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ABSTRACT

The efficacy of external language model (LM) integration with exist-

ing end-to-end (E2E) automatic speech recognition (ASR) systems

can be improved significantly using the internal language model

estimation (ILME) method [1]. In this method, the internal LM

score is subtracted from the score obtained by interpolating the E2E

score with the external LM score, during inference. To improve the

ILME-based inference, we propose an internal LM training (ILMT)

method to minimize an additional internal LM loss by updating only

the E2E model components that affect the internal LM estimation.

ILMT encourages the E2E model to form a standalone LM inside its

existing components, without sacrificing ASR accuracy. After ILMT,

the more modular E2E model with matched training and inference

criteria enables a more thorough elimination of the source-domain

internal LM, and therefore leads to a more effective integration of

the target-domain external LM. Experimented with 30K-hour trained

recurrent neural network transducer and attention-based encoder-

decoder models, ILMT with ILME-based inference achieves up to

31.5% and 11.4% relative word error rate reductions from standard

E2E training with Shallow Fusion on out-of-domain LibriSpeech and

in-domain Microsoft production test sets, respectively.

Index Terms— Speech recognition, language model, recurrent

neural network transducer, attention-based encoder-decoder

1. INTRODUCTION

End-to-end (E2E) automatic speech recognition (ASR) has achieved

state-of-the-art performance by directly mapping speech to word se-

quences through a single neural network. The most popular E2E mod-

els include connectionist temporal classification [2, 3, 4, 5], recurrent

neural network transducer (RNN-T) [6, 7, 8, 9], and attention-based

encoder-decoder (AED) models [10, 11, 12, 13, 14]. However, E2E

models tend to overfit the audio-transcript pairs in source-domain

training data, and suffer from performance degradation when eval-

uated in a mismatched target domain. Numerous ideas have been ex-

plored to adapt ASR models, such as regularization method [15, 16,

17, 18, 19], teacher-student learning [20, 21, 22, 23], transformation

method [24, 25, 26], and adversarial learning [27, 28, 29, 30]. Nev-

ertheless, all these methods require audio data for adaptation when

applied to E2E models [31, 32, 33]. One promising solution without

using audio is to train a language model (LM) with a large amount

of text readily available in the target domain and fuse it with the E2E

model during inference. However, an E2E model does not have a

modular LM component as in a traditional hybrid system [34], mak-

ing external LM integration a challenging task.

Among many approaches proposed for LM integration, Shallow

Fusion [3, 35, 36, 37] is a simple yet effective method where the log

probabilities of the E2E model and the LM are linearly interpolated

during the inference. Towards a better integration, the Density Ratio

method [38, 39] subtracts the source-domain LM score from the inter-

polated score of Shallow Fusion, and shows improved performance.

Further, as a new type of E2E model, the hybrid autoregressive trans-

ducer (HAT) was proposed in [40] to preserve the modularity of a

traditional hybrid system. HAT allows us to estimate the internal LM

scores and subtract them from the Shallow Fusion scores for external

LM integration.

More recently, we proposed an internal LM estimation (ILME)

method in [1] to facilitate the integration of an external LM for any

pre-existing E2E models, including RNN-T and AED models, with-

out any additional training. With ILME-based inference, the internal

LM score of an E2E model is estimated by eliminating the contribu-

tion of the acoustic encoder, and is then subtracted from the log-linear

interpolation between E2E and external LM scores. However, ILME-

based inference in [1] is performed with an ASR model trained to

optimize a standard E2E loss by updating all model parameters. The

accuracy of the internal LM estimation is not guaranteed when the

E2E model is not structured in a way that strictly satisfies the condi-

tions of Proposition 1 in [40, Appendix A].

To compensate for the mismatch between the E2E training and

the ILME-based inference, we propose an internal LM training

(ILMT) of the E2E model to minimize an additional internal LM loss

by updating only the model components engaged in the prediction

of internal LM scores during inference. ILMT facilitates the E2E

model to form a standalone LM inside its existing components while

maintaining ASR accuracy. ILMT improves the effectiveness of the

ILME-based LM integration with a more modular E2E model and

a well-aligned training and inference criterion. Evaluated with 30

thousand (K)-hour trained RNN-T and AED models, ILMT with

ILME-based inference achieves up to 31.5% and 11.4% relative

word error rate (WER) reductions from Shallow Fusion on cross-

and intra-domain evaluations, respectively, far outperforming the

reductions with standard E2E training.

2. RELATED E2E METHODS

An E2E model predicts the conditional distribution P (Y|X; θE2E) of

token sequences Y = {y1, . . . , yU} given a speech-feature sequence

X = {x1, . . . ,xT } as the input, where yu ∈ V and xt is a fea-

ture vector at time t. V is the set of all possible output tokens, i.e.,

word pieces. We insert a start-of-sentence token y0 = <sos> at the

beginning of Y.

2.1. Recurrent Neural Network Transducer (RNN-T)

The RNN-T model [6] comprises an encoder, a prediction network

and a joint network. The encoder maps the input speech features X

to a sequence of hidden states Henc = {henc
1 , . . . ,henc

T }. The predic-

tion network is an RNN that takes the embedding vector eu−1 of the
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previous non-blank token yu−1 and generates the hidden state hpred
u ,

i.e., hpred
u = PredictionRNN(hpred

u−1, eu−1).
The joint network is a feed-forward network that combines the

outputs of the encoder and prediction network to predict the condi-

tional distribution over the next possible token ỹi ∈ V ∪ <b>, i.e.,

zti,ui
= Wjφ(Weh

enc
ti

+Wph
pred
ui

+ be + bp) + bj , (1)

[P (ỹi = v|X1:ti ,Y0:ui−1
; θRNNT)

]

v∈V∪<b>
= softmax(zti,ui

), (2)

where <b> denotes a blank symbol, φ is a non-linear function, e.g.,

tanh or ReLU. Wj , We, Wp are weight matrices, and be, bp, bj are

biases. zti,ui
is a |V|+ 1 dimensional logit vector. ỹi forms a blank-

augmented token sequences Ỹ = {ỹ1, . . . , ỹT+U} aligned with the

token and feature sequences Y and X as (ỹi, yui
, xti)

U+T

i=1 , i.e., the

index i in Ỹ is mapped to the index ui in Y, and the index ti in X.

The RNN-T loss is computed by marginalizing over all possi-

ble blank-augmented token sequences aligned with each reference Y,

i.e., A(X,Y), on the training corpus.

LRNN-T(θRNN-T)

= −
∑

(X,Y)∈D

log
∑

Ỹ∈A(X,Y)

T+U
∏

i=1

P (ỹi|X1:ti ,Y0:ui−1
; θRNN-T). (3)

2.2. Attention-Based Encoder-Decoder (AED)

The AED model [10] consists of an encoder, a decoder and an atten-

tion network. The encoder maps a sequence of input speech frames X

into a sequence of hidden states Henc. The attention network gener-

ates an attention weight for henc
t at each decoder step u, determining

which encoder states should be attended to predict the output label

yu, i.e., au = AttentionNet(au−1,h
enc
t ,hdec

u ), where au is a vector

of attention weights of dimension T , and hdec
u is the decoder hidden

state. The context vector cu is computed as a linear combination of

Henc weighted by the attention, i.e., cu =
∑T

t=1 au,th
enc
t .

At each step u, the decoder RNN takes the sum of the previous

token embedding eu−1 and the context vector cu−1 as the input to

predict the conditional distribution over V ∪ <eos>, i.e.,

h
dec
u = DecoderRNN(hdec

u−1, eu−1 + cu−1), (4)

zu = Wdh
dec
u + bd, (5)

[P (yu = v|X,Y0:u−1; θAED)]v∈V∪<eos>
= softmax(zu), (6)

where <eos> is the end-to-sentence token, Wd and bd are weight

matrix and bias, respectively.

The AED loss is obtained as a summation of token sequence pos-

teriors over the training corpus D as follows

LAED(θAED) =
∑

(X,Y)∈D

U+1
∑

u=1

logP (yu|X,Y0:u−1; θAED). (7)

3. INTERNAL LM ESTIMATION (ILME)

From audio-transcript training pairs, an E2E model implicitly learns

an internal language model (LM) that characterizes the distribu-

tion of source-domain training text. The exact computation of

internal LM is intractable, but it can be approximated by Propo-

sition 1 in [40, Appendix A] which suggests that the E2E internal

LM P (yu|Y0:u−1; θ
S
E2E) approximately equals to E2E model out-

put softmax[J(gu)] after zeroing out the acoustic embedding ft if

P (yu|X,Y0:u−1; θ
S
E2E)) = softmax[J(ft + gu)] and J(ft + gu) ≈

J(ft) + J(gu) are satisfied, where gu is a language embedding.

As shown in [1], the conditional probability of RNN-T internal

LM, P (yu|Y0:u−1; θRNNT), is estimated as a softmax normalization

of the non-blank token logits when the hidden states of the encoder

are eliminated from the input of the joint network.

z
ILM
u = Wjφ(Wph

pred
u + bp) + bj , (8)

P (yu|Y0:u−1; θRNNT) = softmax(zILM, NB
u ), (9)

where zILM
u is a (|V|+ 1)-dimensional vector with a designated logit

for the blank token <b>, zILM, NB
u is a logit vector of dimension |V|

created by taking out the blank logit from zILM
u . Without the encoder

input, the RNN-T is completely driven by the prediction and joint

networks with the token sequence Y as the only input.

Similarly, [1] has also shown that the conditional probability of

the AED internal LM is estimated by the decoder output after zeroing

out the context vector, i.e,

P (yu|Y0:u−1; θAED)

= softmax
[

Wd · DecoderRNN(hdec
u−1, eu−1) + bd

]

. (10)

Without the context vector, AED is entirely driven by the decoder

with the token sequence Y as the only input, acting exactly the same

as an RNN-LM.

During ILME-based inference [1], we subtract the log of the

internal LM probability P (Y; θE2E) from the log-linear combination

between the conditional probability of E2E model and the exter-

nal LM probability P (Y; θLM), and search for the optimal token

sequence Ŷ as follows via a left-to-right beam search.

Ŷ = argmax
Y

[logP (Y|X; θE2E) + λE logP (Y; θLM)

−λI logP (Y; θE2E)] , (11)

where λE and λI are the weights for external and internal LMs, re-

spectively.

4. INTERNAL LM TRAINING OF E2E MODELS

In standard E2E training, an internal LM is implicitly learned to min-

imize the E2E loss by updating all parameters of the E2E model.

However, during ILME-based inference, only a part of the E2E model

contributes to the prediction of the internal LM scores. The estima-

tion of the internal LM scores is not accurate when the conditions of

Proposition 1 in [40, Appendix A] is not strictly satisfied by the E2E

model.

In this work, we propose an internal LM training of the E2E

model to mitigate the mismatch between the E2E training and the

ILME-based inference. Through the standard E2E training, the de-

coder of an AED or the prediction and joint networks of an RNN-T

acts as an acoustically-conditioned LM that takes both the token and

acoustic embeddings as the input to predict the conditional probabil-

ity of the next token. From Eqs. (9) and (10), the internal LM scores

are estimated entirely by the acoustically-conditioned LM of an E2E

model during ILME-based inference. Therefore, the goal of ILMT

is to encourage the acoustically-conditioned LM of an E2E model to

also behave like a standalone internal LM, without sacrificing ASR

accuracy. To achieve that, we jointly minimize an internal LM loss

together with the standard E2E loss during ILMT.

The internal LM loss of an RNN-T model is obtained by summing

up the negative log probabilities of the internal LM over the training

corpus D as follows

LILM(θpred, θjoint) = −
∑

Y∈D

U
∑

u=1

logP (yu|Y0:u−1; θpred, θjoint). (12)



Note that, from Eqs. (8) and (9), the RNN-T internal LM loss is

conditioned only on the parameters of the prediction and joint net-

works, θpred and θjoint. For RNN-T, the ILMT loss is constructed as a

weighted sum of the RNN-T loss in Eq. (3) and the ILM loss below

LILMT(θRNN-T) = LRNN-T(θRNN-T) + αLILM(θpred, θjoint), (13)

where α is the weight of the internal LM loss. By minimizing the

RNN-T ILMT loss, we maximize the internal LM probability of the

E2E training transcripts by updating only the prediction and joint net-

works while maximizing the conditional probability of the training

transcripts given input speech by updating the entire RNN-T.

The internal LM loss of AED is formulated as a summation of

negative log probabilities of the internal LM over training corpus D

LILM(θdec) = −
∑

Y∈D

U+1
∑

u=1

logP (yu|Y0:u−1; θdec). (14)

Note that, from Eq. (10), the AED internal LM loss is conditioned

only on the parameters of the decoder θdec. For AED, the ILMT loss

is computed as a weighted sum of the AED loss and the ILM loss

below

LILMT(θAED)=LAED(θAED)+αLILM(θdec) (15)

By minimizing the AED ILMT loss, we maximize the internal LM

probability of the E2E training transcripts by updating only the AED

decoder while maximizing the conditional probability of the training

transcripts given input speech by updating the entire AED model.

The procedure of ILMT with the ILME-based inference for the

LM integration with an E2E model is the following

1. Train an E2E model with source-domain audio-transcript pairs

to minimize the ILMT loss in Eq. (13) for RNN-T or in Eq.

(15) for AED.

2. Train an external LM with target-domain text-only data.

3. Integrate the ILMT E2E model in Step 1 with the external LM

in Step 2 by performing ILME-based inference in Section 3.

With ILMT, a standalone internal LM with a significantly lower

perplexity is learned only by the E2E components used to compute

the internal LM scores during the ILME-based inference. With in-

creased modularity, the E2E model is more adaptable to the target do-

main with its increased flexibility to eradicate the effect of the source-

domain internal LM through the ILME-based inference.

5. EXPERIMENT

In this work, we perform ILMT of RNN-T and AED models and in-

tegrate them with external long short-term memory (LSTM) [41, 42,

43] LMs using different methods. We conduct both cross-domain

and intra-domain evaluations to investigate the effectiveness of ILMT.

Same as [1], we perform beam search inference with a beam size of

25 for all evaluations, and use the 3999 word-piece units generated by

byte-pair encoding [44] as V for both E2E models and LSTM-LMs.

5.1. Internal LM Training

We perform ILMT of the E2E models with the same 30K hours of

anonymized and transcribed data as in [1] collected from Microsoft

services, including voice search, short message dictation, command

and control, and conversations recorded in various conditions.

The RNN-T model is initialized with the parameters of the

RNN-T in [1] which was well-trained until full convergence with the

30K-hour data. The encoder and prediction networks are both uni-

directional LSTMs with 6 and 2 hidden layers, respectively, and 1024

hidden units in each layer. The joint network has 4000-dimensional

output units. The RNN-T has 76M parameters. During ILMT, the

weight of the internal LM loss is set to 0.4. The internal LM perplex-

ities of ILMT RNN-T and the standard RNN-T in [1] are 52.0 and

99.4, respectively, on the validation set of 30K-hour data.

The AED model [10, 45, 46] is randomly initialized and shares

the same architecture as the one in [1]. The encoder is a bi-directional

LSTM with 6 hidden layers and 780 hidden units in each layer. The

decoder is a uni-directional LSTM with 2 hidden layers, each with

1280 hidden units. The decoder has 4000-dimensional output units.

The AED model has 97M parameters. During ILMT, the weight of

the internal LM loss is set to 1.0. The internal LM perplexities of

ILMT AED and the standard AED in [1] are 46.1 and 796.7, respec-

tively, on the validation set of the 30K-hour training data.

5.2. Cross-Domain Evaluation

We evaluate a 30K-hour E2E model on the LibriSpeech clean test set

by integrating an LSTM-LM trained with LibriSpeech text. Collected

from read English based on audio book, the LibriSpeech corpus [47]

is outside the domains covered by the 30K-hour training speech. The

test-clean and dev-clean sets consist of 2620 and 2703 utterances,

respectively. We tune the LM weights on dev-clean. We use the same

external LSTM-LM as in [1] trained with the transcript of 960K-hour

training speech and the additional 813M-word text from LibriSpeech

corpus. With 58M parameters, the LSTM-LM has 2 hidden layers

with 2048 hidden units for each layer. For Density Ratio, we use the

same source-domain LSTM-LM with 2 hidden layers, 2048 hidden

units, and 57M parameters as in [1] trained using the transcript of

30K-hour speech.

We list the results of RNN-T in Table 1 with an excerpt of stan-

dard E2E training results from [1]. With ILMT, all three LM inte-

gration methods show 27.9%-40.9% relative WER reductions from

the baseline with standard RNN-T training and inference, signifi-

cantly larger than the corresponding reductions without ILMT in the

range of 16.1%-29.1%. ILMT with ILME inference performs the

best achieving 29.6% and 16.6% relative WER reduction from the

standard RNN-T with Shallow Fusion and ILME inference, respec-

tively. As in Table 2, the AED results are similar to RNN-T. ILMT

with ILME inference performs the best, achieving 57.6%, 31.5% and

25.1% relative WER reductions from the standard AED training with

AED inference, Shallow Fusion and ILME inference, respectively.

5.3. Intra-Domain Evaluation

5.3.1. Dictation Test Set

We evaluate a 30K-hour E2E model on an dictation test set by inte-

grating a strong external LSTM-LM trained with a large amount of

multi-domain text. As in [1], we use the same 2K in-house dictation

utterances collected from the keyboard input as the test set, and the

same 442 email dictation utterances as the validation set. The test

set has a similar style as the dictation data in 30K-hour corpus and

is thus considered as in-domain evaluation. We use the same multi-

domain LSTM-LM as in [1] trained with 2 billion (B) words of text

comprising short message dictation and conversational data such as

talks, interviews, and meeting transcripts.

Table 1 lists the RNN-T results with an excerpt of standard E2E

training results from [1]. With ILMT, all three LM integration meth-

ods show 6.9%-13.6% relative WER reductions from the baseline

with standard RNN-T training and inference, significantly larger than



Train

Loss

Evaluation

Method

Model

Params

LibriSpeech Dictation Conversation

Dev

WER

Test

WER

Test

WERR

Dev

WER

Test

WER

Test

WERR

Dev

WER

Test

WER

Test

WERR

LRNN-T

No LM 76M 9.27 8.97 - 23.40 16.16 - 14.92 14.26 -

Shallow Fusion 134M 7.44 7.53 16.1 22.19 15.77 2.4 14.88 14.08 1.3

Density Ratio 191M 6.80 6.74 24.9 21.54 15.64 3.2 14.76 14.20 0.4

ILME 134M 6.41 6.36 29.1 21.04 14.70 9.0 14.61 14.03 1.6

LILMT

No LM 76M 8.58 8.37 6.7 22.61 15.73 2.7 14.00 13.59 4.7

Shallow Fusion 134M 6.60 6.47 27.9 21.31 15.04 6.9 13.83 13.29 6.8

Density Ratio 191M 5.86 5.61 37.5 20.61 14.76 8.7 13.71 13.29 6.8

ILME 134M 5.57 5.30 40.9 19.94 13.97 13.6 13.32 12.96 9.1

Table 1. WERs (%) of 30k-hour RNN-T models trained with RNN-T or ILMT loss, and evaluated with different LM integration methods on

out-of-domain LibriSpeech, in-domain dictation, and in-domain conversation dev/test sets. WERR is relative WER reduction.

Train

Loss

Evaluation

Method

Model

Params

LibriSpeech Dictation Conversation

Dev

WER

Test

WER

Test

WERR

Dev

WER

Test

WER

Test

WERR

Dev

WER

Test

WER

Test

WERR

LAED

No LM 97M 8.56 8.61 - 20.17 14.08 - 14.05 13.43 -

Shallow Fusion 155M 5.00 5.33 38.1 18.55 12.96 8.0 13.45 12.95 3.6

Density Ratio 212M 4.74 5.09 40.9 18.76 12.89 8.5 13.55 12.95 3.6

ILME 155M 4.42 4.87 43.4 18.26 12.36 12.2 13.33 12.67 5.7

LILMT

No LM 97M 7.31 7.47 13.2 21.06 13.72 2.6 12.60 12.19 9.2

Shallow Fusion 155M 6.54 6.61 23.2 19.09 12.32 12.5 12.42 11.90 11.4

Density Ratio 212M 4.28 4.85 43.7 18.30 12.23 13.1 12.23 11.85 11.8

ILME 155M 3.30 3.65 57.6 17.00 11.60 17.6 12.11 11.58 13.8

Table 2. WERs (%) of 30k-hour AED models trained with AED or ILMT loss, and evaluated with different LM integration methods on

out-of-domain LibriSpeech, in-domain dictation, and in-domain conversation dev/test sets. WERR is relative WER reduction.

the corresponding reductions without ILMT in the range of 2.4%-

9.0%. ILMT with ILME inference performs the best achieving 11.4%

and 5.0% relative WER reduction from the standard RNN-T training

with Shallow Fusion and ILME inference, respectively. As in Table

2, the AED results are similar to RNN-T. ILMT with ILME inference

performs the best, achieving 17.6%, 10.5% and 6.1% relative WER

reductions from the standard AED training with AED inference, Shal-

low Fusion and ILME inference, respectively.

5.3.2. Conversation Test Set

We evaluate a 30K-hour E2E model on an conversation test set by

integrating a strong multi-domain external LSTM-LM. From the

Microsoft telecommunication applications, we collect 2560 in-house

conversational utterances as the test set, and another 1280 conversa-

tional utterances as the validation set. The test set has a similar style

as the conversational data in 30K-hour corpus and is thus consid-

ered as in-domain evaluation. For the external LM, we use the same

2B-word LSTM-LM as in Section 5.3.1.

As shown in Table 1, with ILMT RNN-T, all three LM integration

methods show 6.8%-9.1% relative WER reductions from the baseline

with standard RNN-T training and inference, significantly larger than

the corresponding reductions without ILMT in the range of 0.4%-

1.6%. ILMT with ILME inference performs the best achieving 8.0%

and 7.6% relative WER reduction from the standard RNN-T training

with Shallow Fusion and ILME inference, respectively. As shown in

Table 2, the AED results are similar to RNN-T. ILMT with ILME in-

ference performs the best, achieving 13.8%, 10.6% and 8.6% relative

WER reductions from the standard AED training with AED infer-

ence, Shallow Fusion and ILME inference, respectively.

5.4. Result Analysis

From the results, we have the following observations for both RNN-

T and AED models, and for both cross- and intra-domain evalua-

tions. All LM integration methods consistently achieve remarkably

lower WERs with ILMT than with standard E2E training. Among

all methods, ILMT with ILME inference consistently performs the

best, with 29.6%-31.5% and 8.0%-11.4% relative WER reductions

from standard E2E training with Shallow Fusion for cross-domain

and intra-domain evaluations, respectively. ILME inference consis-

tently outperforms Density Ratio in terms of lower WER with ILMT

or standard E2E training despite having 26.8%-29.8% fewer model

parameters. With ILME inference, ILMT achieves 16.6%-25.1% and

5.0%-8.6% relative WER reductions from the standard E2E training

for cross-domain and intra-domain evaluations, respectively. All of

these manifest the advantage of ILMT over standard E2E training for

ILME inference and other LM integration methods.

Note that, with or without ILMT, ILME inference is effective

even for intra-domain evaluation because it replaces the weak E2E

internal LM with a powerful external LM trained with orders of mag-

nitude more multi-domain text than the E2E training transcript. All

three LM fusion methods perform better for AED than RNN-T due to

larger relative WER reductions from a stronger baseline. The internal

LM perplexity of an E2E model is remarkably reduced by ILMT.

6. CONCLUSION

We propose an internal LM training of the E2E model which min-

imizes an internal LM loss in addition to the standard E2E loss to

improve the effectiveness of ILME external LM integration. With

ILMT, ILME inference achieves 29.6%-31.5% and 8.0%-11.4% rel-

ative WER reductions from the standard E2E training with Shallow

Fusion for cross-domain and intra-domain evaluations, respectively.

With ILME inference, ILMT outperforms the standard E2E training

by 16.6%-25.1% and 5.0%-8.6% relatively in terms of lower WER

for cross-domain and intra-domain evaluations, respectively.
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