarios, the driver’s data (physiological, and physical data) 

as well as the contextual data were continuously acquired. In 

the first driving scenario (practice drive), the participant was 

asked to drive on a simple route to become familiar with 

simulator environment and how to control the car. After the 

practice drive, the participant drove in the next five driving 

scenarios: Urban1, Urban2, Highway, City1 and City2 

landmarks. It should be noted that the order of the scenarios 

was randomized across participants to avoid learning effects. 

Each scenario contains several stressors to induce different 

stress levels (low, medium, and high) into the participant. 

The applied stressors in this study were derived from (Hill & 

Boyle, 2007; Lee et al., 2017; Rodrigues et al., 2015) and 

were categorized into four groups:  

1) Traffic (e.g. driving in heavy traffic) 

https://research.qut.edu.au/carrsq
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Figure 2. CARRS-Q advanced simulator used for our data collection. 

 

2) Difficult driving situations (e.g. narrow roads and tight 

corners, curved road). 

3) Other drivers’ behaviors (e.g. angry drivers, careless 

drivers) 

4) Weather and visibility related conditions (e.g. heavy rain, 

night-time driving, foggy weather). 
The intensity and frequency of the stressors used are 

different in the various scenarios to induce different stress 

levels. During each scenario, the participants were asked 

every two minutes to provide their responses (verbally) to a 

short questionnaire about their average stress levels. They 

were asked to express their stress levels between 1 and 3 (1- 

No/low stress to 3- High stress) during each scenario. The 

Figure 3 presents the distribution of the stress levels for each 

scenario (Relax, Mountain, Highway, CBD1 and CBD2).  

 

 
Figure3. distribution of stress levels per scenario. 

 

Based on the figure3, the least stressful situation are the 

relax/rest and highway situations. And the highest stress full 

situations are CBD1 and CBD2. The Mountain and highway 

driving are not as stressful as CBD1 and CBD2.  

B. Experimental Setting 

 

Different sets of ECG features were used to evaluate the 

performance of the proposed framework. The feature sets 

used in this study are the commonly used ECG features from 

the time and frequency domains. The feature sets are 

statistical HRV features, non-linear HRV features and 

frequency-domain HRV features (See Table 1). 

To evaluate the performance of the proposed system based 

on each ECG feature set, the PSO algorithm was executed 20 

times. The PSO algorithm parameters for construction 

coefficient, damping ratio, particle size are set to 2.05, 0.9, 

and 5, respectively. These values are taken from our study 

related to emotion recognition (Nakisa et al., 2017). 

In this study, the performance of the proposed system using 

PSO algorithm was evaluated on two datasets, DRIVEDB 

and our dataset. The duration of whole experiment for each 

dataset is different, therefore, the duration of the experiments 

for each dataset is different. As a result, different window 

sizes were selected for each dataset. For the DRIVEDB 

dataset, the window size values were selected to range from 

5 to 520 seconds, and the values for the degree of overlap 

were selected to range from 0 to 95 percent. We tried to 

select smaller window sizes to build a practical system which 

can detect driver stress in real-time with high accuracy.  

For our dataset, the window size values were selected to 

range from 5 to 60 seconds, and the values for the degree of 

overlap were selected to range from 0 to 95 per cent.  

It should be mentioned that the number of search iterations 

was found by trial and error (30 iterations). We have 

evaluated 100 different values between the ranges of 

(10,100). The best value which got a good performance 

regarding to running time and classification accuracy is 30.  
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The proposed framework in this study was implemented 

using MATLAB software.  

V.  EXPERIMENTAL RESULTS AND DISCUSSION 

A. Evaluating the proposed framework using different 

ECG feature sets on two our dataset 

 

In this section, the evaluation of the proposed framework 

based on the three statistical ECG feature sets on DRIVEDB 

dataset and our dataset is presented. 

The performance of the proposed system using PSO was 

assessed based on the optimum accuracy that can be 

achieved within an acceptable time. The PSO algorithm was 

tested based on its ability to find the best windowing 

hyperparameter values (window size and degree of overlap) 

within a limited time. 

As mentioned in Experimental setting section, the window 

sizes for the DRIVEDB dataset ranged from 1 to 520 

seconds, and for our dataset ranged from 5 to 60 seconds. 

The reason that the window size of DRIVEDB dataset is 

different from our dataset is the style of annotation. The 

annotation of DRIVEDB dataset is done after each 

experiment (after 520 seconds), while ours is done during the 

experiment (every 2 minutes). As each experiment/ scenario 

in our dataset takes 5 minutes, we have considered the 

annotation for every minute of the experiment. Therefore, 

the window size for our dataset is between 0 and 60 seconds. 

As it is mentioned earlier, the performance of the proposed 

system based on both datasets using different ECG feature 

set is evaluated over 20 times. The average processing time 

for each execution is measured by Intel Core i7 CPU, 16 GB 

RAM, running windows 7 on 64-bit architecture. The 

average processing time for the proposed method using 

DRIVEDB dataset and our dataset over 20 runs is around 250 

hours. It should be noted that the number of search iterations 

for each run is 30 iterations and the number of evaluated data 

points is 150 data points out of 48,925 and 5,225 for 

DRIVEDB and our collected dataset, respectively. Although 

the PSO algorithm is computationally expensive, it is less 

complex than full search algorithms. It should be noted that 

optimizing hyperparameters to find the best model for 

driver’s stress classification is only conducted during 

development and training stages.  

To study the performance of the PSO algorithm, the window 

size and the degree of overlap values were segmented into 

different regions (see Figure 3), and the average accuracy of 

the solutions based on different regions was calculated. The 

overlap degree is segmented into three different regions: low 

(5% -30%), medium (30% -60%) and high (60% - 95%). The 

average accuracy of solutions for different regions is shown 

in Figure 4, 5. 

 

 
     (a) 

 
(b) 
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      (c)    
Figure 4. The average performance of the proposed method on DRIVEDB dataset based on different window size and degree of overlap regions using (a) 

non-linear HRV feature set, (b) frequency-domain HRV feature set, (c) statistical HRV feature set.  

 

Figure 4 presents the average performance of the proposed 

system based on the DRIVEDB dataset over three different 

feature sets: non-linear HRV feature set, frequency-domain 

HRV feature set and statistical HRV feature set. The figure 

provides the average accuracy for different ranges of degree 

of overlap and window size. 

Based on the average accuracy over three feature sets, the 

most frequent set of good solutions was found with high 

degree of overlap (medium to high degree of overlap) and 

large window size. However, this is not guaranteed, as in 

some cases a high degree of overlap resulted in a low 

performance. For example, the minimum average 

performance using the statistical feature set was obtained 

with a 90–120 second window and a high degree of overlap. 

Based on Figure 4 (a), as the size of the window increased, 

the performance of the proposed method using a non-linear 

feature set slightly improved. The maximum average 

performance (63% accuracy) was obtained with a 210–240 

second window and a high degree of overlap. It also shows 

that the accuracy of the proposed method with a medium to 

high degree of overlap is better than with a low degree of 

overlap. The minimum performance (35% accuracy) is 

achieved in a short window size and a low degree of overlap 

(90–120 second window). 

Similarly, the performance of the proposed method based on 

the frequency feature set increased as the degree of overlap 

increased (Figure 4 (b)). However, the highest average 

performance using this feature set was achieved when the 

window size was long. The best average accuracy was 

obtained with a 420–450 second window with a high degree 

of overlap. It should be noted that high degree of overlap has 

not always resulted in high performance. For example, the 

minimum average accuracy using the frequency feature set 

was achieved with a 60–90 second window and a high degree 

of overlap. This finding shows that the performance of the 

system depends on the combination of window size and 

degree of overlap and there are no general values guaranteed 

to achieve high performance.  

As shown in Figure 4 (c), the performance of the proposed 

hyperparameter search method using the statistical feature 

set is better than for the non-linear and frequency feature sets 

and achieved 80% accuracy with a 450–480 second window 

and a high degree of overlap. It also shows that the 

performance of driver stress detection using a 150–180 

second window and a high degree of overlap is close to the 

best result. 

The performance of the proposed method over the three 

feature sets was also investigated on our dataset (using 

advanced simulator) and the results are presented in Figure 

5. 

  
                (a)           (b)         (c)  

Figure 5. The average performance of the proposed method on our dataset based on different window size ranges and degree of overlap ranges using (a) non-

linear HRV feature set, (b) frequency-domain HRV feature set, (c) statistical HRV feature set.  
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Table 3. The best performance achieved (maximum accuracy) using the proposed hyperparameter search method based on the three feature sets using the 

DRIVEDB dataset and our dataset. 

 Statistical feature set Frequency feature set  Non-linear feature set 

 Win 

size 

Overlap Best 
Accuracy 

Win 

size 

Overlap Best 

Accuracy 

Win 

size 

Overlap Best  

Accuracy 

DRIVEDB 

Dataset 

480 95 92.12% 84 95 68.96% 239 95 70.7% 

190 95 89.78% 11 87 50.77% 30 86 52.52% 

34 95 79.50% 11 87 50.77% 11 54 47.90% 

10 95 71.66% 5 50 50.02% 10 50 46.88% 

Our dataset 60 95 77.78% 45 95 61.34% 5 95 61.97% 

30 95 74.63% 5 95 60.91% 39 16 61.94% 

10 95 68.86% 60 10 60.4% 45 95 61.17% 

5 95 66.51% 45 10 59.36% 47 76 60.16% 

 

The result using a non-linear feature set (Figure 5 (a)) shows 

that the best average performance is obtained with a 30–60 

second window and a high degree of overlap. The 

performance of the stress detection using our dataset is 9% 

better, compared to the DRIVEDB dataset that achieved 51% 

accuracy with a 30–60 second window. Based on the results, 

the performance of the proposed method using the frequency 

feature set is better than using the non-linear feature set and 

it achieved 61% accuracy over short window sizes (5–30 

seconds). Similar to the DRIVEDB dataset, the highest 

average performance is obtained using the time-domain 

feature set with a 30–60 second window and a high degree 

of overlap. Using our dataset, we achieved 77.7% accuracy, 

while using the DRIVEDB dataset we achieved 80% 

accuracy. 

Further analysis of the best solutions achieved using the 

proposed method is provided in Table 3. The table presents 

the highest accuracies achieved using three feature sets over 

DRIVEDB and our dataset.  

As shown in Table 3, the highest performance based on the 

statistical feature set using the DRIVEDB dataset is 92% 

with a long window size and a high degree of overlap (480-

second window and 95% overlap). It also shows that all the 

high performances are achieved with a high degree of 

overlap. Similarly, the best accuracies over our dataset are 

obtained with a high degree of overlap. Based on both the 

DRIVEDB dataset and our dataset using the statistical 

feature set, the results show that longer window sizes 

resulted in higher accuracies. 

The best results based on the frequency feature set have short 

window sizes. Using the DRIVEDB dataset, the best 

accuracy is achieved with an 84-second window and the best 

window size ranges from 11 to 80 seconds. 

The best window sizes over using dataset range from 5 to 65 

seconds and the highest accuracy is achieved with shorter 

window sizes (45 seconds).The best accuracies achieved for 

the non-linear feature set are lower than for the frequency 

and statistical feature sets. The results show that the best 

accuracy achieved using the DRIVEDB dataset is 70.7% 

with large window sizes and a high degree of overlap. 

Moreover, as the size of windows decreased, the 

performance of the proposed method using non-linear 

features decreased. In contrast to the DRIVEDB dataset, the 

best accuracies using our dataset were obtained with short 

window sizes. Moreover, the performance of the proposed 

method using our dataset is close to the performance using 

the DRIVEDB dataset. 

 

 

 

Table 4. The best performance achieved (maximum accuracy) using the Random Search and PSO algorithm based on the three feature sets using the 

DRIVEDB dataset and our dataset. 
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B. Evaluating windowing hyperparameter optimization 

using PSO and Random Search algorithms 

The performance of the proposed system using PSO 

algorithm is evaluated and compared with Random Search 

algorithm in this section. The models are built and compared 

on two datasets, DRIVEDB and our dataset in this section. 

To apply Random Search algorithm, Hyperopt library, 

Random.suggest algorithm is used. The other settings are 

discussed in the experimental setting section.  

Table 4 presents the performance of the proposed model 

using PSO and Random search model, providing the 

optimum accuracy that can be achieved within an acceptable 

time. Based on the achieved results from the previous 

section, the performance of Random Search and PSO model 

are evaluated based on statistical features. Processing time is 

determined by Intel core i7 CPU, 16GB RAM, running 

windows 7 on 64bit architecture. Based on the best obtained 

accuracy, the general performance of Random Search 

algorithm was slightly lower than PSO algorithms. 

The best accuracy using both Random Search and PSO 

algorithm are achieved with large window size and high 

degree of overlap. Moreover, statistical features using both 

Random Search and PSO algorithm is performing better than 

other feature sets (Frequency and Non-linear feature sets). 

Based on the results from Table 3 and 4 we can conclude that 

PSO algorithm is more successful in finding the near optimal 

windowing hyperparameters. This is because PSO algorithm 

is capable in maintaining high diversity in exploring and 

finding better solutions. 

 Random search algorithm is slightly less distributed in the 

whole search space and for more evenly distributed in 

subspaces.   

C. Comparison of the best model built by the 
framework with other recent works  

 

In this section, we compare the performance of the best built 

model against existing studies in the literature (see Table 5). 

The studies reported in Table 5 used ECG modality to build 

an accurate model that can detect driver stress levels using 

the DRIVEDB dataset and they are compared with our 

proposed method. In this table we compared different studies 

based on the highest classification accuracy for different 

numbers of stress levels as well as different classifiers.  

Based on the Table 5, Wang et.al (2013) and Keshan et al. 

(2015) achieved promising results (about 97%) using ECG 

signal; however, these methods were used for a two-level 

classification (low and high stress). while our method was 

able to achieve 92% accuracy over a three-level 

classification (low, medium, and high). The performance of 

their methods was tested on only the DRIVEDB dataset, 

whereas our proposed methods were tested on the 

DRIVEDB dataset as well as our dataset. Wang et al. (2013) 

classified three stress levels using a MLP classifier with large 

window sizes, between 840 and 2280 seconds long, while 

our methods achieved higher accuracy (92%) with shorter 

window sizes (480 seconds). Compared to all the latest 

studies, our proposed methods produced the state-of-the-art 

performance over both DRIVEDB and our dataset, which 

confirms the value of windowing hyperparameter 

optimization to improve stress classification. The results 

confirm that optimizing both windowing hyperparameters 

(window size and the degree of overlap) are essential to 

achieve an accurate driver stress detection model.  

D. Discussion 

The results of this study indicate that optimising the window 

size and degree of overlap hyperparameters is an effective 

strategy to build an accurate ECG-based model. 

This hyperparameter shows that as the degree of overlap 

increased the time variation of ECG signal can be captured 

finer and improved the performance of classification. Based 

on the presented results, previous studies that used 

physiological signals in heath domains have demonstrated 

that increasing the degree of window overlap can improve 

the detection performance (Delachaux et al., 2013; 

Janidarmian et al., 2014; Fekr et al., 2016).  

Our study also confirms that statistical HRV features are 

reliable indicators of stress levels. This finding supports 

previous research (Lee et al., 2007), which suggested that 

statistical HRV time-domain features are good indicators of 

instantaneous driver stress responses. Another important 

finding is that the most accurate models, for each ECG 

feature set, are built based on large window sizes. This means 

that the extracted features for long-term HRV variations can 

better reflect dynamic ANS activities related to stress, which 

is in line with previous results (Wang et al., 2013; Keshan et 

al., 2015; Bichindaritz et al., 2017). 
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Table 5. Comparison of our approach with other latest works. 

 

Reference 

 

Experiment setting 

 

 

Physiological 

Signal used 

 

 

Classifier 

 

 

 

Windowing 

Hyperparameter 

 

Performance 

(Accuracy) 

 

No. Classes 

Window size Overlap 

 

Wang et 

al., 2008 

 

DRIVEDB Dataset 

(time and frequency 

from HRV) 

 

ECG 

 

SVM 

 

300 seconds 

 

50% 

 

97.5% 

 

2 stress classes 
     (low, high) 

 

Keshan et 

al.  2015 

 

DRIVEDB Dataset 

 

(statistical 

from RR intervals) 

 

ECG 

 

Decision 

tree 

(J48) 

 

840-2280 

seconds 

 

 

 

- 

 

 97.92% 

 

2 stress classes 

(low, high) 

68.66% 3 classes  

(low, medium, and 

high) 

 Munla 

N., 2015 

DRIVEDB Dataset 

(time domain 

feature) 

 

ECG 

 

SVM 

 

300 seconds 

 

- 

 

83.33% 

2 Stress classes 

(stress/ no stress) 

Wang et 

al. 2013 

 

 

DRIVEDB Dataset 

(statistical and 

non-linear from  

RR intervals) 

ECG  

MLP 

 

840-2280 

second 

-  

80% 

3 stress classes 

(low, medium, and 

high) 

 

 

 

Our work 

 

DRIVEDB Dataset 

(statistical HRV 

feature set) 

 

ECG 

 

RF 

 

480 seconds 

 

90% 

 

87% 

 

 

 

3 stress classes 

(low, medium, and 

high) 

Our Dataset 

(statistical HRV 

feature set) 

 

 

 

ECG 

 

 

RF 

 

 

60 seconds 

 

 

90% 

 

 

77.78% 

 

VI. CONCLUSION 

 

In this study we improved the performance of driver stress 

detection model by proposing an efficient framework to 

optimise windowing hyperparameters (window size and 

degree of overlap). To optimise these hyperparameters and 

build an accurate driver stress detection model, we adapted 

the PSO algorithm. The performance of the proposed 

framework was evaluated to detect three stress levels of 

drivers (low-level, medium-level, and high-level) using 

different ECG feature sets. The proposed feature sets 

contained the common extracted features related to driver 

stress level from HRV signals from the time and frequency 

domains. Two datasets (DRIVEDB and our dataset) are used 

to evaluate the performance of the proposed hyperparameter 

search model. DRIVEDB dataset is a public dataset that was 

collected from real time driving scenarios by MIT Media Lab 

and our dataset was collected from an advanced driving 

simulator.  

We conducted comprehensive results showing that 

optimising the window size and the degree of overlap 

hyperparameters is a key step in the process of building an 

accurate driver stress level detection model. The proposed 

framework was successful in building a driver stress level 

detection model and achieved the state-of-the-art 

performance with 92.12% and 77.78% accuracies over 

DRIVEDB dataset and our dataset, respectively.  

This study confirms that ECG signal can be used to detect 

driver stress level with high accuracy. In our view, the 

obtained results are an excellent initial step towards building 

a practical system using a single physiological signal that can 

continuously and automatically detect driver stress level. 

The findings in this study need to be generalised on more 

datasets. In addition, it would be interesting to investigate the 

efficiency of other physiological signals to build such a 

system using the proposed framework. 
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