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ABSTRACT

Traditional low bit-rate speech coding approach only han-

dles narrowband speech at 8kHz, which limits further im-

provements in speech quality. Motivated by recent successful

exploration of deep learning methods for image and speech

compression, this paper presents a new approach through vec-

tor quantization (VQ) of mel-frequency cepstral coefficients

(MFCCs) and using a deep generative model called WaveG-

low to provide efficient and high-quality speech coding. The

coding feature is sorely an 80-dimension MFCCs vector for

16kHz wideband speech, then speech coding at the bit-rate

throughout 1000-2000 bit/s could be scalably implemented by

applying different VQ schemes for MFCCs vector. This new

deep generative network based codec works fast as the Wave-

Glow model abandons the sample-by-sample autoregressive

mechanism. We evaluated this new approach over the multi-

speaker TIMIT corpus, and experimental results demonstrate

that it provides better speech quality compared with the state-

of-the-art classic MELPe codec at lower bit-rate.

Index Terms— speech coding, mel-frequency cepstral

coefficients, vector quantization, WaveGlow

1. INTRODUCTION

Low bit-rate speech coding, which encodes speech signals at

the bit rate below 4800 bit/s, has widespread applications in

the field of both satellite and secure communications. Many

successful low bit-rate speech coding algorithms have been

proposed in the literatures, such as linear predictive coding

(LPC-10) [1], code-excited linear prediction (CELP) [2],

mixed excitation linear prediction (MELP) [3], etc. How-

ever, high-quality speech coding under low bit-rate condi-

tions still faces great challenge, especially for the wideband

speech and in the presence of background acoustic noises.

All of the classic speech vocoders mentioned above belong

to the source-filter speech coding framework, in which the

speech coding parameters include linear prediction coeffi-

cients (LPCs), pitch, energy, etc. Different types of speech

coding parameters are rarely quantized together, so it is very

difficult to further reduce the speech coding rate. Therefore,

many other speech coding methods have been studied towards

alternatives to the classic linear prediction coding model.

MFCC codec encodes speech signals through scalar quan-

tization (SQ) or vector quantization (VQ) of MFCCs, which

provides a new promising scheme for speech coding at low

bit-rate conditions [4][5]. However, there are still some lim-

itations need to be resolved for further improving the total

performance. The first is the quality of coded speech needs

further improvement, since there exists spectrum smearing

problem, especially in the high-frequency region, which is

caused by using the overlapped triangle window with mel-

frequency scale for MFCCs extraction. Another is the pro-

cessing efficiency also needs improvement since the tradi-

tional MFCC codec uses the Griffin-Lim algorithm (GLA) to

estimate the lost phase information via discrete Fourier trans-

form (DFT) and inverse discrete Fourier transform (IDFT) it-

eratively [6]. However, GLA suffers from slow convergence

problem when the random initialization of the phase spectro-

gram is not ideal. Moreover, current MFCC codec is rarely

able to handle 16kHz wideband speech signals [4].

In the last decade, deep learning methods have been used

for dramatically improving the performance of many speech

processing applications, such as speech enhancement (SE),

text-to-speech (TTS), automatic speech recognition (ASR),

etc. Most recently, deep neural networks have shown to

be promising in handling the traditional speech coding task

[7]. One of the most representative works is WaveNet based

codec [8][9], which uses WaveNet as a generative model to

synthesize speech waveforms from the bitstream generated

from traditional speech codecs, such as codec2, MELP, etc.

WaveNet is a kind of autoregressive neural networks-based

model which generates high-quality speech waveforms, how-

ever, WaveNet suffers from very slow inference speed, which

prevents its real-time speech coding applications. Besides,

other models such as simple RNN, LPCNet are also explored

for speech and audio coding applications [10]-[12]. The

authors in [13] presented Deep Vocoder, which compresses

narrowband speech with deep autoencoder and uses GLA to

recover speech signals from decoded speech spectrogram,

similar work in [14] presented DeepVoCoder which uses a

convolutional neural network (CNN)-based encoder model

to compress speech signals. However, the quality of coded
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speech and the efficiency of speech decoding need further

improvement for real-word communication applications.

Recent research on TTS using deep generative models

conditioned on mel-spectrogram motivates our study in com-

bining quantization of MFCCs with efficient and high-quality

speech generative models for speech coding task in this pa-

per. WaveGlow is a flow-based deep generative network,

which delivers speech quality almost as good as WaveNet,

however, the inference speed of WaveGlow is much faster

than which of WaveNet because it abandons the sample-

by-sample autoregressive mechanism [15]. Recent study

of comparison on neural vocoders for speech reconstruc-

tion from mel-spectrogram also confirmed the superiority of

WaveGlow for making tradeoff between speech quality and

computational complexity [16]. Therefore, we choose Wave-

Glow as the generative model to synthesize speech waveforms

from the quantized mel-spectrogram. The coding feature in

our vocoder is an 80-dimension MFCCs vector for 16kHz

wideband speech signal, then speech coding at the bit-rate

throughout 1000-2000 bit/s could be scalably implemented

with different quantization schemes of MFCCs vector.

2. ALGORITHM

2.1. Speech Coding with MFCCs and WaveGlow

Speech coding model is the basis for converting speech sig-

nals to bitstream. Like traditional speech vocoders, there

are mainly three steps for speech coding with quantization

of MFCCs and WaveGlow, which are extraction of speech

coding features, quantization of these features and speech

synthesis from quantized feature parameters, as is shown in

Fig.1.
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Fig. 1. Overview of the proposed vocoder.

Let s[n] denote the speech waveforms, then it is enframed

by a window w [n],

sm [n] = s [mR+ n]w [n] (1)

where L(0 ≤ n ≤ L− 1) denotes the window length, R de-

notes the frame shift, m(m = 1, 2, ...,M) denotes the frame

index. At this time, each speech frame is concisely denoted

as follows,

sm = [sm (0) , sm (1) , ..., sm (L− 1)]⊺ (2)

Then, the log mel-spectrogram of each speech frame can

be computed as,

ym = M log(|F {sm}|) (3)

where F {sm} is the N-point fast Fourier transform (FFT) of

sm, |·| denotes the modulus of a complex number. Due to the

symmetry, the latter N/2−1 elements of |F {sm}| will be dis-

carded. M ∈ R
K×(N/2+1) denotes the mel-filter weighting

matrix, where K is the number of mel-filter bands.

Furthermore, the MFCCs vector of each speech frame can

be computed as follows,

zm = DCT {ym} (4)

where DCT {·} denotes the discrete cosine transform.

At the transmitter, the quantizer Q(·) uses the SQ or VQ

technique to quantize MFCCs vector zm, and converts it to

bitstream, which is then modulated for transmitting.

At the receiver, the quantized MFCCs vector ẑm is recov-

ered by searching the codebook by the dequantizer Q−1(·).
Then, the reconstructed log mel-sepctrogram ŷm is computed

by inverse discrete cosine transform (IDCT) of ẑm, which is

then used for conditioning of WaveGlow in order to synthe-

size speech frame. At last, the speech waveforms ŝ[n] is re-

constructed by the overlap-add operation.

2.2. Quantization of MFCCs

The quantization step of feature parameters is crucial for re-

ducing the bit-rate of speech coding and maintaining high-

quality of coded speech. Conventional speech vocoders con-

tain different types of speech coding parameters, which are

rarely quantized together. However, the speech coding pa-

rameters in the proposed vocoder mentioned above are solely

MFCCs vector, so scalable speech coding schemes at differ-

ent bit-rate could be implemented conveniently using the SQ

or VQ technique. The first element of MFCCs vector rep-

resents energy, where its value and variance is significantly

greater than other elements, so it is independently quantized

using the SQ technique. As for other elements of MFCCs vec-

tor, they represent the vocal and excitation parameters, which

are quantized together using the VQ technique.

2.3. Conditional WaveGlow as a Decoder

WaveGlow is a flow-based deep neural generative model for

synthesizing high-quality speech signals conditioned on mel-

spectrogram. Previous study has shown that Mean Opinion

Score (MOS) of the synthesized speech via WaveGlow is able

to reach up to 3.9 on the LJ speech corpus [15], so trying to

use WaveGlow as a decoder for speech coding is very attrac-

tive. WaveGlow consists of a series of invertible flow layers

that transforms a simple zero mean spherical Gaussian distri-

bution to one which has the desired speech distribution [15].

WaveGlow network could be directly trained by minimizing



Table 1. Bit allocation scheme for MFCCs quantization.

fs L R Rate Bits/ Quantizaiton Scheme

(Hz) (sample) (sample) (bit/s) frame Energy(z0) Formant and Pitch (z2 ∼ z80)

16000 1024 256 1000 16 4-bit SQ 12-bit VQ

16000 1024 256 2000 32 6-bit SQ (13-13)-bit MSVQ

the negative log-likelihood of for training set. Once the Wave-

Glow network is trained, doing inference to generate speech

waveforms from quantized mel-spectrogram could be imple-

mented by sampling from a Gaussian distribution and putting

them through the WaveGlow network.

2.4. Bit Allocation Scheme for Speech Coding

Bit allocation is an important procedure for determining the

bit-rate of speech coding. As previously discussed, the first

element of MFCCs vector z0 and other elements of MFCCs

vector z2 ∼ z80 are quantized using different methods, re-

spectively. The proposed vocoder proceeds with the wide-

band speech signals (16kHz sampling rate), when the frame

length is set as 64 msec (1024 samples) and the frame shift

is set as 16 msec (256 samples), respectively, we can design

the bit allocation scheme as is shown in Tab.1. We can see

that speech coding at different bit-rates could be flexibly im-

plemented given the corresponding bit allocation schemes.

When the bit-rate is 1000 bit/s, there are totally 16 bits

for each speech frame, so only 4 bits are allocated for scalar

quantization of energy parameter z0 and the last 12 bits are

allocated for direct vector quantization of formant and pitch

parameters z2 ∼ z80. When the bit-rate is 2000 bit/s, there are

totally 32 bits for each speech frame, so 6 bits are allocated

for scalar quantization of energy parameter and another 26

bits are allocated for quantization other parameters.

In order to reduce the codebook searching complexity at

the bit-rate of 2000 bit/s, we use multistage vector quanti-

zation (MSVQ) method to encode z2 ∼ z80 efficiently. To

make a tradeoff between the quantizing distortion and code-

book searching burden, 2 cascaded codebooks are trained and

the codebook at each stage consists of 213 codewords, the

quantization result of z2 ∼ z80 is computed by comparison

on quantization distortion of different combination of the re-

served codewords at each stage.

3. EXPERIMENTS AND RESULTS

3.1. Dataset and Evaluation Metrics

We carry our experiments on the widely used TIMIT corpus

to evaluate the performance of the proposed vocoder. TIMIT

is a multi-speaker corpus, which contains 462 speakers in the

training dataset and 168 speakers in the test dataset. At the

training stage, the whole TIMIT training set with 4620 utter-

ances were used for extracting mel-spectrograms and training

the WaveGlow network model, the duration of the training

speech is ∼4 hours. At the test stage, we chosen 300 utter-

ances spoken by a total of 30 speakers from the test dataset

for speech coding, the duration of test speech is ∼16 minutes.

All the speech waveforms are sampled at 16kHz. The speech

signal was enframed to 1024 samples using a hamming win-

dow and the frame shift is 256 samples. The dimension of

MFCCs vector for each speech frame is 80, i.e., K = 80.

Two different objective metrics were used for evaluating

the quality of coded speech. The first is perceptual evalua-

tion of speech quality (PESQ) [17], which is adopted as the

ITU-T P.862 standard and widely used for evaluating speech

quality. Another is is the short-time objective intelligibil-

ity (STOI) [18], which is also a popular objective measure.

PESQ demonstrates the overall speech quality while the STOI

measure illustrates the speech intelligibility. For both the met-

rics, higher score indicates better performance. Also, we will

take some subjective listening experiments to further demon-

strate the performance of the proposed method.

3.2. Hyper-parameters Setting for WaveGlow Training

WaveGlow model was usually trained on single-speaker

corpus for speech synthesis in previous study. However,

speech coding for multi-speakers is much usual in real-word

communication applications. Therefore, to obtain a good

multi-speaker WaveGlow model on TIMIT corpus, the hyper-

parameters should be carefully configured. Considering both

the performance of WaveGlow network and the capacity of

our hardware platform (Intel Xeon CPU (2.2GHz), 128G

RAM and NVIDIA GeForce GTX 1080Ti ×2 GPUs), we

configured the hyper-parameters of WaveGlow as is shown in

Tab.2. The quantized and unquantized mel-spectrogram were

independently used as the input for WaveGlow training, the

ADAM algorithm was chosen as the optimizer with the learn-

ing rate as 1 × 10−4. After 1,110,000 epoches of training,

we obtained a WaveGlow network model which was used as

a decoder for low bit-rate speech coding.

3.3. Evaluation of speech quality

For simplicity, we denote the proposed speech coding algo-

rithm via quantization of MFCCs and WaveGlow as WaveG-

low codec, some other notations are as follows,

• OS: original speech signal

• UQ: speech synthesis from unquantized MFCCs

• UQT2000: WaveGlow codec at 2000 bit/s with unquantized



Fig. 2. Comparison on spectrograms of the TIMIT utterance “She had your dark suit and greasy wash water all year”.

Table 2. hyper-parameters setting for WaveGlow training

hyper-parameter value

number of flows 12

number of mel-channels 80

number of groups 8

number of layers for coupling module 8

number of mel-channels for coupling module 256

kernel size for coupling module 3

learning rate 1× 10−4

batch size 12

MFCCs as input for training WaveGlow model

• UQT1000: WaveGlow codec at 1000 bit/s with unquantized

MFCCs as input for training WaveGlow model

• QT2000: WaveGlow codec at 2000 bit/s with quantized

MFCCs as input for training WaveGlow model

• QT1000: WaveGlow codec at 1000 bit/s with quantized

MFCCs as input for training WaveGlow model
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Fig. 3. speech quality in terms of PESQ score.
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Fig. 4. speech quality in terms of STOI score.

Fig.2 shows the spectrograms of the reconstructed speech

via WaveGlow codec for a typical TIMIT utterance. We can

see that the structure of harmonic and frequency formant

is both well preserved, which demonstrates that the origi-

nal speech and the coded speech sounds closely. Fig.3 and

Fig.4 shows the speech quality in terms of PESQ and STOI

scores for the test set. It should be noted that WaveGlow

trained with quantized MFCCs performs better than WaveG-

low trained with unquantized MFCCs, because it overcomes

the dismatch problem during the WaveGlow training and in-

ference stage. We can also see that the output speech quality

for QT2000 and QT1000 is acceptable as the PESQ scores

of the output speech is about 2.75 and 2.52, respectively. We

listened these coded speech signals and found that the output

speech of WaveGlow codec preserves high intelligibility and

somewhat naturalness though few audible artifacts exist.

We also conducted subjective listening tests. 10 volun-

teers rated the coded speech through the standard five point

mean opinion score (MOS) [19]. Each volunteer was pre-

sented with 20 speech files encoded by WaveGlow codec and

MELPe codec. The results are illustrated in Fig.5, which

illustrates that WaveGlow codec provide substantially im-

proved speech quality than MELPe codec at similar bit-rate.

In detail, the MOS score for QT2000 and QT1000 is about

3.25 and 2.96, respectively.
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Fig. 5. speech quality in terms of MOS score.

4. CONCLUSIONS

This paper presented a new low bit-rate wideband speech cod-

ing approach though vector quantization of MFCCs. WaveG-

low was used as a decoder in order to provide efficient and



high-quality speech coding at 1000-2000 bit/s. Experimen-

tal results demonstrate that WaveGlow codec is promising for

low bit-rate source coding of speech signals with high speed

inference. In further, other efficient generative models con-

ditioned on mel-spectrogram, such as generative adversarial

networks (GANs) [20][21], are also worth being explored for

speech coding purpose. Moreover, the post-filtering tech-

nique is also worth studying to reduce the audible artifacts.
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