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ABSTRACT 

We consider economic obstacles that limit the reliability and accuracy of value-at-risk (VaR). 

Investors who manage large market transactions should take into account the impact of the 

randomness of large trade volumes on predictions of price probability and VaR assessments. 

We introduce market-based probabilities of price and return that depend on the randomness 

of market trade values and volumes. Contrary to them, the conventional frequency-based 

price probability describes the case of constant trade volumes. We derive the dependence of 

market-based price volatility on the volatilities and correlation of trade values and volumes. 

In the coming years, that will limit the accuracy of price probability predictions to Gaussian 

approximations, and even the forecasts of market-based price volatility will be inaccurate and  

highly uncertain.  
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1. Introduction 

The value-at-risk measure was proposed in the late 1960s, almost 50 years ago, as a 

response to the request of JP Morgan’s Chairman Dennis Weatherstone. “It was of JP 

Morgan, at the time the Chairman of JP Morgan, who clearly stated the basic question that is 

the basis for VaR as we know it today – “how much can we lose on our trading portfolio by 

tomorrow’s close?””(Allen, Boudoukh, and Saunders, 2004). The response of JP Morgan’s 

team to Weatherstone’s question results in the development of the VaR models by 

RiskMetrics Group and further studies (Longerstaey and Spencer, 1996; CreditMetrics™, 

1997; Duffie and Pan, 1997; Holton, 2002; Allen, Boudoukh, and Saunders, 2004; Choudhry, 

2013).  

According to Longerstaey and Spencer (1996) “Value-at-Risk is a measure of the 

maximum potential change in value of a portfolio of financial instruments with a given 

probability over a pre-set horizon.” Since then, Value-at-Risk or VaR, has become a standard 

tool for risk assessment. As usual, the roots of any good concept like VaR can be found much 

earlier than it is noted by RiskMetrics “official mythology,” and Holton (2002) takes the VaR 

back to 1922. We cannot refer to all those who contributed to VaR as one of the most 

effective and useful risk measures and mention only a few (Malkiel, 1981; Marshall and 

Siegel, 1996; Duffie and Pan, 1997; Berkowitz and O’Brien, 2001; Holton, 2003; Jorion, 

2006). Since RiskMetrics publications, the VaR concept has occupied a permanent position 

in the risk management monographs (Choudhry, 2013; Horcher, 2015). Various forms of the 

VaR were developed for the risk assessment of market portfolios, corporate risk, credit risk, 

and financial risk management (Sanders and Manfredo, 1999; Adrian and Brunnermeier, 

2011; Andersen et al., 2012). The VaR concept plays an important role in bank and security 

risk regulations (FRS, 1998; Amato and Remolona, 2005; CESR, 2010). The wide use of 

VaR as a risk measure is explained by its clear and general concept. Let’s take the price 

probability measure P(p):  ∫ 𝑃(𝑝)  𝑑𝑝 = 1     (1.1) 

and choose a small number ε<<1. Then one can derive the price p(ε): ∫ 𝑃(𝑝)𝑝(𝜀)0  𝑑𝑝 = 𝜀       ;        𝑝(𝜀) ≤ 𝑝  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦   1 − 𝜀  (1.2) 

Price p(ε) (1.2) determines the bottom line of possible losses with probability 1- ε  

Simple relations (1.1-1.2) give firm and clear ground for VaR. Only some “easy” problems 

are left: how to choose and forecast the price probability measure P(p)?  
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In the late 1960s, RiskMetrics developed the first approximations of the VaR. The 

standard treatment of VaR (Longerstaey and Spencer, 1996) is based on the price probability 

P(p) determined by the number (frequency) of trades at price p. To define the price 

probability P(p), one should choose a certain time averaging interval Δ, collect all N trades 

with asset A during interval Δ, and count the number m(p) of trades at price p. Investors may 

choose the time interval Δ to be equal to an hour, a day, a week, or whatever. The duration of 

Δ impacts the properties of the price probability measure P(p). The frequency-based price 

probability P(p) (1.4) and the n-th statistical moments p(t;n) of price during the interval Δ 

(1.3) equal:  𝑡 − ∆2 ≤ 𝑡𝑖 ≤ 𝑡 + ∆2        ;         𝑖 = 1, … 𝑁    (1.3) 𝑃(𝑝)~ 1𝑁 𝑚(𝑝)       ;          𝑝(𝑡; 𝑛) = 1𝑁 ∑ 𝑝𝑘𝑛 𝑚(𝑝𝑘)𝑘 =  1𝑁 ∑ 𝑝𝑛(𝑡𝑖)𝑁𝑖=1   (1.4) 

If one chooses ε=5%, then with probability 95% (1.2), all trade prices p during interval Δ 

(1.3) will be higher than p(ε=5%). Hence, M shares of asset A with a probability 95% will 

have a value greater or equal than p(ε=5%)M. Investors may choose the benchmark of 1%, 

3%, or whatever and obtain a lower estimate of asset A value or possible losses, with a 

probability 99%, 97%, etc.  

As the first approximation, RiskMetrics Group (Longerstaey and Spencer, 1996) 

assumed that the frequency-based price probability (1.1; 1.4) P(p) of trades at price p takes 

the form of standard normal distribution. “A standard property of the normal distribution is 

that outcomes less than or equal to 1,65 standard deviations below the mean occur only 5 

percent of the time” (Longerstaey and Spencer, 1996). Investors have used this result for 

years as a risk assessment of portfolio losses. Further researchers investigate the way to 

forecast the frequency-based price probability P(p) (1.4), estimate the deviation of price 

probability P(p) (1.4) from the normal distribution, explain the “fat tails” of the observed 

price probability, etc. These problems are difficult and, till now, far from a final solution. 

In this paper we study the problems of the VaR concept: the choice of the price 

probability and its predictions. We show that the frequency-based price probability (1.4) is 

not the only one and most likely not the correct one description of random market price. VaR 

should protect investors from a random change of the market price. We consider randomness 

of market trade value and volume as the origin of price stochasticity and derive the 

dependence of market-based statistical moments of price on statistical moments and 

correlations of the trade values and volumes. That dependence results in a tough conclusion: 

to predict an average and volatility of price at horizon T, one should predict the averages, 
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volatilities, and correlations of market trade values and volumes at the same horizon T. That 

nontrivial problem uncovers the economic obstacles that make price probability forecasts 

rather difficult and uncertain. The distinctions between the market-based and frequency-

based price probability (1.4) result in differences in VaR assessments of p(ε) (1.2; 1.3) and 

can cause excess losses. 

We assume that readers are familiar with statistical moments, etc. 

2. General considerations  

The VaR method is based on predictions of price or return probabilities at horizon T. 

The weaknesses of VaR are hidden in the definition of price probability and the related 

problems with its predictions. To explain that, we highlight three issues.  

The first one states that one can equally describe a random variable by a probability 

distribution or a set of statistical moments (Shiryaev, 1999; Shreve, 2004). The first n 

statistical moments define the n-approximation of the probability distribution. Predictions of 

the first n statistical moments give predictions of the n-approximation of probability. At the 

same time, any predictions of probability distribution determine forecasts of statistical 

moments. The accuracy of the forecasts of the first n statistical moments determines the 

accuracy of probability predictions. 

The second one underlines that the price p(ti) time series is a result of market trades 

with values C(ti) and volumes U(ti). One can describe a market trade at time ti by its value 

C(ti), volume U(ti), and price p(ti): 𝐶(𝑡𝑖) = 𝑝(𝑡𝑖)𝑈(𝑡𝑖)     (2.1) 

We consider the trade value C(ti), volume U(ti), and price p(ti) (2.1) during the averaging 

interval Δ (3.1) as random variables. If random values C(ti), volumes U(ti), and prices p(ti) 

satisfy the equation (2.1), then it is independently impossible to define their statistical 

moments or their probability distributions. We describe the dependence of market-based 

average and volatility of prices on the averages, volatilities, and correlations of trade values 

and volumes. That gives the Gaussian approximations of market price probability.  

Our third issue concerns the predictions of price statistical moments at horizon T. We 

argue that to forecast at horizon T the market-based average and volatility of price, one 

should predict averages, volatilities, and correlations of market trade values and volumes at 

the same horizon T. We discuss the economic obstacles that prevent predictions of the 2
nd

 and 

higher statistical moments of market trade. In the best case, in the coming years, the 

predictions of trade statistical moments and, hence, predictions of price statistical moments, 
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will be limited by predictions of the 2
nd

 statistical moments. Hence, predictions of price 

probability will be limited to Gaussian distributions only. Below, we consider these issues in 

more detail. 

In the next section, we introduce the market-based average and volatility of a random 

price (Olkhov, 2021a; 2022; 2023a) that define a Gaussian approximation of the price 

probability and discuss distinctions between the market-based and frequency-based statistical 

moments (1.4). Further, we discuss the economic obstacles that prevent precise prediction of 

market-based price volatility, which make the use of VaR rather uncertain. One can find a 

description of market-based statistical moments of return in Olkhov (2023a; 2023b). 

3. Market-based average and volatility of price  

Let us assume that the time interval ε between trades (2.1) is rather small and 

constant. High-frequency trade time series behave irregularly or randomly during almost any 

averaging interval Δ. The choice of the averaging interval Δ allows estimate random 

properties of the trade value C(ti), volume U(ti), and price p(ti) during Δ and then make an 

attempt to predict them at horizon T. For convenience, we assume that times ti belong to the 

averaging interval Δ (3.1) near moment t if: 𝑡 − ∆2 ≤ 𝑡𝑖 ≤ 𝑡 + ∆2  ;   𝑡𝑖 = 𝑡0 + (𝑖 − 1) · 𝜀  ;    𝑖 = 1, … 𝑁   (3.1) 

The duration of the averaging interval Δ defines the number of members of the time series of 

the trade values C(ti) and volumes U(ti). The n-th statistical moments of trade value C(t;n) 

and volume U(t;n) take the form: 𝐶(𝑡; 𝑛) = 𝐸[𝐶𝑛(𝑡𝑖)]~ 1𝑁  ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1     ;     𝑈(𝑡; 𝑛) = 𝐸[𝑈𝑛(𝑡𝑖)]~ 1𝑁  ∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1    (3.2) 

We use the symbol “~” in (3.2) to highlight that a finite number N of terms defines the 

estimate of the n-th statistical moments of the trade value and volume. More than 35 years 

ago, Berkowitz et al. (1988) introduced the volume weighted average price (VWAP), which 

is widely used now (Buryak and Guo, 2014; Duffie and Dworczak, 2018; CME Group, 

2020). The VWAP p(t;1,1) or price 1-st statistical moment determined by trade values C(ti) 

and volumes U(ti) during the interval Δ (3.1) takes the form: 𝑝(𝑡; 1,1) = 1𝑈∆(𝑡;1)  ∑ 𝑝(𝑡𝑖) 𝑈(𝑡𝑖)𝑁𝑖=1 = 1𝑈∆(𝑡;1)  ∑ 𝐶(𝑡𝑖)𝑁𝑖=1 = 𝐶∆(𝑡;1)𝑈∆(𝑡;1) = 𝐶(𝑡;1)𝑈(𝑡;1)   (3.3) 𝐶∆(𝑡; 𝑛) = 𝑁𝐶(𝑡; 𝑛) = ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1    ;    𝑈∆(𝑡; 𝑛) = 𝑁𝑈(𝑡; 𝑛) = ∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1  (3.4) 

The 1
st
 statistical moments C(t;1) and U(t;1) (3.2) denote the average value and volume of N 

trades during Δ (3.1). The VWAP price p(t;1,1) or 1-st statistical moment of price is 
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determined as ratio of the mean value C(t;1) to mean volume U(t;1) (3.3) or as ratio of total 

value CΔ(t;1) to total volume UΔ(t;1) (3.4) during Δ (3.1). Let us transfer (3.3) as follows: 𝑝(𝑡; 1,1) = 1𝑈∆(𝑡;1)  ∑ 𝑝(𝑡𝑖) 𝑈(𝑡𝑖)𝑁𝑖=1 =  ∑ 𝑝(𝑡𝑖) 𝑤(𝑡𝑖; 𝑡, 1)𝑁𝑖=1   (3.5) 𝑤(𝑡𝑖; 𝑡, 1) = 𝑈(𝑡𝑖)∑ 𝑈(𝑡𝑖)𝑁𝑖=1  =   𝑈(𝑡𝑖)𝑈∆(𝑡;1)     ;          ∑ 𝑤(𝑡𝑖; 𝑡, 1)𝑁𝑖=1 = 1 (3.6) 

We highlight that the functions w(ti;t,1) (3.5; 3.6) have meaning of weight functions, but 

don’t play role of price probabilities. Let us take the n-th degree of (2.1): 𝐶𝑛(𝑡𝑖) = 𝑝𝑛(𝑡𝑖) 𝑈𝑛(𝑡𝑖)    (3.7) 

 We define price statistical moments p(t;m,n) (3.8) as the m-th degree of price p
m
(ti) averaged 

over the n-th weight functions w(ti;t,n) (3.9) that have form similar to VWAP (3.3; 3.5): 𝑝(𝑡; 𝑚, 𝑛) = ∑ 𝑝𝑚(𝑡𝑖)𝑤(𝑡𝑖; 𝑡, 𝑛)𝑁𝑖=1 = 1∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1  ∑ 𝑝𝑚(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1  (3.8) 𝑤(𝑡𝑖; 𝑡, 𝑛) = 𝑈𝑛(𝑡𝑖)∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1  =   𝑈𝑛(𝑡𝑖)𝑈∆(𝑡;𝑛)    ;     ∑ 𝑤(𝑡𝑖; 𝑡, 𝑛)𝑁𝑖=1 = 1  (3.9) 

Relations (3.8) define a set of price statistical moments averaged over different weight 

functions w(ti;t,n). We use the set of price statistical moments (3.8) to define market-based 

statistical moments of price. For each n=1,2,…, the statistical moments of price p(t;m,n) (3.8) 

make their contribution into the n-th market-based statistical moment of price a(t;n): 𝑎(𝑡; 𝑛) = 𝐸𝑚[𝑝𝑛(𝑡𝑖)]    ;    𝑛 = 1,2,3, …   (3.10) 

We denote market-based mathematical expectation Em[..] to distinguish it from frequency-

based mathematical expectation (3.2). As market-based average or the 1
st
 statistical moment 

a(t;1) of price we take VWAP p(t;1,1) (3.3): 𝑎(𝑡; 1) = 𝐸𝑚[𝑝(𝑡𝑖)] =  𝑝(𝑡; 1,1)   (3.11) 

To define the 2
nd

 price statistical moment a(t;2) and price volatility σ2
(t) (3.12): 𝑎(𝑡; 2) = 𝐸𝑚[𝑝2(𝑡𝑖)]   ;    𝜎2(𝑡) = 𝐸𝑚 [(𝑝(𝑡𝑖) − 𝑎(𝑡; 1))2] = 𝑎(𝑡; 2) − 𝑎2(𝑡; 1)  (3.12) 

one should reconcile the market-based average price a(t;1) (3.11) with the price statistical 

moments p(t;m,2) determined by the weight functions w(ti;t,2) (3.9). In particular, it is 

important to prove that price volatility (3.12) would always be non-negative σ2(t)≥0. To get 

that, we define the market-based price volatility σ2
(t) as follows: 𝜎2(𝑡) = ∑ (𝑝(𝑡𝑖) − 𝑎(𝑡; 1))2𝑤(𝑡𝑖; 𝑡, 𝑛)𝑁𝑖=1 = 𝑝(𝑡; 2,2) − 2𝑝(𝑡; 1,2)𝑎(𝑡; 1) + 𝑎2(𝑡; 1) ≥ 0    (3.13) 

One can present relations (3.12; 3.13) as follows (Olkhov, 2021a; 2022): 𝜎2(𝑡) = Ω𝐶2 (𝑡)+𝑎2(𝑡;1)Ω𝑈2 (𝑡)−2𝑎(𝑡;1)𝑐𝑜𝑟𝑟{𝐶(𝑡)𝑈(𝑡)}𝑈(𝑡;2)    (3.14) 𝑎(𝑡; 2) = 𝐶(𝑡;2)+2𝑎2(𝑡;1)Ω𝑈2 (𝑡)−2𝑎(𝑡;1)𝑐𝑜𝑟𝑟{𝐶(𝑡)𝑈(𝑡)}𝑈(𝑡;2)    (3.15) 
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Price volatility σ2
(t) (3.14) and the 2

nd
 statistical moment of price a(t;2) (3.15) depend on 

volatilities of market trade values ΩC
2
(t) and volumes ΩU

2
(t) (3.16): Ω𝐶2(𝑡) = 𝐶(𝑡; 2) − 𝐶2(𝑡; 1)   ;     Ω𝑈2 (𝑡) = 𝑈(𝑡; 2) − 𝑈2(𝑡; 1)  (3.16) 

and on correlation corr{C(t)U(t)} (3.17) between trade values and volumes. 𝑐𝑜𝑟𝑟{𝐶(𝑡)𝑈(𝑡)} = 𝐸[𝐶(𝑡𝑖)𝑈(𝑡𝑖)] − 𝐶(𝑡; 1)𝑈(𝑡; 1)   (3.17) 

The joint average E[C(ti)U(ti)] (3.18) of the product of trade value and volume takes the form: 𝐸[𝐶(𝑡𝑖)𝑈(𝑡𝑖)]~ 1𝑁 ∑ 𝐶(𝑡𝑖)𝑈(𝑡𝑖)𝑁𝑖=1     (3.18) 

Relations (3.11; 3.14-3.18) determine the dependence of the market-based average and 

volatility of price on averages, volatilities, and correlations of trade values and volumes. The 

derivation of the dependence of the 3
rd

 and 4
th

 statistical moments of price on statistical 

moments of trade values and volumes is given in Olkhov (2022). The first two market-based 

price statistical moments – average a(t;1) (3.11) and volatility σ2
(t) (3.14) - determine the 

Gaussian approximation of price probability. It is obvious that huge amounts of market trade 

records permit derive higher market-based price statistical moments and describe a more 

precise market price probability “today.” However, as we show below, that does not help to 

predict a more precise price probability at horizon T. In many years to come, the Gaussian 

approximation of price probability will remain the only approximation of the predicted price 

probability. In the next section, we consider economic obstacles that limit the forecasting of the 

market-based price probability by Gaussian approximations. That definitely limits the 

reliability of VaR use.  

4. Economic obstacles that limit the accuracy of probability predictions  

At first, let us compare the frequency-based price statistical moments p(t;n) (1.4) and 

statistical moments p(t;m.n) (3.8) that are determined by the weight functions w(ti;t,n) (3.9). 

If all trade volumes U(ti) are constant during the averaging interval Δ (3.1), then: 𝑝(𝑡; 𝑛) = 1𝑁 ∑ 𝑝𝑛(𝑡𝑖)𝑁𝑖=1 = 𝑝(𝑡; 𝑛, 𝑚)  ;   𝑛, 𝑚 = 1,2, ..  (4.1) 

In this case, the price volatility σ2
(t) (3.14) takes the form of frequency-based price volatility: 𝜎2(𝑡) = 𝑝(𝑡; 2) − 𝑝2(𝑡; 1)    (4.2) 

The main contribution of the introduction of market-based volatility σ2
(t) (3.14) is that 

relations (3.14) describe the impact of the randomness of trade volumes on price volatility. 

The volatilities of market trade value ΩC
2
(t) and volume ΩU

2
(t) (3.16) and their correlation 

corr{C(t)U(t)} (3.17) determine market-based price volatility. That is the main distinction 

between the price volatility σ2
(t) (3.14) and the frequency-based price volatility (4.2), which 
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gives an estimate in the case that all trade volumes are constant during the averaging interval 

(3.1). We repeat this statement as it uncovers hidden economic obstacles that make the 

predictions of the market-based price volatility σ2
(t) (3.14) a rather complex problem. 

Market participants who make market trades with large volumes should consider the 

impact of the randomness of trade volumes on price volatility σ2
(t) (3.14). The use of 

frequency-based price volatility (4.2) has mostly psychological effects as it doesn’t describe 

the impact of random market trade with large volumes. The differences between market-

based volatility (3.14) and frequency-based volatility (4.2), which determine Gaussian 

approximations and corresponding VaR assessments (1.2), could result in excess losses. 

However, the accuracy of predictions of market-based price volatility (3.14) is limited 

by internal economic obstacles. Let us briefly consider two main issues. The first one relates 

to the fact that price volatility σ2
(t) (3.14) predictions at horizon T depend on forecasting of 

market trade value ΩC
2
(t) and volume ΩU

2
(t) (3.16) volatilities and their correlation 

corr{C(t)U(t)} (3.17). In simple words, to predict market-based price volatility (3.14), one 

should predict the properties of random market trade at horizon T. If one accidentally 

succeeds in accurate forecasting averages, volatilities, and correlations of trade values and 

volumes at horizon T that can be equal to a day, a week, a month, or whatever, this lucky one 

will be able to manage his market trades with much more personal benefits than projecting a 

Gaussian approximation of price probability for VaR. But some economic obstacles make 

such accurate forecast rather uncertain. That is the second issue we highlight. 

Indeed, the description of the 2
nd

 statistical moments of trade values C(t;2) and 

volume U(t;2) (3.2) introduces the new class of macroeconomic variables that we call the 2
nd

 

degree variables. They are composed of sums of the 2
nd

 degree of market trade values, or 

volumes. Almost all macroeconomic variables that are used now to describe economic 

evolution are composed of the sums of the 1
st
 degrees of market transactions (Fox et al., 

2017). Macroeconomic investment, credits, and consumption are sums of the corresponding 

variables of economic agents. In turn, agents’ variables are composed of the sums of their 

market trades during the interval Δ (3.1) – investment, credit, and consumption. We call the 

description of the 1
st
 degree macroeconomic variables 1

st
-order economic theory. However, 

agents make their transactions under their economic expectations, which could be formed by 

forecasts of price and return averages and volatilities. Volatilities of market trade values and 

volumes, of price, return, and volatilities of other economic variables such as demand and 

supply, for example, are the origin of economic variables of the 2
nd

 degree that significantly 

impact agents’ trade decisions and thus impact economic evolution and sustainability. The 
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description of the 2
nd

 degree macroeconomic variables needs the development of the 

economic theory of the 2
nd

 order that is absent now. One should develop a methodology for 

collecting the 2
nd

 degree pairs for almost all economic variables of the 1
st
 degree. The 

methodology similar to (Fox et al., 2017) should govern econometric data to define the 2
nd

 

degree investments, credits, or consumptions composed of squares of corresponding trade 

values and volumes. To describe the set of 1
st
 and 2

nd
 degree economic variables, one should 

develop economic theories of the 2
nd

 order. Actually, the attempts to predict price and return 

probabilities with higher accuracy than Gaussian distributions will create a need for a 

description of the 3
rd

 and 4
th

 statistical moments of price and return. That in turn will require 

a description of the 3
rd

 and 4
th

 statistical moments of market trade values and volumes (3.2), 

determined by the sums of the 3
rd

 and 4
th

 degrees of trade values and volumes. Thus the 

complexity of economic modeling will grow with the attempts to predict price and return 

probabilities with greater accuracy. 

In the coming years, the accuracy of the forecasts of price and return probabilities will 

be limited by Gaussian distributions. The development of econometric methodology and 

economic theories of the 2
nd

 order and higher that would describe the evolution of 1
st
 and 2

nd
 

degree macroeconomic variables is a problem for the long-term future (Olkhov, 2021b; 

2023c; 2023d). Till then, even the predictions of price volatility will remain inaccurate and 

uncertain. That essentially limits the reliability of VaR.  

5. Conclusion 

The forecasts of price and return statistical moments or probabilities are at the heart 

advanced economic and financial studies. After 50 years of use, the main problems with the 

VaR concept are still open. Only the development of econometric methodology that can 

govern the collection and verification of macroeconomic variables of the 1
st
 and 2

nd
 degrees 

and the creation of macroeconomic theories of the 2
nd

 order that will describe the mutual 

evolution of these variables could significantly improve the predictions of price and return 

volatilities. Till then, any such predictions remain highly uncertain and may be more harmful 

than useful for investors. 
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