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Abstract—In general, reliable communication via multiple-input
multiple-output (MIMO) orthogonal frequency division multiplex-
ing (OFDM) requires accurate channel estimation at the receiver.
The existing literature largely focuses on denoising methods for
channel estimation that depend on either (i) channel analysis in
the time-domain with prior channel knowledge or (ii) supervised
learning techniques which require large pre-labeled datasets for
training. To address these limitations, we present a frequency-
domain denoising method based on a reinforcement learning
framework that does not need a priori channel knowledge and pre-
labeled data. Our methodology includes a new successive channel
denoising process based on channel curvature computation, for
which we obtain a channel curvature magnitude threshold to
identify unreliable channel estimates. Based on this process, we
formulate the denoising mechanism as a Markov decision process,
where we define the actions through a geometry-based channel
estimation update, and the reward function based on a policy that
reduces mean squared error (MSE). We then resort to Q-learning
to update the channel estimates. Numerical results verify that our
denoising algorithm can successfully mitigate noise in channel
estimates. In particular, our algorithm provides a significant
improvement over the practical least squares (LS) estimation
method and provides performance that approaches that of the
ideal linear minimum mean square error (LMMSE) estimation
with perfect knowledge of channel statistics.

Index Terms—Channel estimation, channel denoising, reinforce-
ment learning, MIMO, OFDM

I. INTRODUCTION

Many current wireless technologies employ multiple-input
multiple-output (MIMO) orthogonal frequency division multi-
plexing (OFDM) scheme, where multiple antennas and subcar-
riers are utilized to achieve higher data rates. To ensure the
robustness of MIMO OFDM, accurate channel estimation is
key [1]. To obtain the channel estimates, it is logical to have
the transmitter send a known pilot signal in both the spatial
and frequency domains. The most popular channel estimation
criteria based on pilot signals include linear minimum mean
square error (LMMSE) and least squares (LS) [2].

While LMMSE estimation is optimal in terms of minimizing
mean squared error (MSE), it requires prior statistical knowl-
edge, which is not always available in wireless environments.
LS channel estimation, on the other hand, is a practical lower
complexity alternative that can be applied without prior knowl-
edge regarding channel statistics. However, these benefits come
with the cost of performance degradation due to estimation
error induced by the noise [2].

To combat the effect of noise in OFDM LS channel es-
timation, researchers have proposed various denoising tech-
niques [3]–[5]. These approaches focus on channel impulse re-
sponse (CIR) thresholding [3], significant sample selection [5],
or zero-enforcing on the noise channel subspace [4], and have
proven to be effective in reducing the MSE of LS estimation.
However, all of the prior approaches are channel condition-
oriented and are vulnerable to channel dynamics and mis-
alignment to the pre-estimated channel statistics. Furthermore,
these approaches rely on denoising in the time-domain, which
increases the computational overhead required to perform a
discrete Fourier transform (DFT) per channel realization.

Leveraging machine learning (ML) to re-examine problems
has been at the center of wireless communication research
recently [6]. ML can also be used to denoise LS channel
estimates, as demonstrated in [7]–[9]. Gaussian process regres-
sion [7] and deep neural networks, called ChannelNet [8] and
ReEsNet [9], have proven their capabilities refining channel
estimation quality substantially. These works primarily focus
on supervised learning techniques, which require training on
generally extensive labeled datasets that are acquired from the
ideal channel estimation process. It is unlikely that such labeled
training data are always available without exhibiting depen-
dency on noise and spatial and/or temporal channel dynamics
commonly found in many 5G mobile use cases [10].

Overview of methodology and contributions: In this pa-
per, we propose a reinforcement learning (RL)-based channel
denoising method to lower the MSE of LS channel estimation
in MIMO OFDM systems. In doing so, we introduce a new
successive channel denoising process based on the curvature
of channel estimates, and analytically derive the curvature
magnitude threshold to identify unreliable estimates among
subcarriers. We then model the denoising process as the prob-
lem of finding an optimal sequential order on subcarriers to
effectively reduce the MSE of estimation and formulate the
denoising as a Markov decision process (MDP). The actions of
the MDP are defined based on a geometric channel estimation
update, and the reward function captures the noise reduction
obtained through the sequential channel denoising. To solve
the proposed MDP problem, we resort to Q-learning.

Our method eliminates the requirement of genie datasets for
training and provides robustness against variation in channel
statistics. Furthermore, our proposed method obtains compu-
tational efficiency enhancements by performing denoising in
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the frequency-domain, eliminating the need for domain con-
version. Our numerical simulations reveal the effectiveness of
our method, suggesting a substantial performance gain over
LS estimation that approaches the performance of the ideal
LMMSE method when perfect channel statistics are available.

II. SYSTEM MODEL

In this section, we begin by formalizing MIMO OFDM
transmission (Sec. II-A). Then, we introduce the conventional
channel estimation methods that we will later use as bench-
marks in our analysis (Sec. II-B).

A. MIMO OFDM Transmission

We consider a MIMO OFDM system with Nt transmit an-
tennas and Nr receive antennas, where each channel path has L
CIR taps. We let h(ℓ)

qp be the channel of tap ℓ ∈ {0, 1, . . . , L−1}
between the transmit antenna p ∈ {0, 1, . . . , Nt − 1} and
the receive antenna q ∈ {0, 1, . . . , Nr − 1}. We assume the
channel is i.i.d. according to a zero-mean circularly symmetric
complex Gaussian with variance σ2

ℓ , i.e., h
(ℓ)
qp ∼ CN (0, σ2

ℓ ).
The expected total power P of a channel path is considered to
be constant between antennas, i.e., P = E

[∑L−1
ℓ=0 |h

(ℓ)
qp |2

]
=∑L−1

ℓ=0 σ2
ℓ , ∀p, q. We assume only L and P are known to the

receiver. The system employs K subcarriers and a cyclic prefix
of length L− 1.

The frequency-domain input-output relationship for subcar-
rier k ∈ {0, . . . ,K − 1} of an OFDM symbol is given by

y[k] = H[k]x[k] + w[k], (1)

where y[k] = [y0[k], y1[k], . . . , yNr−1[k]]
T ∈ CNr and

x[k] = [x0[k], x1[k], . . . , xNt−1[k]]
T ∈ CNt are the kth

subcarrier frequency-domain receive and transmit symbol vec-
tors, respectively. The transmit symbols are assumed to be
unit power, i.e., E[|xp[k]|2] = 1, ∀p. In (1), w[k] =
[w0[k], w1[k], . . . , wNr−1[k]]

T ∈ CNr is the noise vector
with entries i.i.d. according to wq[k] ∼ CN (0, σ2

w), ∀q, and
H[k] = [H

(k)
qp ] ∈ CNr×Nt denotes the MIMO channel matrix

of subcarrier k where

H(k)
qp =

L−1∑
ℓ=0

h(ℓ)
qp e

−j2πℓ k
K . (2)

To obtain the equalized symbol vector for subcarrier k, denoted
by x̃[k] = [x̃0[k], x̃1[k], . . . , x̃Nt−1[k]]

T ∈ CNt , a zero-forcing
equalizer is applied to each y[k] as

x̃[k] = H[k]H(H[k]H[k]H)−1y[k], (3)

where (·)H refers to the conjugate transpose. In (3), we assume
the case where Nt ≥ Nr.

We consider a frame-based transmission scenario where each
frame consists of a single pilot signal for channel estimation and
D data signals for data transfer. We also assume the channel to
be block-fading, where the channel is constant over the duration
of D+1 OFDM symbols and varies across frames. The system
aims to estimate the channel from the pilot signal to correctly
detect data symbols within the same frame.

B. Channel Estimation

We consider two representative channel estimation ap-
proaches: LS and LMMSE.

1) LS: Suppose each transmit antenna sends its pilot symbol
vector denoted by x̂p = [x̂p[0], x̂p[1], . . . , x̂p[K − 1]]T ∈ CK

at Nt different times to avoid interference. Given the pilot
observation ŷq = [ŷq[0], ŷq[1], . . . , ŷq[K − 1]]T ∈ CK at
the qth receive antenna, the LS channel estimate denoted
by HLS

qp = [Ĥ
(0)
qp , Ĥ

(1)
qp , . . . , Ĥ

(K−1)
qp ]T ∈ CK is obtained as

follows:

HLS
qp = diag(x̂p)−1ŷq = Hqp + diag(x̂p)

−1wq, (4)

where Hqp = [H
(0)
qp , H

(1)
qp , . . . ,H

(K−1)
qp ]T ∈ CK and wq =

[wq[0], wq[1], . . . , wq[K− 1]]T ∈ CK are the true channel vec-
tor between the corresponding transmit and receive antenna and
the noise vector at the receiver, respectively [2]. The expression
in (4) can be equivalently written for the kth subcarrier as

Ĥ(k)
qp =

ŷq[k]

x̂p[k]
= H(k)

qp +
wq[k]

x̂p[k]
, (5)

which contains both the true channel and the noise.
2) LMMSE: Provided the LS estimate in (4), the LMMSE

channel estimate HLMMSE
qp ∈ CK can be succinctly written as

HLMMSE
qp = Rqp

(
Rqp +

σ2
w

E [|xp[k]|2]
IK

)−1

HLS
qp, (6)

where Rqp = E
[
HqpHH

qp

]
∈ CK×K is the correlation matrix of

the channel vector Hqp and IK is the K×K identity matrix [2].
The implication of (6) is that a priori channel statistics must
be known to compute (6), which are not always available in
practical wireless networks [1], making this solution unrealis-
tic. This motivates the proposed learning-based methodology
presented the next section.

III. PROPOSED LEARNING-BASED METHODOLOGY

A. Rationale of Approach

With the assumption that L ≪ K – which is valid in
many OFDM systems [2], [3], [5] – the channel H[k] in (1)
will change slowly across subcarriers while the uncorrelated
noise w[k] will vary rapidly. Although it is difficult to obtain
accurate information on the correlation between channels in
the presence of noise, the channel estimation can still reveal
information about the expected behavior of adjacent subcarriers.
We seek to exploit this information to determine whether our
estimates are reliable (i.e., whether the estimation has been
severely corrupted by the noise) and denoise them if needed.
Specifically, we will develop a channel denoising method in
which the estimations from adjacent subcarriers are jointly used
to conduct sequential denoising in subcarriers, where the initial
estimate is obtained via LS estimation.

As the first step, we introduce channel curvature to capture
the degree of noise contamination, and obtain the threshold
on the channel curvature magnitude that differentiates between
reliable and unreliable channel estimates (Sec. III-B). Then,



we introduce a successive subcarrier denoising method and
formulate it as an MDP, for which Q-learning is applied to
find optimal denoising decisions. (Sec. III-C).

B. Channel Curvature and Denoising Threshold

Suppose our system acquires an LS-estimated channel vector
HLS

qp and we want to obtain the relationship between each Ĥ
(k)
qp

and its adjacent subcarriers. The first-order gradient is a natural
candidate, as the regression slope can quantify the relative po-
sition of data with respect to the neighboring points. However,
since the regression slope is defined as a sum of multiple
weighted slopes [11], the issue of weight adjustment arises,
making the gradient an ineffective approach for capturing the
relationship. On the other hand, the curvature, i.e., the second-
order gradient, consistently reflects the relationship between
Ĥ

(k)
qp and its adjacent channels. This motivates us to propose

the curvature of Ĥ(k)
qp as a measure of its reliability.

From the estimated channel vector HLS
qp, we approximate the

curvature of each Ĥ
(k)
qp , denoted by Ĉ

(k)
qp , as follows:

Ĉ(k)
qp =

(
Ĥ(k+1)

qp − Ĥ(k)
qp

)
−
(
Ĥ(k)

qp − Ĥ(k−1)
qp

)
= Ĥ(k+1)

qp − 2Ĥ(k)
qp + Ĥ(k−1)

qp . (7)

Note that for the cases of k = 0 and k = K − 1, we impose
the circular shift property to have Ĥ

(k−1)
qp = Ĥ

(K−1)
qp for k = 0

and Ĥ
(k+1)
qp = Ĥ

(0)
qp for k = K − 1.

We next aim to obtain the curvature magnitude threshold C̃
that classifies unreliable channel estimates. To find this thresh-
old, we first obtain the curvature of actual channel between
transmit antenna p and receive antenna q for subcarrier k,
denoted by C

(k)
qp , based on the second derivative of (2):

C(k)
qp =

d2H
(k)
qp

dk2
=

L−1∑
ℓ=1

−
(
2πℓ

K

)2

h(ℓ)
qp e

−j2πℓ k
K . (8)

Since the values of {h(ℓ)
qp }L−1

ℓ=1 randomly change over every
transmission frame, the value of C(k)

qp is also random and time-
varying. From (8), we derive an upper bound on the expected
magnitude of C(k)

qp in the following theorem:

Theorem 1. For an Nt×Nr MIMO OFDM L-tap channel with
channel power P , the upper bound on the expected magnitude
of C(k)

qp is given by

E
[∣∣C(k)

qp |
]
≤

(
2π

K

)2

ξ(1, 2)

√√√√(P − σ2
0)

L−1∑
ℓ=1

ℓ4 ≜ C̄(σ2
0),(9)

where ξ(x, y) =
√
2x log 2y.

Proof. We first derive a simple upper bound on the expected
magnitude of curvature using (8):

E
[∣∣C(k)

qp

∣∣] = E

[∣∣∣∣ L−1∑
ℓ=1

−
(
2πℓ

K

)2

h(ℓ)
qp e

−j2πℓ k
K

∣∣∣∣
]

≤ E

[
L−1∑
ℓ=1

∣∣∣∣− (
2πℓ

K

)2

h(ℓ)
qp e

−j2πℓ k
K

∣∣∣∣
]

=

L−1∑
ℓ=1

(
2πℓ

K

)2

E
[∣∣h(ℓ)

qp

∣∣] , (10)

where the inequality holds from the triangle inequality, and the
equality holds with the expectation directly applied to |h(ℓ)

qp |.
For a sequence of Gaussian random variables X1, . . . , Xn

where Xi ∼ N (0, σ2), ∀i, the following holds [12]:

E
[

max
i∈{1,...,n}

|Xi|
]
≤

√
2σ2 log 2n ≜ ξ(σ2, n). (11)

Using (11), the expectation of |h(ℓ)
qp | in (10) can be upper

bounded as follows:

E
[∣∣h(ℓ)

qp

∣∣] = E
[√

(ℜ{h(ℓ)
qp })2 + (ℑ{h(ℓ)

qp })2
]

≤ E
[√

2
(
max

{
|ℜ{h(ℓ)

qp }|, |ℑ{h(ℓ)
qp }|

})2]≤ σℓξ(1, 2). (12)

The equality is from the definition of complex Gaussian random
variable h

(ℓ)
qp = ℜ{h(ℓ)

qp }+jℑ{h(ℓ)
qp }, where ℜ{h(ℓ)

qp },ℑ{h(ℓ)
qp } ∼

N (0,
σ2
ℓ

2 ). The last inequality holds from applying (11), which
yields E

[
max

{
|ℜ{h(ℓ)

qp }|, |ℑ{h(ℓ)
qp }|

}]
≤ ξ(σ2

ℓ/2, 2), and by
noting that ξ(x2, y) = x · ξ(1, y).

Applying (12) to (10), we get

E
[∣∣C(k)

qp

∣∣] ≤ L−1∑
ℓ=1

(
2πℓ

K

)2

σℓξ(1, 2)

≤
(
2π

K

)2

ξ(1, 2)

√√√√L−1∑
ℓ=1

ℓ4 ·
L−1∑
ℓ=1

σ2
ℓ

=

(
2π

K

)2

ξ(1, 2)

√√√√(P − σ2
0)

L−1∑
ℓ=1

ℓ4. (13)

The inequality in the second line is obtained via the Cauchy-
Schwarz inequality of

∑
ℓ2σℓ ≤

√∑
(ℓ2)2 ·

√∑
(σℓ)2, and

the equality holds since P =
∑L−1

ℓ=0 σ2
ℓ . ■

Remark: Since C̄(σ2
0) in (9) is the maximum magnitude of

subcarrier channel curvature expected from a MIMO OFDM
L-tap channel with channel power P , we want to have C̃ =
C̄(σ2

0). However, obtaining C̄(σ2
0) requires the knowledge on

σ2
0 , which is not the case we can consider. We therefore intro-

duce the term σ̂2
0 = 1

NtNr

∑Nt−1
p=0

∑Nr−1
q=0 |

1
K

∑K−1
k=0 Ĥ

(k)
qp |2 to

approximate σ2
0 . We point to the DFT operation in (2), which

in the large K regime gives 1
K

∑K−1
k=0 Ĥ

(k)
qp ≈ E[Ĥ(k)

qp ] =

E[H(k)
qp ]+E[w(k)

q ] = h
(0)
qp . If the average of | 1K

∑K−1
k=0 Ĥ

(k)
qp |2 ≈

|h(0)
qp |2 is taken over NtNr channel links, we obtain σ̂2

0 that
approximates σ2

0 . We can now evaluate C̄(σ̂2
0) to approximate

C̄(σ2
0) and set C̃ = C̄(σ̂2

0).
For our denoising, we classify the estimated channel Ĥ

(k)
qp

as reliable if its curvature satisfies

|Ĉ(k)
qp | ≤ C̃, (14)

and consider Ĥ(k)
qp as unreliable otherwise.



C. Successive Denoising Formulation and Optimization

1) MDP denoising formulation: We aim to make the best
sequential decisions on which subcarrier to select and denoise.
Suppose we initially observe M channel estimates as an M -
dimensional state S, and take an action a to denoise a single
channel estimate that fails to satisfy (14). Once the action a
is taken, a different set of M channel estimates, denoted S′,
will be observed. We then consider S′ as our new state and
take another action a′ to perform denoising. If we repeat this
observe-and-denoise process until it reaches a terminating state
where there is no subcarrier to denoise, our denoising problem
can be formulated as an MDP [13].

State: Formally, we define the state as a set of channel
estimates:

S(i) =
[
fQ(Ĥ

(i)
qp ), fQ(Ĥ

(i+1)
qp ), . . . , fQ(Ĥ

(i+M−1)
qp )

]
, (15)

where i ∈ {0, 1, . . . ,K − M} indicates a subcarrier index
from which the M -dimensional state is obtained out of K
subcarriers, and fQ(x) is a quantization function given by

fQ(x) = ∆ ·
⌊
ℜ{x}
∆

+
1

2

⌋
+ j

(
∆ ·

⌊
ℑ{x}
∆

+
1

2

⌋)
, (16)

with quantization step size ∆. This quantization process allows
us to represent the environment observations with a finite
number of states [14]. Using (15), for an arbitrary value of
i, the quantized channel estimates from the ith to i+M − 1th
subcarriers form an M -dimensional state.

Action: The action in our problem is an index indicating
which channel estimate to denoise. From a given state S(i), a
set of possible actions A is formed as follows:

A(i) =
{
a ∈ {0, 1, . . . ,M − 1} : |Ĉ(i+a)

qp | > C̃
}
. (17)

For selecting an action from A, any decision-making strategy
that leads to a policy improvement can be used; a common
choice is ϵ-greedy [13], which we adopt in this paper.

Once an action a ∈ A(i) is chosen, the next state S′(i) is
observed through the transition function T (S(i), a) defined as

S′(i) = T
(
S(i), a

)
=

[
fQ(Ĥ

′(i)
qp ), fQ(Ĥ

′(i+1)
qp ), . . . , fQ(Ĥ

′(i+M−1)
qp )

]
, (18)

where we propose to update the channel estimates using the
following criterion for each m ∈ {0, 1, . . . ,M − 1}:

Ĥ ′(i+m)
qp =

Z
(i+m)
qp + C̃

2 ·
Ĥ(i+m)

qp −Z(i+m)
qp

|Ĥ(i+m)
qp −Z

(i+m)
qp |

if m = a

Ĥ
(i+m)
qp otherwise

(19)

with Z
(x)
qp = (Ĥ

(x−1)
qp + Ĥ

(x+1)
qp )/2. The reasoning for this

estimation update is as follows. Substituting Ĉ
(k)
qp in (14) with

the definition in (7) yields

|Ĥ(k+1)
qp − 2Ĥ(k)

qp + Ĥ(k−1)
qp |2 ≤ C̃2. (20)

Then, the above inequality can be expressed as a circle as
follows:(
ℜ{Ĥ(k)

qp − Z(k)
qp }

)2

+
(
ℑ{Ĥ(k)

qp − Z(k)
qp }

)2

≤ C̃2

4
. (21)

Given two channel estimates Ĥ
(k−1)
qp and Ĥ

(k+1)
qp , Ĥ(k)

qp must
be located within a circle centered at Z(k)

qp with radius C̃/2 to
satisfy (14). The estimation update given by (19) corresponds
to the minimal displacement such that the updated point Ĥ ′(k)

qp

is located on the circle described in (21).
Reward: Once S′(i) is observed, the reward is obtained

based on the effectiveness of the action taken in terms of the
problem objective. For minimizing the MSE of our channel
estimation, we use the following expression for the reward:

r(S(i), a)=
1

K

K−1∑
k=0

(∣∣Ĥ(k)
qp − ĥ(0)

qp

∣∣2−∣∣Ĥ ′(k)
qp − ĥ(0)

qp

∣∣2) , (22)

where ĥ
(0)
qp = 1

K

∑K−1
k=0 Ĥ

(k)
qp . This reward function is the

change in variance of channel estimates along subcarriers upon
taking an action. For large K, by the law of large numbers, (22)
can be written as:

E
[∣∣Ĥ(k)

qp − E[Ĥ(k)
qp ]

∣∣2]− E
[∣∣Ĥ ′(k)

qp − E[Ĥ(k)
qp ]

∣∣2]
= E

[∣∣Ĥ(k)
qp − h(0)

qp

∣∣2]− E
[∣∣Ĥ ′(k)

qp − h(0)
qp

∣∣2]
= (P + σ2

w − σ2
0)− (P + σ2

w′ − σ2
0) = σ2

w − σ2
w′ , (23)

where σ2
w′ is the remaining noise variance after taking the

action a. In (23), the first equality holds since E[Ĥ(k)] =
E[H(k)] + E[w[k]] = h(0), and the second equality holds from
our assumption on uncorrelated channels and noise. Thus, a
greater reward is attributed to an action that eliminates more
noise. Since the MSE of LS channel estimation is proportional
to the noise variance [3], our reward effectively captures and
reflects the improvement in MSE upon taking the action a.

2) Q-learning-based solution: Considering our MDP-based
denoising, the sequential order in which channel estimates are
selected and denoised becomes an important factor, especially
with a low signal-to-noise ratio (SNR) condition where multiple
consecutive subcarriers are likely to be unreliable. In the MDP
we consider, S′ from any state-action pair (S, a) is deterministic
(i.e., P (S′|S, a) = 1). It is hence possible to apply a brute
force search or SARSA learning [13] over all combinations of
denoising orders, but this will impose a significant amount of
computational overhead.

Instead, to learn the optimal sequential denoising order, we
adopt Q-learning [13], which seeks to learn the quality of
actions while maximizing the cumulative reward. Unlike super-
vised learning algorithms, it does not require a training stage
as its learning is executed through exploration and exploitation
steps. Q-learning will find the optimal policy for any finite MDP
(i.e., with finite state and action spaces) [13], as is the case in
our setting.

Using the MDP parameters we established, the state-action
quality Q(S(i), a) of Q-learning is updated using the following
value iteration [13]:

Q(S(i), a)← Q(S(i), a)
+ α(r(S(i), a) + γ max

a′
Q(S′(i), a′)−Q(S(i), a)), (24)

where α and γ are the learning rate and the discount factor,
respectively. The Bellman update in (24) allows the current



state-action pair to consider its potential future states and ac-
tions. In our context, this update performs successive subcarrier
denoising leading to the maximum noise reduction.

D. Additional Optimization via Threshold Update

We also introduce a feedback scheme that further adjusts
the threshold C̃ to improve the overall denoising performance.
This allows our algorithm to evaluate the effectiveness of C̃
on current channel estimates and improve its future denoising.
We define the cumulative feedback F to be updated after each
complete procedure of denoising as F ← F +∆F , where ∆F
is the variance of the remaining noise given by

∆F =
1

NtNrK

Nt−1∑
p=0

Nr−1∑
q=0

K−1∑
k=0

∣∣Ĥ(k)
qp

∣∣2−P ≈ E
[∣∣Ĥ(k)

qp

∣∣2]−P. (25)

In the next denoising procedure, the curvature threshold is
updated as follows:

C̃ = C̄(σ̂2
0)−

(2π
K

)2

F. (26)

The scaling term ( 2πK )2 is from (8), reflecting the impact of
noise on the channel curvature.

The overall denoising algorithm developed in this section is
summarized in Algorithm 1.

Algorithm 1 Learning-based successive denoising algorithm.
for each frame received do

Acquire HLS
qp for all transmitters p and receivers q

Acquire and adjust C̃ using (9) and (26)
for every (q, p) pair do

while |Ĉ(k)
qp | > C̃ for any k do

Select random subcarrier k from {0, . . . ,K −M}
Initialize state S(k)
while A(k) ̸= ϕ do

Select action a from A(k) using ϵ-greedy
Observe S′(k) using (18) and (19)
Compute reward r(S(i), a) using (22)
Update quality Q(S(k), a) using (24)
Update state S(k)← S′(k)

end while
end while

end for
Compute ∆F using (25)
Update F ← F +∆F

end for

IV. NUMERICAL RESULTS AND DISCUSSION

We conduct a set of numerical experiments to analyze the
performance of our proposed successive denoising method
under different system settings. We consider a MIMO OFDM
system with parameters Nt = 4, Nr = 4, K = 32, and
D = 25. Unless stated otherwise, channels are generated from
the exponential power delay profile (PDP) with P = 1 and
L = 8. We choose ∆ = 0.2, α = 0.3, ϵ = 0.5, and γ = 1, and
measure MSE as follows:

MSE =
1

NtNrK

Nt−1∑
p=0

Nr−1∑
q=0

K−1∑
k=0

∣∣Ĥ(k)
qp −H(k)

qp

∣∣2. (27)

We evaluate the learning performance of our method over
a fixed set of channel realizations for different values of state

dimension M and channel length L in Fig. 1. For both channel
lengths used, learning in both cases with M = 8 result in lower
MSE but take more iterations to converge. This is because larger
state dimensions generally require longer training times, but
provide better performance by the end of the process. We next
consider channels with various time correlations and evaluate
the performance of our method in Fig. 2 (for i.i.d. channel
generation) and Fig. 3 (for correlated channels). The correlated
channels are generated via Gauss-Markov process [15] with a
correlation factor ρ. As seen in Fig. 2, denoising over uncor-
related channels converges after 300 frames with a constant
learning slope. Fig. 3 reveals that denoising over correlated
channels exhibits a faster convergence (around 150 frames) due
to stationarity of the channels.

To verify the robustness of our method against statistical
variations of channels, MSE performance over time with vary-
ing SNR conditions is depicted in Fig. 4. Starting at 0 dB
SNR, the SNR changes to 6 dB and 12 dB after transmitting
200 and 400 frames, respectively. An ideal LMMSE estimation
case (i.e., SNR levels are always known) and an imperfect
LMMSE estimation that only has the knowledge of initial
channel statistics are considered. The results demonstrate that
compared to the degraded performance of LMMSE estimation
with inaccurate channel knowledge, our method is able to
keep its consistent performance relative to the ideal LMMSE
estimation regardless of the channel condition.

Fig. 5 depicts the MSE performance of our method over
different SNRs. We also include the results from the algorithms
proposed in [3] and [8] for comparison. From ChannelNet [8],
two curves each obtained from two different training datasets
(3 dB and 12 dB SNRs) are included. The results show that
our method achieves an approximate 6 dB performance gain as
compared to the LS estimation. Our method outperforms the
one in [3] especially in the low SNR regime, since the noise
undetected by our proposed threshold becomes more dominant
at high SNRs. Both cases of ChannelNet [8] achieve lower
MSE than our algorithm when SNR conditions are close to
the level on which they were initially trained. Nevertheless,
their performance significantly degrades (e.g., see ChannelNet
(3dB) evaluated at 12dB SNR) as the testing condition deviates
from that of their training, which is the drawback of supervised
learning methods. Our method, on the other hand, exhibits
a consistent performance over all the SNRs, suggesting its
generalizability. This comes with the benefit of not relying
on any training datasets, as well as without requiring any
knowledge of operating SNR.

Finally, we investigate bit-error rate (BER) performance of
our method in Fig. 6, where QPSK and an LDPC code of
rate R = 1

5 [16] with hard-decision decoding are used for data
modulation and encoding/decoding, respectively. Also, we used
the baseline of [3] since it provides the closest performance to
ours as compared to [8]. The BER performance under perfect
channel knowledge (i.e., when H

(k)
qp is known at the receiver)

is included to show the ideal performance. The results verify
that our algorithm achieves performance comparable to that of
LMMSE estimation.
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Fig. 1: MSE of our method vs. number of learning
iterations for different values of state dimension M
and channel length L under fixed channel sets.
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Fig. 2: MSE comparison between our method, LS,
and LMMSE vs. the number of transmitted frames,
where channels are i.i.d. generated.
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Fig. 3: MSE comparison between our method, LS,
and LMMSE vs. transmitted frames for correlated
channels, under different correlation factors.
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Fig. 5: MSE comparison between our method, LS,
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V. CONCLUSIONS

We considered MIMO OFDM systems and proposed a novel
channel estimation via successive denoising based on RL. We
proposed channel curvature as an effective metric to quantify
channel estimation quality. We derived the magnitude thresh-
old of channel curvature to identify the target of denoising
among subcarriers. We then formulated the channel denoising
procedure as an MDP and utilized a Q-learning approach to
optimally decrease the MSE. Through numerical results we
showed that our method achieved a significant performance
gain over the LS estimation and outperforms existing channel
estimation techniques. Our method does not require a prior
knowledge on channel statistics, operating SNR, and a pre-
labeled datasets for training, and hence dynamically adapts to
variations in channel conditions. These properties make our
method practical in wireless systems with time varying channels
where channel statistics are unknown.
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