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Abstract—This paper provides a detailed description of the
Hitachi-JHU system that was submitted to the Third DIHARD
Speech Diarization Challenge. The system outputs the ensemble
results of the five subsystems: two x-vector-based subsystems, two
end-to-end neural diarization-based subsystems, and one hybrid
subsystem. We refine each system and all five subsystems become
competitive and complementary. After the DOVER-Lap based
system combination, it achieved diarization error rates of 11.58%
and 14.09% in Track 1 full and core, and 16.94% and 20.01%
in Track 2 full and core, respectively. With their results, we won
second place in all the tasks of the challenge.

Index Terms—speaker diarization, x-vector, VBx, EEND,
DOVER-Lap

I. NOTABLE HIGHLIGHTS

This technical report describes the Hitachi-JHU system
submitted to the Third DIHARD Speech Diarization Challenge
[1]. We mainly focused our efforts on how we can pick the
best of diarization based on x-vector clustering and end-to-
end neural speaker diarization (EEND). The highlights of our
systems are as follows:
• Two x-vector-based systems incorporated with VBx clus-

tering and heuristic overlap assignment. One is based
on a time-delay neural network (TDNN) based x-vector
extractor following the winning system of the DIHARD II
Challenge [2], [3]. The other is based on Res2Net-based
x-vector extractors, which won the VoxCeleb Speaker
Recognition Challenge 2020 [4].

• Two EEND-based subsystems, each of which is the
extension of the original self-attentive EEND [5] to output
diarization results of a variable number of speakers, with
improved inference.

• A hybrid subsystem of x-vector clustering and EEND,
in which update the results of x-vector clustering using
EEND as post-processing [6].

• Modified DOVER-Lap [7] to combine the results from
five subsystems above.

• Self-supervised adaptation of the EEND model.

II. DATA RESOURCES

Table I summarizes the corpora we used to train our models
which compose our diarization system. We briefly explain each

corpus below.

• DIHARD III: focused on “hard” speaker diarization,
contains 5-10 minute utterances selected from 11 conver-
sational domains, each including approximately 2 hours
of audio [1].

• VoxCeleb 1: a large-scale speaker identification dataset
with 1,251 speakers and over 100,000 utterances, col-
lected “in the wild” [8].

• VoxCeleb 2: a speaker recognition dataset that contains
over a million utterances from over 6,000 speakers under
noisy and unconstrained conditions [8].

• Switchboard-2 (Phase I, II, III), Switchboard Cellular
(Part 1, 2): English telephone conversation datasets.
Their LDC catalog numbers are LDC98S75, LDC99S79,
LDC2002S06, LDC2001S13, and LDC2004S07, respec-
tively.

• NIST Speaker Recognition Evaluation (2004, 2005, 2006,
2008): also telephone conversations but not limited to
English, which are composed of the following LDC
corpora: LDC2006S44, LDC2011S01, LDC2011S04,
LDC2011S09, LDC2011S10, LDC2012S01,
LDC2011S05, LDC2011S08.

• MUSAN: publicly available corpus that consists of music,
speech, and noise [9]. The music and noise portions are
sometimes used for data augmentation.

III. DETAILED DESCRIPTION OF ALGORITHM

A. Voice Activity Detector

We employed two voice activity detectors (VAD): SincNet-
based VAD [10] and TDNN-based VAD.

SincNet-based VAD: Our SincNet-based VAD is implemented
using the pyannote [11] framework. This VAD model learns
to detect speech from the raw speech using a combination
of a SincNet [12] followed by BiLSTM layers and fully
connected layers. For our experiments, we employed the
default configuration provided by pyannote: a SincNet with
80 channels and 251 dims of kernel size, two BiLSTM layers
with 128 cell dimensions, and two fully connected layers of
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TABLE I: Corpora we used to train the models in our system.

VAD X-vector extractor

Corpus SincNet TDNN TDNN Res2Net PLDA Overlap detector EEND-EDA SC-EEND

DIHARD III development set [1] X X X X X X
DIHARD III evaluation set [1] (with pseudo labels) X
VoxCeleb 1 [8] X X
VoxCeleb 2 [8] X X
Switchboard-2 Phase I, II, III X X
Switchboard Cellular Part 1, 2 X X
NIST Speaker Recognition Evaluation 2004, 2005, 2006, 2008 X X
MUSAN corpus X X X X X

TABLE II: VAD performance on the DIHARD III develop-
ment set.

Method False alarm (%) Missed speech (%)

SincNet-based VAD 2.78 2.51
TDNN-based VAD 2.85 2.80
Posterior average 2.58 2.55

128 dimensions. We trained the model using the DIHARD III
development set for 300 epochs.
TDNN-based VAD: Our TDNN VAD is based on the example
from Kaldi [13] recipe. The acoustic feature we use is 40-
dim MFCC, and the left and right 2 frames are appended to
generate the 200-dim input features. The model first transforms
the input features with linear discriminant analysis (LDA)
estimated with the VAD labels. Then the transformed features
pass through five TDNN blocks. Each TDNN block consists
of a TDNN layer, a Rectified Linear Unit (ReLU), and a
batch normalization layer. In the last two TDNN blocks, to
capture long temporal contexts, the mean vector for neigh-
boring frames is computed as an additional input. Finally, a
linear layer is used to predict the probability for each frame.
The model was trained on the DIHARD III development set
for around 10 epochs. We augmented the training data with
the noise, music, and babble from the MUSAN [9] corpus
and created some reverberated speech with simulated room
impulse responses [14].

The final results of VAD were calculated by averaging
posterior probabilities from the two models, followed by
thresholding and median filtering. As shown in the Table II,
posterior averaging of the two systems achieved the best
trade-off between false alarms and missed speech than the
individuals.

B. X-vector-based subsystems

1) TDNN (System (1)): The TDNN x-vector-based system
consists of two main parts: TDNN extractor and the VBx
clustering.
TDNN-based extractor: It employs 40-dimensional filter-
banks, with a 25ms window and 15ms frame shift. These
features are used for the embedding extraction as in [15].
The x-vector was trained using a TDNN with a 1.5 s window
with frame shift of 0.25 s. The TDNN extractor consists of
four TDNN-ReLU layers each of them followed by a dense-

ReLU. Then, two dense-ReLU layers are incorporated before
a pooling layer; a final dense-ReLU is included from which
512-dimension embeddings are computed. A dense-softmax
concludes this TDNN architecture [16].

VBx clustering: To eliminate the need for a tuned agglom-
erative hierarchical clustering (AHC) stopping threshold, we
perform VBx-clustering after AHC [15]. The VBx-clustering
is a simplified variational Bayes diarization. It follows a hidden
Markov model (HMM), in which the state represents a speaker,
and the state transitions correspond to speaker turns. The state
distributions, or emission probabilities, are Gaussian mixture
models constrained by eigenvoice matrix. Each speaker has a
probability of Ploop when the HMM ends up back in the same
state. The initialization for this system is a probabilistic LDA
(PLDA) model. For our experiments, this PLDA is the result
of the interpolation of the VoxCeleb PLDA and the in-domain
DIHARD III PLDA. Both PLDAs were centered and whitened
using DIHARD III development set.

For the TDNN-based system, the x-vectors were projected
from 512 dim to 220 using an LDA, the PLDA interpolation
regulated by an alpha was set to 0.50, and the value for Ploop
to 0.80.

We finally applied overlap assignment, which is described
in Section III-B3, to obtain the final diarization results from
this subsystem.

2) Res2Net (System (2)): Initially proposed for image
recognition, Res2Net was applied to speaker embedding be-
cause it provides highly accurate speaker clustering [17].

The Res2Net-based extractor uses the default configuration
described in [17]. The Res2Net uses 80 log-filterbank dimen-
sions as input, a multi head-attentive pooling with attention
heads set to 16 that learns to weight each frame, and additive
angular margin Softmax (AAM) [18] with margin of 0.1 and
scale of 30 as a training criterion. For our experiments, we
employed four extractors:

i) Res2Net-UN: This extractor employs the default config-
uration of a Res2Net with 23 layers, utterance normal-
ization, log10 compression, AAM margin of 0.1, and
AAM scale of 30.

ii) Res2Net-BN: This extractor is similar to Res2Net-UN,
with a batch normalization layer instead of utterance
normalization and ln compression.

iii) Res2Net-BN-Large: This extractor uses a Res2Net with
50 layers with a similar configuration as Res2Net-BN.



iv) Res2Net-UN-Large: This extractor uses a Res2Net with
50 layers and a similar configuration as Res2Net-UN.
Additionally, it uses SpecAugment [19] for data aug-
mentation.

We employed the VoxCeleb 1 and VoxCeleb 2 sets [8]
as training that provided 7323 speakers and over 1M of
recordings. We augmented the data following similar data
augmentation as the Kaldi recipe for VoxCeleb1. Each audio
recording is randomly chunked into subsegments of length
between 2.0 s and 4.5 s that are feed into the models.

Similarly to the TDNN-based system, the 128-dimension
embeddings, were passed through and LDA without reduction
and used a PLDA interpolation regulated by an alpha was set
to 0.10, and the value for Ploop to 0.80.

Once the results from the four extractors were obtained, we
combined the results using modified DOVER-Lap, which is
explained in Section III-E.

3) Overlap detection and assignment: For the Res2Net and
the TDNN x-vector subsystems, we used a similar approach to
perform overlap detection like the one shown for the SincNet-
based VAD, with the only difference that the classifier will dis-
tinguish between overlapping speech versus non-overlapping
speech. We assigned the closest other speaker in the time axis
as the second speaker for each detected frame.

Table III shows the diarization error rates (DERs) and
Jaccard error rates (JERs) on the DIHARD III development
set using the x-vector-based subsystems.

C. EEND-based subsystems

We employed EEND-EDA [20] and SC-EEND [21] as
EEND-based subsystems, each of which can handle a flexible
number of speakers. The inputs to the EEND-based models
were based on log-Mel filterbanks but with different configu-
rations for each model. For EEND-EDA, 23-dimensional log-
Mel filterbanks was extracted with frame length of 25ms and
frame shift of 10ms from 8 kHz recordings. Each filterbanks
were then concatenated with those from the left and right seven
frames to construct 345-dimensional features. We subsampled
them by a factor of 10 to obtain input features for each
100ms during training and that of five to obtain features for
each 50ms during inference. For SC-EEND, we used 40-
dimensional log-Mel filterbanks from 16 kHz recordings and
concatenated the left and right 14 frames to construct 1160-
dimensional features. The subsampling factor was set to 20
during pretraining using simulated mixtures and 10 during
adaptation and inference.

1) EEND-EDA (System (3)): EEND-EDA [20] calculates
posteriors by dot products between time-frame-wise embed-
dings and speaker-wise attractors, which are calculated from
the embeddings using encoder-decoder attractor calculation
module (EDA). The training procedure depends on simulated
mixtures summarized in Table IV and the DIHARD III corpus.
We created them using the script provided in the EEND

1https://github.com/kaldi-asr/kaldi/blob/master/egs/voxceleb/v2

repository2 with various β values shown in Table IV, which
determines the average duration of silence between utterances.
We first trained the model using Sim2spk for 100 epochs, then
finetuned it on the concatenation of Sim1spk to Sim5spk for
another 75 epochs, and finally adapted it on the DIHARD III
development set for 200 epochs. We used Adam optimizer
[22] for all the training, but with Noam scheduler [23] that
set the warm-up steps to 100,000 iterations for training on
simulated mixtures and with a fixed learning rate of 1× 10−5

for adaptation.
During inference, we used the dereverberated audio using

weighted prediction error (WPE) [24]. We estimated a dere-
verberation filter on Short Time Fourier Transform (STFT)
spectrum using the entire audio recording as an input block.
The STFT features are computed using a window of 32ms
(512 dims) and shifting of 8ms (128 dims). Using 5 iterations,
we set the prediction delay and the filter length to 3 and 30,
respectively, for 16 kHz.

Because EEND-based models conduct speaker diarization
and voice activity detection simultaneously, they must be
incorporated with oracle speech segments (for Track 1) or
accurate external VAD (for Track 2) to fit the DIHARD tasks.
Thus, once the diarization results were obtained using the
EEND-EDA model, we filtered false alarms and recovered
missed speech by assigning the speakers with the highest
posterior probabilities using VAD. In this paper, we call these
procedures VAD post-processing.

Even if the adaptation was based on the DIHARD III devel-
opment set, which contains mixtures of at most 10 speakers,
it is difficult to produce diarization results of more than five
speakers because its pretraining was based on mixtures in
which include at most five speakers. Therefore, we produce
diarization results for more than five speakers using an iterative
inference as follows:

i) decide the maximum number of speakers K(≤ 5) to
decode,

ii) decode at most K speaker’s diarization results,
iii) stop inference if the estimated number of speakers is

less than K otherwise continue to the next step,
iv) select frames in which all the decoded speakers are

inactive and back to i),
We varied K ∈ {1, 2, 3, 4, 5} at the first iteration and fixed it to
5 from the second iteration. Finally, the five estimated results
are combined using the modified DOVER-Lap described in
Section III-E to obtain the final results of the EEND-EDA-
based system.

Table Va shows DERs and JERs of the EEND-EDA-based
and SC-EEND-based subsystems. It clearly indicates that the
VAD post-processing and the iterative inference improved the
diarization performance.

2) SC-EEND (System (4)): SC-EEND is a model which
estimates each speaker’s speech activities one-by-one, con-
ditioned on the previously estimated speech activities. We

2https://github.com/hitachi-speech/EEND/blob/master/egs/callhome/v1/
run prepare shared eda.sh

https://github.com/hitachi-speech/EEND/blob/master/egs/callhome/v1/run_prepare_shared_eda.sh
https://github.com/hitachi-speech/EEND/blob/master/egs/callhome/v1/run_prepare_shared_eda.sh


TABLE III: DERs / JERs (%) of x-vector-based subsystems on the DIHARD III development set.

(a) TDNN (System (1))

Method DER / JER (%)

x-vector + VBx 16.33 / 34.18
x-vector + VBx + OvlAssign 13.87 / 32.73

(b) Res2Net (System (2))

DER / JER (%)

Method Res2Net-BN Res2Net-UN Res2Net-BN-Large Res2Net-UN-Large

x-vector + VBx 17.24 / 37.12 17.04 / 36.17 16.85 / 35.86 17.08 / 35.95
x-vector + VBx + OvlAssign 14.89 / 35.64 14.72 / 34.65 14.56 / 34.31 14.74 / 34.40

Modified DOVER-Lap 14.04 / 34.29

TABLE IV: Simulated mixtures used for EEND-EDA training.
Sim1spk, Sim2spk, Sim3spk, and Sim4spk are the same as
ones used in the EEND-EDA paper [20].

Dataset #Spk #Mixtures β Overlap ratio (%)

Sim1spk 1 100,000 2 0.0
Sim2spk 2 100,000 2 34.1
Sim3spk 3 100,000 5 34.2
Sim4spk 4 100,000 9 31.5
Sim5spk 5 100,000 13 30.3

TABLE V: DERs and JERs (%) on the DIHARD III devel-
opment set using EEND-based models. FA: false alarm, MI:
missed speech.

(a) EEND-EDA (System (3))

Method DER JER

EEND-EDA 18.77 38.98
+ filter FA 17.33 37.92
+ recover MI 13.08 35.38
+ iterative inference (K = 5) 13.35 34.19
+ iterative inference (K ∈ {1, . . . , 5}) & DOVER-Lap 12.92 33.85

(b) SC-EEND (System (4))

Method DER JER

SC-EEND 18.61 39.19
+ filter FA 16.02 37.46
+ recover MI 13.13 35.35

used stacked Conformer encoders [25] instead of Transformer
encoders that used in the original SC-EEND. The model was
firstly trained on simulated mixtures, each of which contains
at most four speakers, for 100 epochs using Adam optimizer
with the same scheduler as in EEND-EDA. Then, the model
was initialized with the average weights of the last 10 epochs
and trained again on the simulated mixtures for additional 100
epochs. Finally, the model was adapted on the DIHARD III
development set from the average weights of the last 10 epochs
of the second-round pretraining for additional 200 epochs
using Adam optimizer with the fixed learning rate of 1×10−5.
The details of the simulated mixtures are described in the SC-
EEND paper [21].

For SC-EEND, we also used dereverberated audio and
applied VAD post-processing (filtering false alarms and recov-
ering missed speech) as described in Section III-C1. However,
the Conformer encoders have order dependency so that we
cannot conduct the decoding process only for the selected

frames that are not always equally spaced along the time
axis. Therefore, we did not apply the iterative inference for
the SC-EEND model. The results of SC-EEND with step-by-
step improvement by using VAD post-processing are shown
in Table Vb.

D. Hybrid subsystem (System (5))

We also used EEND as post-processing (EENDasP) [6] to
refine diarization results obtained from the TDNN-based x-
vectors described in Section III-B1. In EENDasP, two speakers
from the results are iteratively selected and their results are
updated using the EEND model. In the original paper, the
EEND-EDA model was trained to output only two-speaker
results, but we used the first two speakers’ output from the
model trained in Section III-C1 for our system. By applying
EENDasP for TDNN-based x-vectors with VBx clustering but
without heuristic overlap assignment, DER was improved from
16.33% to 12.63%.

E. System fusion

To combine multiple diarization results, we used DOVER-
Lap [7] with a modification. The original DOVER-Lap assigns
uniformly-divided regions for each speaker if the multiple
speakers are weighted equally in the label voting stage.
However, we found that it leads to an increase in missed
speech. This is obvious by considering the case when the
same three hypotheses with overlaps are input to DOVER-
Lap. The speakers included in the hypotheses are always tied
in this case; thus, overlapped regions in the hypotheses are
divided to be assigned for each speaker, which results in the
combined hypothesis with no overlap. Thus, we assigned all
the tied speakers to the regions without any division.

When we combine diarization results from various systems,
we sometimes know that some systems are highly accurate
and others are not so. Therefore, we introduced hypothesis-
wise manual weighting to DOVER-Lap. The original DOVER
[26] and DOVER-Lap, the input hypotheses are ranked by
their average DER to all the other hypotheses. In other words,
the hypotheses H1, . . . ,Hk, . . . ,HK are ranked by following
score sk:

sk =
1

K − 1

∑
k′∈{1,...,K},k 6=k′

DER (Hk, Hk′) , (1)

where DER(Hk, Hk′) is the function to calculate diarization
error rate from the reference Hk and estimation Hk′ . In our



TABLE VI: Comparison between the original and modified
DOVER-Lap on the DIHARD III development set. MI: missed
speech, FA: false alarm, CF: speaker confusion.

Method MI FA CF DER

(1) TDNN-based x-vector + VBx + OvlAssign 5.36 1.93 6.58 13.87
(2) Res2Net-based x-vector + VBx + OvlAssign 5.47 1.89 6.68 14.04
(3) EEND-EDA 6.54 1.36 5.02 12.92
(4) SC-EEND 4.85 1.96 6.32 13.13
(5) TDNN-based x-vector + VBx + EENDasP 6.53 1.32 4.79 12.63

DOVER-Lap 6.96 0.77 4.33 12.07
Modified DOVER-Lap (System (6)) 5.53 0.93 4.27 10.73
Modified DOVER-Lap + manual weighting 5.54 0.93 4.21 10.68

system, we used wksk instead of sk, where wk ∈ R+ is a
weighing value, to control the importance of each hypothesis.

Table VI shows DERs and breakdown on the DIHARD III
development set. Note that the manual weighting was only
used to combine five hypotheses in System (9) and not used
for combine the Res2Net-results in System (1), EEND-EDA
iterative inference in Systems (3) and (7), and the five-system
fusion for System (6) due to time constraints. The weights to
combine Systems (1)(2)(4)(7)(9) were set to w(1) = 2, w(2) =
2, w(4) = 1, w(7) = 4, w(9) = 3, which were determined by
using the development set.

F. Self-supervised adaptation

After the first system fusion, we applied self-supervised
adaptation (SSA) for the EEND-EDA model. The estimated
results were used as the pseudo labels for the DIHARD III
evaluation set, We redid the adaptation step in Section III-C1
on the concatenation of the DIHARD III development set
with the ground truth labels and the evaluation set with the
pseudo labels. With the new model, we placed the results of
the EEND-EDA (System (3)), EENDasP (System (5)), and
DOVER-Lap (System (6)). Note that we used different pseudo
labels for Track 1 and Track 2 because the oracle VAD was
only available on Track 1.

IV. RESULTS

Table VII shows the results on the DIHARD III development
set and evaluation set. The results on the evaluation set are
from the official scoring server. Every subsystem significantly
outperformed the baseline system [1]. System (5) performed
best as a single subsystem without self-supervised adaptation,
but the other four subsystems showed the comparable per-
formance. Our best system achieved 11.58% and 14.09%
of DERs on the full and core evaluation set in Track 1,
respectively. It also achieved 16.94% and 20.01% of DERs
in Track 2.

V. HARDWARE REQUIREMENTS

We run our experiments using two different infrastructures.
One is equipped with Intel® Xeon® CPU Gold 6123 @
2.60GHz using up to 56 threads with 750 GB of RAM,
and up to eight NVIDIA® V100® GPUs with 32 GB of
VRAM each and 15.7 single-precision TFLOPS. Using this
infrastructure, we trained and processed the VAD models, the

Res2Net models, the PLDA model, the EEND-based systems,
and DOVER-Lap.

The other is the JHU’s CLSP Cluster, which is equipped
with Intel® Xeon® CPU E5-2680 v2 @ 2.80GHz using up
to 54 threads and 60GB of RAM, and up to four NVIDIA®

GeForce GTX 1080 Ti® with 11 GB of VRAM each and
10.6 single-precision TFLOPS. The TDNN-based extractor,
the VBx clustering, and the overlap detection and assignment
model were trained on this cluster.

The processing time for WPE dereverberation is 2.54 s for
1 minute of audio.

Our framework’s components were trained on PyTorch [27],
except for the TDNN-based extractor that was trained on Kaldi
[13].

The SincNet VAD was trained on a single NVIDIA® V100®

GPU and required about 22 hours for training. The processing
of the labels required 0.132 s for 1 minute of audio.

The TDNN VAD was trained with 3 to 8 NVIDIA® GeForce
GTX 1080 Ti® (We gradually increased the number of GPU
jobs during training) for 1 hour.

The TDNN x-vectors, VBx, and the overlap detector ex-
traction were conducted on the CLSP Cluster. The overlap
detector required 40 CPUs with a decoding time of 30 mins
for all datasets including development and evaluation sets.
The TDNN x-vector was trained on 4-8 GPUs and required
approximately 48 hours. The PLDAs, trained using CPUs,
required around 30 mins to train the VoxCeleb datasets, and 10
mins to train the DIHARD III dataset. The scoring for every
file took around 0.25 s for each audio. All the procedures were
parallelized using 30 to 40 jobs to reduce the computational
time.

The Res2Net-based x-vector extractors were trained using
four NVIDIA® V100® GPUs and required 54 hours approx-
imately for training. The processing time for the x-vector
extraction using this model is 1.52 s for 1 minute of audio.

The EEND-based models are trained using a single
NVIDIA® V100® GPU. For EEND-EDA, it took 30 hours
for training on Sim2spk, 325 hours for finetuning on the
concatenation of Sim1spk to Sim5spk, and 1.5 hours for
adaptation on the DIHARD III development set. The process-
ing time of iterative inference and VAD post-processing was
about 30 minutes. It takes about 3 hours for self-supervised
adaptation, which was almost doubled from the adaptation
on the development set because we additionally used the
evaluation set with pseudo labels. For SC-EEND, it took
200 hours for training on simulated mixtures, 2 hours for
adaptation, and 5 minutes for inference.

The processing time of EENDasP given the results of
TDNN-based x-vectors + VBx was about 5 minutes for the
entire development set.

DOVER-Lap of five systems was based on the official repos-
itory3, which took about 3 minutes to process the development
set.

3https://github.com/desh2608/dover-lap

https://github.com/desh2608/dover-lap


TABLE VII: DERs / JERs (%) on Track 1 & 2.

Track 1 (w/ oracle VAD) Track 2 (w/o oracle VAD)

Dev Eval Dev Eval

System full core full core full core full core

Baseline [1] 19.41 / 41.66 20.25 / 46.02 19.25 / 42.45 20.65 / 47.74 21.71 / 43.66 22.28 / 47.75 25.36 / 46.95 27.34 / 51.91

(1) TDNN-based x-vector + VBx + OvlAssign 13.87 / 32.73 14.88 / 36.72 15.65 / 33.71 18.20 / 38.42 17.61 / 36.03 18.64 / 39.92 21.47 / 37.83 24.58 / 42.02
(2) Res2Net-based x-vector + VBx + OvlAssign 14.04 / 34.29 15.18 / 38.80 15.81 / 35.53 18.47 / 40.47 17.26 / 37.17 18.39 / 41.56 21.37 / 39.59 24.64 / 44.49
(3) EEND-EDA 12.92 / 33.85 13.95 / 35.37 13.95 / 35.37 17.28 / 41.97 15.90 / 35.94 18.50 / 41.71 19.04 / 38.89 22.84 / 45.27
(4) SC-EEND 13.13 / 35.35 16.05 / 41.80 15.16 / 38.62 19.14 / 46.04 16.16 / 37.52 19.00 / 43.74 20.30 / 42.19 24.75 / 49.36
(5) TDNN-based x-vector + VBx + EENDasP 12.63 / 31.52 14.61 / 36.28 13.30 / 33.02 15.92 / 38.29 15.94 / 34.11 18.09 / 38.97 18.13 / 35.82 21.31 / 40.78
(6) DOVER-Lap of (1)(2)(3)(4)(5) 10.73 / 31.39 12.56 / 36.88 11.83 / 32.85 14.41 / 38.81 14.13 / 34.32 16.06 / 39.75 17.21 / 37.64 20.34 / 43.40

(7) EEND-EDA (SSA) 12.95 / 33.98 15.69 / 40.03 12.74 / 34.08 15.86 / 40.44 15.03 / 33.64 17.52 / 39.15 17.81 / 38.32 21.31 / 44.32
(8) TDNN-based x-vector + VBx + EENDasP (SSA) 12.54 / 31.32 14.55 / 36.11 12.74 / 32.20 15.34 / 37.50 15.45 / 33.61 17.77 / 38.67 17.60 / 35.16 20.84 / 40.18
(9) DOVER-Lap of (1)(2)(4)(7)(8) 10.65 / 30.82 12.47 / 36.21 11.58 / 32.37 14.09 / 38.25 13.85 / 33.41 15.81 / 38.77 16.94 / 36.31 20.01 / 41.78

The trained models and the generated outputs had a total
disk usage of 1.2 TB.
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“BUT system for the Second DIHARD Speech Diarization Challenge,”
in ICASSP, 2020, pp. 6529–6533.

[4] X. Xiao, N. Kanda, Z. Chen, T. Zhou, T. Yoshioka, S. Chen, Y. Zhao,
G. Liu, Y. Wu, J. Wu, S. Liu, J. Li, and Y. Gong, “Microsoft speaker
diarization system for the VoxCeleb Speaker Recognition Challenge
2020,” arXiv:2010.11458, 2020.

[5] Y. Fujita, N. Kanda, S. Horiguchi, Y. Xue, K. Nagamatsu, and S. Watan-
abe, “End-to-end neural speaker diarization with self-attention,” in
ASRU, 2019, pp. 296–303.

[6] S. Horiguchi, P. Garcı́a, Y. Fujita, S. Watanabe, and K. Nagamatsu,
“End-to-end speaker diarization as post-processing,” in ICASSP, 2021
(to appear).

[7] D. Raj, L. P. Garcia-Perera, Z. Huang, S. Watanabe, D. Povey, A. Stol-
cke, and S. Khudanpur, “DOVER-Lap: A method for combining overlap-
aware diarization outputs,” in SLT, 2021, pp. 881–888.

[8] A. Nagrani, J. S. Chung, W. Xie, and A. Zisserman, “VoxCeleb: Large-
scale speaker verification in the wild,” Computer Speech & Language,
vol. 60, p. 101027, 2020.

[9] D. Snyder, G. Chen, and D. Povey, “MUSAN: A music, speech, and
noise corpus,” arXiv:1510.08484, 2015.

[10] M. Lavechin, M.-P. Gill, R. Bousbib, H. Bredin, and L. P. Garcia-
Perera, “End-to-end domain-adversarial voice activity detection,” in
INTERSPEECH, 2020, pp. 3685–3689.

[11] H. Bredin, R. Yin, J. M. Coria, G. Gelly, P. Korshunov, and et al.,
“pyannote.audio: neural building blocks for speaker diarization,” in
ICASSP 2020, 2020, pp. 7124–7128.

[12] M. Ravanelli and Y. Bengio, “Speaker recognition from raw waveform
with SincNet,” in SLT, 2018, pp. 1021–1028.

[13] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al., “The Kaldi
speech recognition toolkit,” in ASRU, 2011.

[14] T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur, “A
study on data augmentation of reverberant speech for robust speech
recognition,” in ICASSP, 2017, pp. 5220–5224.

[15] M. Diez, L. Burget, and P. Matejka, “Speaker diarization based on
Bayesian HMM with eigenvoice priors,” in Odyssey, 2018, pp. 102–
109.

[16] D. Snyder, D. Garcia-Romero, G. Sell, A. McCree, D. Povey, and
S. Khudanpur, “Speaker recognition for multi-speaker conversations
using x-vectors,” in ICASSP, 2019, pp. 5796–5800.

[17] T. Zhou, Y. Zhao, and J. Wu, “ResNeXt and Res2Net structures for
speaker verification,” in SLT, 2021, pp. 301–307.

[18] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: Additive angular
margin loss for deep face recognition,” in CVPR, 2019, pp. 4685–4694.

[19] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “SpecAugment: A simple data augmentation method
for automatic speech recognition,” in INTERSPEECH, 2019, pp. 2613–
2617.

[20] S. Horiguchi, Y. Fujita, S. Wananabe, Y. Xue, and K. Nagamatsu, “End-
to-end speaker diarization for an unknown number of speakers with
encoder-decoder based attractors,” in INTERSPEECH, 2020, pp. 269–
273.

[21] Y. Fujita, S. Watanabe, S. Horiguchi, Y. Xue, J. Shi, and K. Naga-
matsu, “Neural speaker diarization with speaker-wise chain rule,”
arXiv:2006.01796, 2020.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in NeurIPS,
2017, pp. 5998–6008.

[24] T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, and B.-H. Juang,
“Speech dereverberation based on variance-normalized delayed linear
prediction,” IEEE TASLP, vol. 18, no. 7, pp. 1717–1731, 2010.

[25] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer: Convolution-
augmented transformer for speech recognition,” in INTERSPEECH,
2020, pp. 5036–5040.

[26] A. Stolcke and T. Yoshioka, “DOVER: A method for combining
diarization outputs,” in ASRU, 2019, pp. 757–763.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-
performance deep learning library,” in NeurIPS, 2019, pp. 8024–8035.


	I Notable highlights
	II Data resources
	III Detailed description of algorithm
	III-A Voice Activity Detector
	III-B X-vector-based subsystems
	III-B1 TDNN (System (1))
	III-B2 Res2Net (System (2))
	III-B3 Overlap detection and assignment

	III-C EEND-based subsystems
	III-C1 EEND-EDA (System (3))
	III-C2 SC-EEND (System (4))

	III-D Hybrid subsystem (System (5))
	III-E System fusion
	III-F Self-supervised adaptation

	IV Results
	V Hardware requirements
	References

