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ABSTRACT

Cleft lip and palate (CLP) refer to a congenital craniofacial
condition that causes various speech-related disorders. As a
result of structural and functional deformities, the affected
subjects’ speech intelligibility is significantly degraded, lim-
iting the accessibility and usability of speech-controlled de-
vices. Towards addressing this problem, it is desirable to
improve the CLP speech intelligibility. Moreover, it would
be useful during speech therapy. In this study, the cycle-
consistent adversarial network (CycleGAN) method is ex-
ploited for improving CLP speech intelligibility. The model
is trained on native Kannada-speaking childrens’ speech
data. The effectiveness of the proposed approach is also
measured using automatic speech recognition performance.
Further, subjective evaluation is performed, and those results
also confirm the intelligibility improvement in the enhanced
speech over the original.

Index Terms— CLP speech, intelligibility, CycleGAN,
enhancement, speech disorder

1. INTRODUCTION

The individuals with cleft lip and palate (CLP) suffer from
speech disorders due to velopharyngeal dysfunction, oro-
nasal fistula, and mislearning [1]. As a result, children with
CLP may show different speech deviations such as hyper-
nasality, articulation errors, nasal air emission, and voice
disorders, and all these factors have an impact on the speech
intelligibility [2]. In the context of pathological speech,
speech intelligibility is closely related to the notion of speech
understandability, where it is defined as the degree to which
the listener could understand the spoken message [2, 3].

Hypernasality is a resonance disorder, and the presence
of such nasal resonances during speech production has an ex-
cessively perceptible nasal quality [4]. In addition, the vow-
els are nasalized, and the nasal consonants tend to replace
the obstruents (i.e., stops, fricatives, and affricates) due to
severe hypernasality, all of which affect speech intelligibil-
ity [1, 5, 6]. Besides hypernasality, the CLP speech intelligi-
bility is also affected by deviant articulation patterns such as

weak and nasalized consonants, glottal stops, pharyngeal and
velar substitutions [1, 7, 8]. The nasal air emission consists
of an additional noise source, which becomes a part of the
generated speech signal and influences the perceptivity of lis-
teners [1, 9]. The voice disorders include hoarseness and soft
voice syndrome [7], but they may or may not affect the CLP
speech intelligibility.

The advancements in technology have lead to various
speech-based applications such as automatic speech recog-
nition (ASR) and language identification to ease our daily
lifestyles. However, people suffering from pathological
speech cannot use such technologies effectively as the mod-
els of those systems are trained using normal speech [10, 11].
A study in [12] reported an analysis of the use of speech-
controlled devices for people with speech-based disorders. A
few studies also investigated the ability of the speech assis-
tants such as Siri, Google Assistant, Alexa, and Cortana to
recognize speech from individuals with amyotrophic lateral
sclerosis (ALS) induced dysarthria [13, 14].

The above studies show that people with different speech
disabilities face many challenges using the latest speech-
based technologies. However, many prefer to use speech-
enabled services as one can perform a multitude of everyday
tasks with less effort. One way to assist such people in using
speech-enabled devices can be done by retraining the exist-
ing models, including different pathological speech types.
However, the lack of a large amount of data for such cases
compared to normal speech may be an obstacle. Further,
retraining such models with pathological speech may affect
the performance of those systems with normal speech. This
shows the importance of improving the intelligibility of dis-
ordered speech to serve such needs. We consider the case of
enhancement of the intelligibility of CLP speech.

The improvement of CLP speech intelligibility can be
achieved clinically through surgery, prosthesis, and therapy.
However, the surgical intervention may not result in func-
tional correction of CLP speech, and deviant speech may
persist even after surgery. In general, the speech-language
pathologists (SLPs) assist the patients by showing the dis-
crimination between the disordered and correct speech [1].
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Further, an SLP creates an awareness of the disorder by sim-
ulating the misarticulated speech sound and presenting it to
the individual along with correct speech sounds [7]. During
this kind of speech therapy, the individuals with CLP learn
about the perceptual contrast between correct and distorted
sounds, which they try to rectify accordingly. Along a similar
direction, we believe automatic systems can be built to cor-
rect CLP speech intelligibility towards that of normal speech,
which motivates the current work.

1.1. Related Works

In the literature, various approaches are proposed for improv-
ing the intelligibility of different kinds of pathological speech.
One of these corresponds to dysarthric speech modification
based on acoustic transformation and spectral modification
using the Gaussian mixture model (GMM) [15, 16]. The
studies [17, 18] for alaryngeal speech enhancement include
the transformation of speech by enhancing formants using
chirp Z-transform and perceptual weighting techniques to
adapt the subtraction parameters that effectively reduce the
radiated noise of electrolaryngeal speech. Some other studies
in [19, 20] improved the quality of electrolaryngeal speech
using a speaking-aid system based on voice conversion (VC)
method and one-to-many eigenvoice conversion. Similarly,
the statistical approaches are exploited in [21] to enhance the
body-conducted unvoiced speech for silence communication.

In [22], the frequency lowering system and phoneme-
specific enhancement were proposed for enhancing the in-
telligibility of degraded speech. A few studies also reported
speech intelligibility enhancement for individuals with ar-
ticulation disorders, glossectomy patients’ speech using VC
technique [23, 24]. The studies in [25, 26] performed speech
enhancement to reduce background noise in hearing aid de-
vices for improving the intelligibility and naturalness for deaf
speakers by adapting a pre-trained normalization model.

A VC method transforms the speech signal of one speaker
into another while preserving the linguistic information [27,
28]. Besides its application in pathological speech enhance-
ment [16, 23, 29–31], it has various other potential appli-
cations such as customizing audiobook and avatar voices,
dubbing, computer-assisted pronunciation training, and voice
restoration after surgery [32, 33]. In this regard, we plan to
explore VC methods to transform the distorted CLP speech
into more intelligible speech.

The prior works show the use of GMM based VC and non-
negative matrix factorization (NMF) based VC for the im-
provement of various pathological speech [16, 23, 34]. In this
kind of method, temporally aligned parallel source (patholog-
ical speech) and target (normal/non-pathological speech) are
required for training. However, collecting a large amount of
pathological data such as CLP speech and creating a parallel
corpus is challenging. This projects non-parallel VC meth-
ods more suitable for the current study. The cycle-consistent

adversarial network (CycleGAN) is one of the state-of-the-art
non-parallel VC methods that has shown its effectiveness for
various applications [35–37]. Therefore, we consider Cycle-
GAN to improve the intelligibility of the CLP speech in this
work. We also study an NMF based method for a compar-
ative study and perform objective and subjective analysis for
speech intelligibility. This works’ contribution lies in improv-
ing CLP speech intelligibility with CycleGAN to help people
with pathological speech use speech-enabled devices.

The remaining paper is organized as follows. The Cycle-
GAN system for enhancing speech intelligibility is discussed
in Section 2. The experiment details are reported in Section 3.
Section 4 includes a discussion and the results for objective
and subjective evaluation. Finally, the work is concluded in
Section 5.

2. CYCLEGAN FOR CLP SPEECH
INTELLIGIBILITY IMPROVEMENT

The CycleGAN is one of the adversarial networks that are
widely used for VC or voice transformation. This section
discusses the details of the CycleGAN system and its imple-
mentation for CLP speech intelligibility improvement in the
following subsections.

2.1. Theory

A CycleGAN consists of two generators G and F and two
discriminators DX and DY , respectively. The generator G
is a function that maps the distribution X into distribution
Y , whereas the generator F maps the distribution Y into
distribution X . On the other hand, the discriminator DX

distinguishes X from X̂ = F (Y ). In contrast, the discrimi-
nator DY distinguishes Y from Ŷ = G(X). The CycleGAN
model learns the mapping function from the training sam-
ples, which comprises of source {xi}Ni=1 ∈ X and target
{yi}Ni=1 ∈ Y samples. The objective function of the Cycle-
GAN model comprises of two losses: adversarial loss and
cycle-consistency loss. An adversarial loss makes X and X̂
or Y and Ŷ as indistinguishable as possible. On the other
hand, cycle-consistency loss guarantees that an input data
retains its original characteristics after passing through the
two generators. By combining both these losses (adversarial
and cycle-consistency), a model can be learned from un-
paired training data. The learned mappings can be further
used to transform an input speech into the desired speech out-
put. For adversarial loss, the objective function for mapping
GX→Y (x) and the corresponding discriminator DY is given
by,

LGAN (G,DY , X, Y ) = Ey∼P (y)[logDY (y)]

+Ex∼P (x)[log(1−DY (G(x)))]
(1)

where P (x) and P (y) refer to the distribution of source and
target data, respectively, and E[·] denotes the expectation op-



erator. Using similar formulation as in Equation (1), the ob-
jective function for mapping FY→X(y) and corresponding
discriminator DX is given by,

LGAN (F,DX , X, Y ) = Ex∼P (x)[logDX(x)]

+Ey∼P (y)[log(1−DX(F (y)))]
(2)

The generator attempts to generate data to minimize the two
objective functions. At the same time, the discriminators DX

and DY try to maximize those two objective functions. Al-
though the adversarial loss guarantees the distribution map-
ping, it does not guarantee that the learned function can map
the input to the desired output. Furthermore, this may not
serve the purpose of the current study, which is to improve
the intelligibility of CLP speech while preserving the sequen-
tial information. Optimization of the adversarial loss does
not guarantee linguistic consistency between input and out-
put features. It is because adversarial loss only restricts the
mapping function to follow target data distribution and does
not necessarily retain the linguistic content of input speech.
In order to address this issue, cycle-consistency loss is intro-
duced in CycleGAN based VC, which finds the input and out-
put pairs with same linguistic content. Therefore, the forward
and backward cycle-consistency loss is given by,

Lcyc(G,F ) = Ex∼P (x)[||F (G(x))− x ||1]
+Ey∼P (y)[||G(F (y))− y ||1]

(3)

where || . ||1 denotes L1 norm. Finally, the joint objective
function to train CycleGAN is obtained by combining the ad-
versarial loss with the cycle-consistent loss as given below,

L (G,F,DX , DY ) = LGAN (G,DY , X, Y )

+LGAN (F,DX , X, Y ) + λcycLcyc(G,F )
(4)

The λcyc in Equation (3) controls the relative impact of ad-
versarial loss and cycle-consistency loss.

2.2. System

The focus of the current work is to enhance CLP speech x ∈
X by mapping it to the normal signal y ∈ Y without rely-
ing on parallel data. The transformation GX→Y is performed
using the CycleGAN method. Figure 1 shows the framework
for intelligibility enhancement for CLP speech using the Cy-
cleGAN system. The CLP speech serves as a source, whereas
normal speech is considered as a target. Given a set of CLP
and normal speech data, the CycleGAN learns a network to
convert the CLP speech to normal speech, as discussed in the
previous subsection. The discriminators and the generators
work collectively during training. The generator serves as a
mapping function from the distribution of the source to that
of the target. On the other hand, the discriminator is trained
to make the posterior probability 1 for normal speech and 0
for modified CLP speech. In contrast, the generator is trained
to deceive the discriminator.

Discriminator
Dx

Decision (0,1)

Generator
G

CLP  speech

Generator
F

Discriminator
Dy

Normal  speech

Decision (0,1)

Modified 
CLP  speech

Re-synthesized
CLP  speech

Fig. 1. Framework for the CLP speech enhancement using
CycleGAN approach.

3. EXPERIMENTAL SETUP

This section presents the details of the database and those of
the experimental setup employed for this study.

3.1. Database

The database used in this work consists of 62 speakers, con-
sisting of 31 speakers (17 male and 14 female) with CLP and
31 non-CLP control speakers (12 male and 19 female) in the
Kannada language. The age of CLP and non-CLP participants
are 9 ± 2 years (mean± SD) and 10 ± 2 years (mean± SD),
respectively. The database consists of speech samples with
disorders like hypernasality, articulation errors, and nasal air
emission. It is noted that the manifestation of speech disor-
ders are labeled by 3 expert SLPs who have experience of not
less than five years in the clinical field. The SLPs transcribed
the speech samples and provide deviation scores on a scale of
0 to 3, where 0 = close to normal, 1 = mild deviation, 2 =
moderate deviation, and 3 = severe deviation.

The database consists of sentences, vowel phonation,
nonsense vowel-consonant-vowel (VCV), and consonant-
vowel-consonant-vowel (CVCV) meaningful words. Only
the sentences are used to train the CycleGAN model and per-
form speech intelligibility enhancement in the present work.
Here, 5 CLP speakers (2 females and 3 males) are selected as
sources, and 5 normal speakers (2 females and 3 males) are
selected as targets. Each of these speakers has nineteen dif-
ferent spoken sentences recorded over two different sessions.
This results in a total of 190 (19 × 2 × 5 = 190) sentences
from the source speakers and the target speakers. The 190
sentences for CLP and normal speech are partitioned into 143
and 47 sentences as training and evaluation sets. There is no
overlap among the sentences corresponding to the training
and evaluation sets.



Fig. 2. Waveforms and spectrograms of a sentence ‘taata tabala taa’: (a) and (b) for normal speech; (c) and (d) for CLP speech;
(e) and (f) for modified CLP speech using NMF; (g) and (h) for modified CLP speech using CycleGAN.

3.2. Implementation details

The CycleGAN network architecture used in this work fol-
lows the one reported in the literature [38, 39]. The pipeline
followed for CLP speech intelligibility enhancement includes
the feature extraction, CycleGAN-based VC, and finally, re-
synthesis of speech. The speech signals are downsampled to
16 kHz for this study. The mel-cepstral coefficients extracted
using the WORLD analysis system [40] are used as the fea-
tures. The dimensionality of the feature vector is set to 24.

The CycleGAN model is collectively trained using the
mel-cepstral coefficients extracted from each frame of the
source and target speech data. Before processing, the source
and target mel-cepstral coefficients are normalized to zero
mean and unit variance. The training is stabilized using least-
squares GAN [41]. It replaces the negative log-likelihood
objective shown in Equation (1) by the least-squares loss.
The λcyc is set to 10. The randomness of each batch is in-
creased using a fixed-length segment of 128 frames. We used
Adam optimizer [42] to optimize the network with a batch
size of 1. The generator and discriminator’s initial learning
rate is set as 0.0002 and 0.0001, respectively.

4. RESULTS AND DISCUSSION

We now focus on the results of the studies conducted. The
NMF based enhancement method is well explored in previ-
ous pathological speech studies [23, 34, 43]. Here, the speech
signals are processed in a frame size of 20 ms and a shift of
10 ms. The speech sounds are characterized by 1024 fast-
Fourier transform points. The magnitude spectrum is decom-

posed into a set of bases and nonnegative weights. The collec-
tion of bases is called a dictionary, and weights are referred to
as activation. Before performing the conversion, the normal
and CLP speech signals are time-aligned using the dynamic
time warping method. It is followed by learning the two dic-
tionaries simultaneously from the paired source and target
training data. The source and target correspond to the nor-
mal and the CLP speech, respectively. The distorted speech is
modified by using the target dictionary and shared activation
matrix.

Motivated by the wide use of the NMF method in differ-
ent speech enhancement studies, it forms the baseline method
for comparing the performance of CycleGAN based enhance-
ment approach explored in this work. Before describing the
details of objective and subjective evaluations, we would like
to illustrate the differences between normal and CLP speech
and the relative impact of NMF and CycleGAN processing
on the modified CLP speech. For this purpose, the wave-
forms and spectrograms corresponding to normal, CLP, and
the processed speech cases are shown in Figure 2.

The CLP speech spectrogram in Figure 2 (d) shows that
the vowels are nasalized as compared to those of normal
speech in Figure 2 (b). The effect of nasalization is observed
at around 1 kHz in between 0.5-0.7 seconds, between 1.0-
1.4 seconds, and between 1.5-1.7 seconds. Additionally, the
formants are not distinct in the vowels, and the stops are
also observed to have been deviated in Figure 2 (d) relative
to those in Figure 2 (b). The NMF based enhancement in
Figure 2 (f) shows that the nasalization is suppressed with
distinctive formants. However, the deviant stop character-



Table 1. Performance of different speech inputs using Google
English ASR API and Kannada ASR system developed by the
authors. The CLPnmf and CLPcyclegan denote modified CLP
speech using NMF and CycleGAN, respectively.

ASR system WER (%)
Normal CLP CLPnmf CLPcyclegan

Google English 52.48 91.2 88.31 76.47
Kannada 24.03 79.57 61.51 47.18

istics persist, and the speech is noisy. On observing the
CycleGAN based enhancement in Figure 2 (h), we find that
the dominant low-frequency energy around 1 kHz is observed
to be significantly suppressed, formants are distinct, and the
stops are corrected. Thus, it reveals that the CycleGAN based
enhanced CLP speech exhibits closer acoustic characteris-
tics to that of the normal speech as compared to the NMF
based one. For a thorough examination, some of the speech
samples can be accessed using the link: https://www.
dropbox.com/sh/dpop7i7bhc3koig/AABQeUvl_
v2telt70RV8H4Jra?dl=0. Next, we report the objec-
tive and subjective evaluations in the following subsections.

4.1. Objective Evaluation

For this purpose, the intelligibility improvements of the mod-
ified speech signals are evaluated by ASR systems [44]. Two
ASR systems are considered to evaluate the performance. The
first one is based on publicly available open-source ASR for
Indian English using Google API [45]. As the current study
database is collected in the Kannada language, we also con-
sider a Kannada ASR system trained using the KALDI speech
recognition toolkit [46] for evaluating the performance. The
ASR system performance for various speech inputs is mea-
sured using the word error rate (WER) metric.

Table 1 shows the ASR performance comparison of vari-
ous speech inputs. It is observed that the performance of dif-
ferent speech inputs are better with the Kannada ASR system
as there is a language match in contrast to the Google ASR
system trained on Indian English. We note that the purpose
of this study is not to compare the two ASR systems, but only
to use Google ASR as another reference system to show the
performance trend using a different recognizer, whose model
is trained on a large dataset. As Google English API is read-
ily available for use in the public domain; hence, for a san-
ity check, we have used it to show the performance accu-
racy. Any other API trained on a large dataset in any language
could also be used in place of Google English API.

Both the ASR systems are noted to exhibit severely de-
graded recognition performances for the CLP speech. How-
ever, both the explored enhancement approaches are noted
to yield improved ASR performance compared to that of the
original CLP speech, which is more prominent for the Cy-
cleGAN system. This signifies the motivation behind using
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Fig. 3. Bar plot showing intelligibility score (in %) for dif-
ferent speech inputs evaluated by the naive listeners. The
CLPnmf and CLPcyclegan denote modified CLP speech using
NMF and CycleGAN, respectively.
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Fig. 4. Bar plot showing MOS for different speech inputs
evaluated by the naive listeners. The CLPnmf and CLPcyclegan
denote modified CLP speech using NMF and CycleGAN, re-
spectively.

CycleGAN for improving the intelligibility of CLP speech in
the current study.

4.2. Subjective Evaluation

In this subsection, we report the subjective evaluation based
studies. This will lead us to have perceptual insights for the
objective evaluation study presented in the previous subsec-
tion. A total of 20 listeners are chosen for this study. Each
of them is provided ten sets of utterances that correspond to
normal speech, CLP speech, and modified CLP speech using
the NMF and CycleGAN approach, respectively. Each set is
presented to the listeners without showing the speech file la-
bels.

The first study asks the listeners to transcribe the words
spoken in those utterances based on their perception. We then
compute the intelligibility score for the correctly recognized
words for each speech category. The intelligibility score is
evaluated in the range of 1-100% based on the underlying
spoken message perception. Figure 3 shows the comparison
of intelligibility scores conducted in this study for different

https://www.dropbox.com/sh/dpop7i7bhc3koig/AABQeUvl_v2telt70RV8H4Jra?dl=0
https://www.dropbox.com/sh/dpop7i7bhc3koig/AABQeUvl_v2telt70RV8H4Jra?dl=0
https://www.dropbox.com/sh/dpop7i7bhc3koig/AABQeUvl_v2telt70RV8H4Jra?dl=0


speech. We observe that normal speech can be recognized
correctly by the listeners showing a high intelligibility score.
In contrast, it decreases to less than 50% for CLP speech.
The two enhancement methods (NMF and CycleGAN) im-
prove the intelligibility, which is reflected in their respective
gains, as observed from Figure 3. Further, it is found that Cy-
cleGAN can improve the intelligibility score above 80%, thus
showing effectiveness over the NMF approach.

The second subjective evaluation study is based on the
mean opinion score (MOS) provided by the listeners for each
utterance. The listeners are asked to rate the perceptual qual-
ity of speech on a scale of 1 to 5 (1 = bad, 2 = fair, 3 = good, 4
= very good, 5 = excellent). The average scores across all the
listeners are computed to obtain the MOS for different speech
categories. Figure 4 shows the trend of MOS for this study.
It can be noted that the normal speech has a MOS close to 5,
whereas that of CLP speech is below 2. The speech signals
obtained with the two enhancement methods NMF and Cy-
cleGAN, show an improved MOS than the original speech,
which is higher for the latter approach. We obtain a MOS of
more than 3 for the CycleGAN approach that shows the im-
provement in perceptual quality apart from intelligibility from
the original CLP speech. However, it is also observed that the
modified CLP speech quality achieves a relatively lower MOS
compared to that of the normal speech.

5. CONCLUSIONS

In this work, we study CycleGAN for enhancing the intelligi-
bility of CLP speech. Through objective and subjective eval-
uation, it has been demonstrated that significant improvement
in the intelligibility of CLP speech can be achieved using the
CycleGAN based enhancement approach. The CLP speech
enhanced using CycleGAN is noted to outperform the tradi-
tional NMF approach. It is worth pointing out that the differ-
ences in the perceptual quality of enhanced CLP and normal
speech may be related to the vocoder and mapping parameters
used, which deserves future exploration.
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