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Abstract
Factorizing speech as disentangled speech representations is vi-
tal to achieve highly controllable style transfer in voice conver-
sion (VC). Conventional speech representation learning meth-
ods in VC only factorize speech as speaker and content, lack-
ing controllability on other prosody-related factors. State-of-
the-art speech representation learning methods for more speech
factors are using primary disentangle algorithms such as ran-
dom resampling and ad-hoc bottleneck layer size adjustment,
which however is hard to ensure robust speech representation
disentanglement. To increase the robustness of highly control-
lable style transfer on multiple factors in VC, we propose a dis-
entangled speech representation learning framework based on
adversarial learning. Four speech representations characteriz-
ing content, timbre, rhythm and pitch are extracted, and fur-
ther disentangled by an adversarial Mask-And-Predict (MAP)
network inspired by BERT. The adversarial network is used to
minimize the correlations between the speech representations,
by randomly masking and predicting one of the representations
from the others. Experimental results show that the proposed
framework significantly improves the robustness of VC on mul-
tiple factors by increasing the speech quality MOS from 2.79 to
3.30 and decreasing the MCD from 3.89 to 3.58.
Index Terms: disentangled speech representation learning,
multi-factor voice conversion, prosody control, adversarial
learning, gradient reverse layer

1. Introduction
Voice conversion (VC) aims at converting the input speech of a
source speaker to sound as if uttered by a target speaker with-
out altering the linguistic content [1]. Besides the conversion of
timbre, the conversion can also be conducted in various domains
such as pitch, rhythm or other non-linguistic domains. Repre-
sentation learning methods for these speech factors have already
been proposed and applied in many research fields in speech
processing [2–4]. However, directly applying the speech repre-
sentations extracted by these methods in VC may cause unex-
pected conversions of other speech factors as they may be not
necessarily orthogonal. Therefore, disentangling the represen-
tations of intermingling various informative factors in speech
signal is crucial to achieve highly controllable VC [5], few-shot
synthesis [6] and speaker adaptation [7].

Ideally, the VC technology is able to preserve the linguis-
tic information and convert para-linguistic information. Con-
ventionally, only speaker and content information are factor-

† Work performed while interning at Huya Inc.
‡ Corresponding author.

ized in VC. Prosody, the important cue in speech signals, is
not properly modeled in the VC framework. There are explo-
rations on the controllability of prosody in VC, among which
SpeechSplit [8] is noticeable for its high controllability on multi
speech factors. However, information-constraining bottleneck
encoding layers can only gain limited disentanglement. The en-
tanglement of perceptual attributes engenders the low similarity
which is elaborated in Section 2.

In this paper, to achieve highly controllable style transfer
for multiple factors VC, we propose a disentangled speech rep-
resentation learning framework based on adversarial learning.
The proposed framework explicitly removes the correlations be-
tween the speech representations which characterize different
factors of speech by an adversarial network inspired by BERT
[9]. The speech is firstly decomposed into four speech represen-
tations which represent content, timbre and other two prosody-
related factors, rhythm and pitch. During training, one of the
speech representations will be randomly masked and inferred
from the remaining representations by the adversarial MAP net-
work. The MAP network is trained to maximize the correlations
between the masked and the remaining representations, while
the speech representation encoders are trained to minimize the
correlations by taking the reversed gradient of the MAP net-
work. In this way, the representation learning framework is
trained in the adversarial manner, with speech representation
encoders trying to disentangle the representations while MAP
network trying to maximize the representation correlations. The
decoder reconstructs the speech from the representations dur-
ing training and achieves VC on multiple factors by replacing
the corresponding speech representations. Experimental results
show that the proposed speech representation learning frame-
work significantly improves the robustness of VC on multiple
factors, decreasing the MCD from 3.89 to 3.58 and outperforms
state-of-the-art speech representation learning methods for mul-
tiple factors VC by a gap of 0.51 speech quality MOS.

2. Related Work
Prosody is an important component of speech which usually
reflects rhythm, intonation etc and there are explorations on
prosody transfer as expressive and controllable speech synthesis
is attaining more attention [10, 11]. A combination of explicit
and latent variables are adopted to achieve high controllable and
natural speech synthesis [12]. The explicit variables contain
pitch contour, loudness besides speaker embedding. The latent
variables contain rhythm and duration information etc which are
obtained from reference encoder [10], denoted by global style
tokens [13] or enhanced by pre-trained language model [14].
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Figure 1: Overall architecture.

Conventionally, only speaker and content information are
factorized in VC. Unsupervised learning based-methods are
garnering attention for the advantage of no need for text tran-
scriptions and quite a lot of them are based on auto-encoder
architecture. Variational autoencoder [15, 16], vector quanti-
zation [17] and instance normalization based methods [18, 19]
were proposed to better model the latent space and pursue the
regularization property. Previous studies of prosody conversion
mainly focus on transformation of F0 related features [20, 21]
which gains limited conversion similarity.

The entanglement between different speech representations
causes the low similarity and naturalness of synthesized speech
whether in prosody transfer or timbre transfer. Expressive and
high controllable speech synthesis systems share the same prin-
ciple of disentangling multiple speech factors like speaker, lin-
guistic and prosody-related information. In order to foster dis-
entanglement, adversarial training [22, 23], contrastive learn-
ing [6, 24, 25], and mutual information minimization [26, 27]
are applied to attenuate the information leakage. However, only
the disentanglement between two factors, e.g., style, content or
speaker [28, 29] are taken into account.

Effective disentanglement modeling for multi-factor voice
conversion remains a challenging problem. To overcome that
prosody is also converted while transferring timbre in conven-
tional VC, different information bottlenecks are applied to de-
compose the speaker information into timbre and other prosody-
related factors such as rhythm and pitch [8, 30]. To improve
disentanglement, restricted sizes of bottleneck layers encourage
the encoders to discard the information which can be learnt from
other bottlenecks. Random resampling [8] is also proposed to
use in the information bottlenecks to remove rhythm informa-
tion from content and pitch representations.

However, without explicit disentanglement modeling, ran-
dom resampling and restricting the sizes of bottleneck layers
can only gain limited disentanglement of speech representa-
tions. Random resampling which is implemented as dividing
and resampling speech segment using linear interpolation along
time dimension can only be used in removing time-related infor-
mation such as rhythm. Moreover, random resampling is proved
as a partial disentanglement algorithm that only contaminate a
random portion of rhythm information [8]. The content encoder
actually is a residual encoder which cannot ensure that the con-
tent information is only modeled in the content representation.

Figure 2: Multi-label Binary Vectors (MBV) are learned as the
discrete rhythm representation.

3. Methodology
We aim to improve the converted speech quality by explicitly
disentangling speech representations. As shown in Figure 1, the
architecture of the proposed disentangled speech representation
learning framework is composed of three sub-networks: (i) mul-
tiple speech representation encoders which encode speech into
different speech representations characterising content, timbre,
rhythm and pitch, (ii) the MAP network that is trained to capture
the correlations between different speech representations based
on mask-and-predict operations, (iii) a decoder which is em-
ployed to generate spectrogram from these disentangled speech
representations. Afterwards, the neural vocoder is utilized to
synthesize audio from the generated mel spectrogram.

3.1. Speech representation extraction

Content, rhythm and pitch encoders of [8] are adopted to ex-
tract content, rhythm and pitch representations from mel spec-
trogram and pitch contour respectively at frame-level, as shown
in Figure 1. Different from [8], one-hot speaker labels (ID) are
encoded by a training embedding table to obtain the timbre rep-
resentation in the proposed framework.

Besides the random resampling and restriction on sizes of
bottleneck layers which is adopted in [8] and analyzed in Sec-
tion 2 to gain the limited disentanglement, we put on stricter
constrain on the rhythm encoder output. As shown in Figure 1,
the output of rhythm encoder is discretized. The input of the
rhythm encoder is mel spectrogram which contains much in-
formation and there is a distinct possibility that various messy
information will be encoded into the rhythm representation with
merely random resampling and restriction on sizes of bottleneck
layers. Considering that discrete variable typically offers a sub-
stantially reduced model capacity, we applied the Multilabel-
Binary Vectors (MBV) [31] as the discrete rhythm representa-
tion. The MBV with Gumbel-Softmax demonstrated in Figure
2 is more data efficient than one-hot vector and continuous vari-
able in information distillation task [31].

3.2. Adversarial learning for speech representation disen-
tanglement

To address the limitations of SpeechSplit [8] as discussed in
Section 2, an adversarial Mask-And-Predict (MAP) network in-
spired by BERT [9] is designed to explicitly disentangle the ex-
tracted speech representations. During training, one of the four
speech representations is randomly masked and the adversarial
network tries to infer the masked representation from the other
three representations. The adversarial network is composed of a
gradient reverse layer (GRL) [32] and a stack of prediction head
layers [4] which has been used in masked acoustic modeling.
As delineated in Figure 3, in the MAP module, each prediction
head layer is composed of a fully-connected layer, GeLU activa-
tion, layer normalization and another fully-connected layer. The
gradient of the adversarial network is reversed by GRL before



Figure 3: Architecture of Mask-And-Predict (MAP) network.

backward propagated to the speech representation encoders. L1
loss is adopted here to measure the adversarial loss which is
demonstrated below:

Z = (Zr, Zc, Zf , Zu) (1)

M ∈ {(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)} (2)
Ladversarial = ||(1−M)� (Z −MAP(M � Z))|| (3)

where� is element-wise product operation, Ladversarial is ad-
versarial loss, Z is the concatenation of Zr , Zc, Zf , Zu denot-
ing rhythm, content, pitch and timbre representations respec-
tively, M is a randomly selected binary mask corresponding to
the dropped region with a value of 0 and 1 for unmasked repre-
sentations. The MAP network is trained to predict the masked
representation as accurate as possible by minimizing the adver-
sarial loss, while in the backward propagation, the gradient is
reversed which encourages the representations learned by the
encoder contain as little mutual information as possible.

3.3. VC with disentangled speech representations

During training, four speech representations are extracted from
same utterance and decoder is trained to reconstruct mel spec-
trogram from speech representations with the loss defined as:

Lreconstruct = ‖S − Ŝ‖22 (4)

where S and Ŝ are the mel spectrograms of the input and re-
constructed speech respectively. Final objective function with
trade-off parameters is given in:

Loss = α ∗ Ladversarial + β ∗ Lreconstruct (5)

where α, β are the loss weights for adversarial loss and recon-
struction loss. To improve the robustness of proposed frame-
work, the loss weight for the reconstruction loss is designed
to be exponential decaying. MelGAN [33] is adopted as the
vocoder for the high fidelity speech and fast decoding speed.

4. Experiment
4.1. Training setup

The experiments were performed on the CSTR VCTK cor-
pus [34]. We randomly selected 107 speakers including 62 fe-

males and 45 males. After pre-processing, the corpus duration
for experiment was 43.5 hours in total, 35.3 hours for train-
ing and 4.1 hours validation and test respectively. All the au-
dios were down-sampled to 16000Hz. Mel spectrograms were
computed through a short time Fourier transform (STFT) us-
ing a 50 ms frame size, 12.5 ms frame hop, and a Hann win-
dow function. We transformed the STFT magnitude to the mel
scale using an 80 channel mel filterbank spanning 125 Hz to
7.6 kHz, followed by log dynamic range compression. The fil-
terbank output magnitudes were clipped to a minimum value
of 0.01. The weights of adversarial loss was fixed to 10−1.
The weight of reconstruction loss β applied an initial weight of
1 with decay factor of 0.9 every 500,000 steps. We trained a
vanilla SpeechSplit [8] as the Baseline system and the system
described in Section 3 as Proposed. We used a pretrained Mel-
GAN vocoder on VCTK corpus to synthesize the audios from
the spectrogram. There were three factors involved in the con-
version process and we conducted seven types conversion in-
cluding rhythm-only conversion, pitch-only conversion, timbre-
only conversion and combinations of them. We evaluated base-
line and proposed systems under the same settings, otherwise
mentioned. We programmed all neural networks used in the
experiments based on an open source pytorch implemention of
SpeechSplit [8]. We trained all models with a batch size of 64
for 800,000 steps using the ADAM optimizer with learning rate
fixed to 10−4 on a NVIDIA V100 GPU. The demo is available
https://thuhcsi.github.io/interspeech2021-multi-factor-vc/.

4.2. Objective evaluation

We calculated the Mel-cepstral distortion (MCD) on a sub set
of the testing set which consists 543 parallel three-aspects con-
version pairs and the results is shown in Table 1. The proposed
system outperforms the baseline with decreasing the MCD from
3.89 to 3.58. Here the MCD of the baseline system is calculated
based on our own impementation of SpeechSplit [8].

Table 1: MCD comparison between different systems.

Baseline Proposed

MCD 3.89 3.58

To verify timbre transfer ability of conversion systems, we
analysed the speaker confusion results. There were a number
of speakers involved and we selected 10 speakers for demon-
stration. We randomly selected 10 timbre conversion involved
results of different target speakers. The reference timbre was
extracted from recording audio samples. We calculated speaker
embedding cross-similarity between utterances and the nor-
malized histogram of similarity scores is shown in Figure 4.
Each bar-column represents the number of utterance pairs cor-
responding to the similarity score. For the proposed system, the
maximum similarity score between same speaker is 0.80 and
the median score is 0.72. For the baseline system, the maxi-
mum similarity score between same speaker is only 0.74. By
comparison, the audios converted by proposed system are more
identifiable so as to characterize a specific speaker. The baseline
system has weaker timbre transfer ability as the converted au-
dios are prone to timbre flipping which is caused by speaker in-
formation leakage. However, there exists that similarity scores
of different speakers from these two systems exceed 0.6. We
found that when other speech factors are converted meanwhile,
the performance of speaker classification degrades.

https://thuhcsi.github.io/interspeech2021-multi-factor-vc/


(a) Baseline (b) Proposed

Figure 4: Normalized histogram of similarity values between ut-
terances. The horizontal coordinate denotes the similarity value
and the ordinate denotes the number of utterance pairs. The
vertical dotted lines denote the median value.

(a) Baseline (b) Proposed

Figure 5: Violin plots of scores obtained in the MOS tests. The
horizontal coordinate denotes the three metrics and the ordinate
denotes the MOS score. The horizontal lines denote mean value.

4.3. Subjective evaluation

Mean opinion scores (MOS) tests were conducted to evalu-
ate the speech quality, prosody similarity and timbre similarity.
There were twenty listeners and eight three-aspects conversion
pairs for each system involved in the evaluation. In the prosody
similarity MOS, the listeners were asked to rate how similar the
converted samples sound to the reference sample in terms of
pauses, emphasis and speaking rate. The evaluation of the three
aspects is independent and does not affect each other. When
evaluating the similarity of timbre conversion, for example, we
should not pay attention to speech quality or prosody.

The violin plots [35] of results are shown in Figure 5. The
speech quality of the proposed system is more salient than the
baseline. Most of the quality scores of the proposed system dis-
tribute in the range of 3.0∼4.5 with an average of 3.30. The
quality scores of the baseline system mainly distribute in the
range of 2.5∼3.5 with an average of 2.79. The baseline system
is prone to generates more low-quality audios as there are quite
a little scores are in the range of 1∼1.5. In terms of prosody
transfer, the scores of the two systems have a peak around
3.8 which means the two systems can effectively transfer the
prosody. Nevertheless, the upper limit of the proposed system
is higher than the baseline which means that the proposed sys-
tem can yield higher prosody similarity conversion results. In
terms of timbre transfer, the baseline system is more likely to
produce low-similarity audios by contrast. Overall, the perfor-
mance of prosody transfer is better than the timbre transfer.

4.4. Ablation study

In the experiment, we observed that while conducting rhythm-
only conversion, the content from the target-rhythm audio is
also encoded into the converted audio. Target content leaks

Table 2: WER on converted speech while performing rhythm-
only conversion. The ‘Baseline w D-R’ denotes the system that
is same as the baseline except MBV is adopted as rhythm code.

Baseline Baseline w D-R
WER(%) 43.92 28.89

(a) Baseline (b) Proposed

Figure 6: Reconstructed Mel spectrograms when content is re-
moved of the sentence “I must do something about it.”

into rhythm representation causes the messy source and target
content mixture. To evaluate the effect of MBV bottleneck on
reducing the amount of content information encoded into the
rhythm representation, we calculated the word error rate (WER)
on rhythm-only conversion results. There were 20 non parallel
conversion pairs involved and the results are shown in Table
2. The WER decreases from 43.92% to 28.89% after applying
the MBV. The content is wiped out from the rhythm represen-
tation more thoroughly and less target content leaks into con-
verted speech.

To further elucidate the disentanglement performance of
our proposed framework, we generate mel spectrogram with
one component removed by set the corresponding input as zero
[8]. As shown in Figure 6, after the content information is re-
moved, the spectrogram of the proposed system is composed of
more uninformative slots and the formant pattern is blur which
indicates the missing phone information. It can be observed
that our proposed system removes the content information more
thoroughly than the baseline which means that in our system,
the amount of content information leaks into other encoder is
less. Given the space limit, Figure 6 only shows the results of
content removed. The results of other component removed are
similar to content which the corresponding right information is
missing in the synthesized mel spectrogram. When the rhythm
information is removed, the output spectrogram is blank. When
timbre is removed, the formant position is more random and
when pitch is removed, the pitch contour is flatter.

5. Conclusion
In order to achieve a highly controllable style transfer on multi-
ple factors in VC, we propose a disentangled speech represen-
tation learning framework based on adversarial learning. We
extract four speech representations and employ MAP network
to further disentangle speech representations. Experimental
results show that the proposed speech representation learning
framework significantly improves the robustness of VC on mul-
tiple factors. Investigations of the design of masking strategies
is left for future work.
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