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ABSTRACT

In blind source separation of speech signals, the inherent im-

balance in the source spectrum poses a challenge for meth-

ods that rely on single-source dominance for the estimation

of the mixing matrix. We propose an algorithm based on the

directional sparse filtering (DSF) framework that utilizes the

Lehmer mean with learnable weights to adaptively account

for source imbalance. Performance evaluation in multiple real

acoustic environments show improvements in source separa-

tion compared to the baseline methods.

Index Terms— Blind source separation, sparse filtering,

directional clustering, Lehmer mean, microphone array

1. INTRODUCTION

Unsupervised blind source separation (BSS) is the process

of extracting source signals from its mixture with little to no

prior information about the sources and without prior training

using labelled data. In this paper, we focus on the problem of

estimating the complex-valued mixing matrix from a multi-

channel observed mixture, particularly that of speech signals.

We assume that the data, at each frequency bin, follow the

noiseless linear mixing model

x[k] = As[k], k = 0, . . . ,K − 1, (1)

where k is the time frame index, K is the total number of

frames, x[k] ∈ CM×1 is the observed mixture signals ac-

quired using M microphones, s[k] ∈ CN×1 is the unknown

source signals fromN speech sources, and A ∈ CM×N is the

mixing matrix to be estimated. Similar to [1, 2], we assume

that the number of sources N is known in this model.

The nature of the speech signal poses a unique challenge

to the task of mixing matrix estimation. Since the natural
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speech volume differs across individuals, the power of each

source signal also varies. Moreover, the relative energy of

the source spectra also varies across frequencies. Existing

directional sparse filtering (DSF) algorithms [1, 2], however,

implicitly assume that all sources have equal proportion of

active time at each frequency bin of the mixture and, there-

fore, their estimation performance reduces in the presence of

source spectra variation.

Inspired by the weighted scheme in directional cluster-

ing algorithms based on mixture models [3, 4], we propose

an extension of the DSF algorithm that is robust to variations

in the source spectra. To achieve such robustness, we em-

ploy the weighted Lehmer mean [5] with learnable weights

such that the variation in the source spectra are adaptively

accounted for during the learning process. The proposed al-

gorithm requires approximately the same computational com-

plexity compared to the original unweighted DSF. In addition,

the proposed algorithm does not require any constraints on the

scale of the weights. As opposed to existing mixture mod-

els, the proposed method also does not assume the sources to

be Gaussian distributed and, as a result, is more suitable for

sparse sources such as speech signals that are super-Gaussian

in nature.

2. THE PROPOSED DSF-WLM ALGORITHM

2.1. Directional Sparse Filtering with Lehmer Mean

It is well known that speech signals are highly sparse in the

time-frequency domain [6]. Consequently, they have been ob-

served to be approximately disjoint-orthogonal in the time-

frequency domain [7, 8, 9]. Due to this property, one of

the sources is often dominant in the mixture at each time-

frequency bin. Directional clustering methods, such as K-

hyperlines (KHL) [10, 11], directional mixture models [3,

12], and directional sparse filtering [2], exploit the sparse-

ness constraint to estimate the mixing matrix A. We define

H = [h1, . . .hN ] to be the estimate of A, such that hn de-

notes the nth column of H. KHL, in particular, estimates

the mixing matrix by clustering the data based on the phase-
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invariant cosine distance

Dn,k = 1−

∣∣hH
nx[k]

∣∣2

‖hn‖
2
‖x[k]‖

2
, (2)

where (·)H is the Hermitian transpose and ‖·‖ is the L2-norm.

Directional sparse filtering is an extension of the KHL algo-

rithm and seeks to minimize the cost function [2]

J (PM)(H) =
1

K

K−1∑

k=0

(
1

N

N∑

n=1

Dp
n,k

)1/p

, (3)

where p < 0 is a chosen hyper-parameter and PM denotes for

the power mean. As seen from (3), the cost function is un-

weighted and hence, estimation performance may be reduced

when the source activities are not uniformly distributed across

the frames in a particular frequency bin.

To address the above issue, we propose the following cost

function for directional sparse filtering by weighted Lehmer

mean (DSF-WLM)

J (H,w) =
1

K

K−1∑

k=0

∑N
n=1

max(wn + α, α)Dr
n,k∑N

n=1
max(wn + α, α)Dr−1

n,k

, (4)

where w = [w1, . . . , wN ]T ∈ RN×1 is the weight vector, r is

a hyper-parameter that controls the interpolation property, and

α ≥ 0 is a smoothing hyper-parameter. The hyper-parameter

α specifies the minimum effective weights for each mixing

filter to be estimated such that when α = 0, no smoothing

is performed. On the other hand, when α ≫ maxn wn, the

effective weights are approximately equivalent, resulting the

cost function being approximately unweighted.

To gain a better understanding of the proposed cost func-

tion, we first define the cosine-squared angular vector be-

tween the current estimated mixing matrix and the kth frame

of the data by

uk =

[ ∣∣hH

1
x[k]

∣∣2

‖h1‖
2
‖x[k]‖

2
, . . . ,

∣∣hH

Nx[k]
∣∣2

‖hN‖
2
‖x[k]‖

2

]T
. (5)

Note that un,k (defined as the nth component of uk) is related

to the distance metric by Dn,k = 1 − un,k. In this paper,

the hyper-parameter r is restricted to the range 0 < r < 1,

where the Lehmer mean satisfies the three criteria for a sparse

penalty function outlined in [2]:

1. The Lehmer mean decreases when the largest element of

uk increases; this is an inherent soft-minimum property of

the Lehmer mean when r < 1. When a component of uk

approaches unity, this property allows DSF to behave in a

manner similar to that of directional clustering.

2. For r < 1, it can be shown that the Lehmer mean of 1−uk

is zero when the largest element of uk is unity, regardless

of other elements of the angular vector. This property en-

sures that single-source frames are treated equally.

3. For equal weights, the Lehmer mean of 1 − uk is strictly

Schur-concave with respect to uk for 0 < r < 1. This

can be shown by noting the strict Schur-concavity of the

Lehmer mean for 0 < r < 1 [13], and that the composi-

tion between a strictly Schur-concave function and a linear

function is strictly Schur-concave. Due to the sparsity en-

forcing property of Schur-concave functions [14], the un-

wanted directional information from non-dominant source

will be suppressed. We note that the proposed method

considers a relaxation of this property since the weighted

Lehmer mean may not be strictly Schur-concave.

2.2. Comparison to the weighted power mean

We remark that a weighted extension of DSF by the weighted

power mean (WPM) exists and is given by

J (WPM)(H,w) =
1

K

K−1∑

k=0

(∑
n max(wn + α, α)Dp

n,k

N
∑N

i=1
max(wi + α, α)

) 1

p

.

(6)

Here, the weights must be normalized by
∑

imax(wn+α, α)
so that the effective weights sum to unity. This normaliza-

tion significantly complicates the partial gradient with respect

to the weights. As opposed to the cost function given in

(6), our proposed cost function in (4) offers a simpler gradi-

ent, thus reducing computational complexity. Moreover, the

weighted Lehmer mean offers an additional benefit of weight

self-normalization, i.e., the function is only affected by the

relative difference between the weights but not the scale of

the weights. This makes the weights of Lehmer mean easy to

learn with minimal increase in computational demand com-

pared to the unweighted version.

2.3. Optimization

To facilitate estimation, we first perform whitening on x such

that it is zero-mean and uncorrelated with identity covari-

ance, followed by L2-norm normalization such that ‖x[k]‖ =
1, ∀k. By assuming that the source signals are also zero-mean

and uncorrelated, we force the mixing matrix to be approxi-

mately semi-unitary, i.e., AAH ≈ IM . Since the weights of

the Lehmer mean is self-normalizing, constraints on the scale

of the weights are not required. As such, we arrive at the

constrained optimization problem

min
H,w

J (H,w) s.t. HHH = IM . (7)

Let ℜ(·) and ℑ(·) denote the real and imaginary parts of a

matrix, respectively. The gradient of the cost function with

respect to the nth column of the mixing matrix hn is therefore

given by

∇h∗

n
J =

gn

‖hn‖
−

hn

‖hn‖3
ℜ
[
hH

ngn

]
, (8)



where

gn =
2

K

K−1∑

k=0

Bn,k

(
xH[k]hn

‖hn‖

)
x[k], (9)

Bn,k =
(r − 1)Dr−2

n,k Lk − rDr−1

n,k∑N
i=1

max(wi + α, α)Dr−1

i,k

, (10)

Lk =

∑N
i=1

max(wi + α, α)Dr
i,k∑N

i=1
max(wi + α, α)Dr−1

i,k

. (11)

The gradient with respect to the weights is given by

∇wn
J =





1

K

K−1∑

k=0

Dr
n,k −Dr−1

n,k Lk∑
i(wi + α)Dr−1

i,k

, if wn > 0,

0, otherwise.

(12)

Satisfying the semi-unitary constraint is, unfortunately,

not trivial. In order to simplify the problem, we substitute the

semi-unitary constraint projection directly into the cost func-

tion (4). Note that, in practice, it is also possible to omit the

semi-unitary constraint with modest performance loss. We

now arrive at the unconstrained optimization problem

min
H̃,w

J
(
(H̃H̃H)−1/2H̃,w

)
, (13)

where H̃ is an auxiliary variable [2]. The optimization prob-

lem in (13) can now be easily solved with most gradient meth-

ods. Once the optimal auxiliary matrix H̃ is found, we com-

pute the estimated mixing matrix by normalizing H̃ to satisfy

the unitary constraint.

It can be seen that solving the optimization problem

in (13) involves minimization of the real-valued cost func-

tion with respect to a complex-valued matrix H̃ and a real-

valued vector w. Similar to [2], we minimize (13) using

the limited-memory Broyden–Fletcher–Goldfarb–Shanno

(L-BFGS) algorithm [15]. During optimization, the real

and imaginary parts of H̃ are treated as separate variables,

that is, vec(ℜ(H̃)), vec(ℑ(H̃)), and w are concatenated

into a single parameter vector. The mixing matrix H̃ is

initialized using KHL and all weights are initialized to

wn = K + (N − 1)α, ∀n.

3. SIMULATION RESULTS

We compared the performance of the proposed DSF-WLM

algorithm with the complex angular central Gaussian mixture

model (ACGMM) [4] and the original DSF by power mean

(DSF-PM) on speech mixture recorded in three real acoustic

environments. As with DSF-WLM, both ACGMM and DSF-

PM are also initialized with KHL. Source extraction for all

methods are performed using time-frequency masking. For

ACGMM, we adopted the same mask defined in [4]. For
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Fig. 1. Experiment setup. The distances are measured relative

to the center of the setup.
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Fig. 2. SDR performances of DSF-WLM with respect to r
with fixed α = 10 in the hold-out environment.

DSF-based methods, we used the softargmax-based mask [2]

defined by

Mn,k =
exp

(
−β
∣∣hH

nx[k]
∣∣2/(‖hn‖ ‖x[k]‖)

2

)

∑N
i=1

exp
(
−β
∣∣hH

i x[k]
∣∣2/(‖hi‖ ‖x[k]‖)

2

) ,

(14)

where β = 12.5 is a softness parameter. Permutation align-

ment is performed using a modified version of the algorithm

presented in [16] for all methods. We remark that the mask

in (14) can be slightly suboptimal since it does not take the

imbalance into account.

We recorded speech signals in three acoustic environ-

ments (an office, a lecture theatre, and a tutorial room) with

different reverberation times. Within each acoustic environ-

ment, we recorded twelve speech source signals, each at a

different location, as shown in Fig. 1, using 30 s of concate-

nated utterances from twelve unique speakers in the TIMIT

corpus [17]. The source signals were recorded using a mobile

phone with two built-in microphones spaced approximately

24 mm apart at a sampling rate of 16 kHz. For each acoustic

environment, we simulated mixtures of four sources, created

by choosing a combination of four source locations, artifi-

cially introducing random attenuation of up to 12 dB to all

but one sources, and subsequently summing the four scaled
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Fig. 3. Performance of ACGMM, DSF-PM, and the proposed DSF-WLM algorithm. The triangular markers indicate the

comparison intervals for the median performance. (a) and (b): SDR and ESTOI for office environment. (c) and (d): SDR and

ESTOI for lecture theatre environment. (e) and (f): SDR and ESTOI for tutorial room environment.

source images to form a mixture. We used only fifty unique

under-determined scenarios for evaluation per environment

(out of 495 possible unique scenarios).

Based on our pilot study in a hold-out dataset collected

from a different environment where the reverberation time

T60 estimated by [18] is approximately 388 ms, we found that

DSF-WLM using r that is close to 0 achieves higher me-

dian performance compared to when r is close to 1. How-

ever, the latter provides more consistent separation perfor-

mance. Fig. 2 shows the variation of SDR with r for DSF-

WLM with α = 10, which is also found via a grid search

on the same dataset. For ease of comparison, we fixed the

hyper-parameters r = 0.5, α = 10 for DSF-WLM, and p =
−0.2 for DSF-PM as these values achieved the highest perfor-

mance on our hold-out dataset. All methods employ a 2048-

sample periodic Hamming window with 75 % overlap for the

short-time Fourier transform (STFT). In practice, these hyper-

parameters, including those of STFT, should be optimized for

each acoustic environment to achieve optimal performance.

Fig. 3 shows the separation performance quantified via

the source-to-distortion ratio (SDR) evaluated using the BSS

Eval v3.0 toolbox [19] and the extended short-time objec-

tive intelligibility (ESTOI) measure [20]. The reverberation

times of the acoustic environments, estimated using [18],

have also been included in the figure. It can be seen that the

proposed DSF-WLM algorithm generally exhibits improve-

ments in SDR and ESTOI compared to the baselines. On the

other hand, ACGMM consistently suffers from the worst per-

formance in both SDR and ESTOI even though each source is

given a weight parameter in the mixture model. As expected,

the performance of all algorithms decreases with increas-

ing T60. However, it can be seen that DSF-based methods

suffer less performance degradation compared to ACGMM

as the T60 increases. We note that DSF-WLM shows mod-

estly lower median performance compared to DSF-PM in

the tutorial room environment. This is due to a sub-optimal

value of r since the reverberation time of the tutorial room

is nearly twice that of the hold-out environment where the

hyper-parameters were optimized in.

It should also be noted that the proposed algorithm can be

optimized using any unconstrained gradient methods whereas

ACGMM relies on an expectation-maximization update rule

which incurs significantly higher computational cost. Given

similar stopping conditions, DSF-PM and DSF-WLM re-

quire approximately 50 s on average for a 30-second mixture

whereas ACGMM require approximately 3 min on a machine

with Intel Xeon Silver 4208 (2.10 GHz) CPU.

4. CONCLUSION

We proposed an algorithm based on the directional sparse fil-

tering framework that is robust to imbalances in the source

spectra by introducing the weighted Lehmer mean. Exploit-

ing the simple gradient and weight self-normalization prop-

erty, the Lehmer mean with learnable weights allow the pro-

posed algorithm to adaptively account for source imbalances

with minimal increase in computational complexity. Perfor-

mance evaluation in multiple real acoustic environments show

modest improvement in performance compared to the original

DSF algorithm with power mean and considerable improve-

ment compared to the complex angular central Gaussian mix-

ture model.



5. REFERENCES

[1] A. H. T. Nguyen, V. G. Reju, A. W. H. Khong, and

I. Y. Soon, “Learning complex-valued latent filters with

absolute cosine similarity,” in Proc. IEEE Int. Conf.

Acoust. Speech, Signal Process., 2017, pp. 2412–2416.

[2] A. H. T. Nguyen, V. G. Reju, and A. W. H. Khong, “Di-

rectional sparse filtering for blind estimation of under-

determined complex-valued mixing matrices,” IEEE

Trans. Signal Process., vol. 68, pp. 1990–2003, Mar.

2020.

[3] D. H. Tran Vu and R. Haeb-Umbach, “Blind speech sep-

aration employing directional statistics in an expecta-

tion maximization framework,” in Proc. IEEE Int. Conf.

Acoust. Speech, Signal Process., 2010, pp. 241–244.

[4] N. Ito, S. Araki, and T. Nakatani, “Complex angular

central Gaussian mixture model for directional statistics

in mask-based microphone array signal processing,” in

Proc. European Signal Process. Conf., 2016, pp. 1153–

1157.

[5] D. H. Lehmer, “On the compounding of certain means,”

J. Math. Anal. and Applicat., vol. 36, no. 1, pp. 183–200,

Oct. 1971.

[6] E. Vincent, “Complex nonconvex lp norm minimization

for underdetermined source separation,” in Proc. Int.

Conf. Indep. Compon. Anal. Signal Sep., 2007, pp. 430–

437.

[7] P. Bofill and M. Zibulevsky, “Underdetermined blind

source separation using sparse representations,” Signal

Process., vol. 81, no. 11, pp. 2353–2362, Nov. 2001.

[8] S. Rickard and O. Yilmaz, “On the approximate w-

disjoint orthogonality of speech,” in Proc. IEEE Int.

Conf. Acoust. Speech, Signal Process., 2002, vol. 1, pp.

I–529–I–532.

[9] E. P. Simoncelli, “Modeling the joint statistics of images

in the wavelet domain,” in Proc. SPIE 44th Annu. Meet.,

1999, vol. 3813, pp. 188 – 195.

[10] P. D. O’Grady and B. A. Pearlmutter, “Hard-lost: Mod-

ified k-means for oriented lines,” in Proc. Irish Signals

Syst. Conf., 2004, pp. 247–252.

[11] Z. He, A. Cichocki, Y. Li, S. Xie, and S. Sanei, “K-

hyperline clustering learning for sparse component anal-

ysis,” Signal Process., vol. 89, no. 6, pp. 1011–1022,

Jun. 2009.

[12] H. Sawada, S. Araki, and S. Makino, “Underdeter-

mined convolutive blind source separation via frequency

bin-wise clustering and permutation alignment,” IEEE

Trans. Audio. Speech. Lang. Process., vol. 19, no. 3, pp.

516–527, Jan. 2011.

[13] C. R. Fub, D. Wanga, and H. N. Shic, “Schur-convexity

for lehmer mean of n variables,” J. Nonlinear Sci. Appl.,

vol. 9, no. 10, 2016.

[14] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan,

T. W. Lee, and T. J. Sejnowski, “Dictionary learning

algorithms for sparse representation,” Neural Comput.,

vol. 15, no. 2, pp. 349–396, Feb. 2003.

[15] D. C. Liu and J. Nocedal, “On the limited memory

BFGS method for large scale optimization,” Math. Pro-

gram., vol. 45, no. 1-3, pp. 503–528, Aug. 1989.

[16] L. Wang, “Multi-band multi-centroid clustering based

permutation alignment for frequency-domain blind

speech separation,” Digit. Signal Process., vol. 31, pp.

79–92, Aug. 2014.

[17] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus,

and D. S. Pallett, TIMIT Acoustic-Phonetic Continuous

Speech Corpus, Linguistic Data Consortium, Philadel-

phia, PA, USA, 1993.
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