
Beam-Guided TasNet: An Iterative Speech Separation Framework with
Multi-Channel Output

Hangting Chen1,2, Yang Yi1,2, Dang Feng1,2 and Pengyuan Zhang1,2

1Key Laboratory of Speech Acoustics & Content Understanding, Institute of Acoustics, CAS, China
2University of Chinese Academy of Sciences, Beijing, China

{chenhangting,yangyi,dangfeng,zhangpengyuan}@hccl.ioa.ac.cn

Abstract

Time-domain audio separation network (TasNet) has achieved
remarkable performance in blind source separation (BSS). Clas-
sic multi-channel speech processing framework employs signal
estimation and beamforming. For example, Beam-TasNet links
multi-channel convolutional TasNet (MC-Conv-TasNet) with
minimum variance distortionless response (MVDR) beamform-
ing, which leverages the strong modeling ability of data-driven
network and boosts the performance of beamforming with an
accurate estimation of speech statistics. Such integration can be
viewed as a directed acyclic graph by accepting multi-channel
input and generating multi-source output. In this paper, we de-
sign a “multi-channel input, multi-channel multi-source output”
(MIMMO) speech separation system entitled “Beam-Guided
TasNet”, where MC-Conv-TasNet and MVDR can interact and
promote each other more compactly under a directed cyclic
flow. Specifically, the first stage uses Beam-TasNet to generate
estimated single-speaker signals, which favors the separation in
the second stage. The proposed framework facilitates iterative
signal refinement with the guide of beamforming and seeks to
reach the upper bound of the MVDR-based methods. Experi-
mental results on the spatialized WSJ0-2MIX demonstrate that
the Beam-Guided TasNet has achieved an SDR of 21.5 dB, ex-
ceeding the baseline Beam-TasNet by 4.1 dB under the same
model size and narrowing the gap with the oracle signal-based
MVDR to 2 dB.
Index Terms: Speech separation, multi-channel speech pro-
cessing, MVDR, time-domain network

1. Introduction
Speech separation has achieved remarkable advances since the
introduction of deep learning. When a microphone array cap-
tures a speech signal, spatial information can be leveraged
to separate sources from different directions. A conventional
framework consists of mask estimation, beamforming, and an
optional post-filtering for “multi-channel input, multi-source
output” [1, 2]. The minimum variance distortionless response
(MVDR) beamformer requires estimation of the spatial corre-
lation matrices (SCMs), typically computed based on the esti-
mated speech and noise masks. Since the considerable speech
separation performance achieved by the time-domain audio sep-
aration network (TasNet) [3], the recently proposed Beam-
TasNet [4] uses the estimated time-domain signals to compute
the SCMs, which has outperformed the MVDR based on the
oracle frequency-domain masks.

This work is partially supported by the National Natural Science
Foundation of China (Nos.62071461).

Pengyuan Zhang is the corresponding author.

In this paper, we adopt “multi-channel input, multi-channel
multi-source output” (MIMMO) for the first time to design
a multi-channel separation framework entitled “Beam-Guided
TasNet”, which shows a promising potential of learning data-
driven models guided by beamforming. Specifically, the frame-
work utilizes two sequential Beam-TasNets for 2-stage process-
ing. The first stage uses a multi-channel convolutional Tas-
Net (MC-Conv-TasNet) and the MVDR beamforming to per-
form blind source separation (BSS). In the second stage, an
MC-Conv-TasNet guided by MVDR-beamformed signals can
refine separated signals iteratively. Experiments on the spa-
tialized WSJ0-2MIX [5] exhibited significant performance im-
provement compared with the baseline Beam-TasNet.1 The
contributions are as follows:

1. The directed cyclic flow of the second stage promotes
the MC-Conv-TasNet and MVDR iteratively and seeks to reach
the upper bound of the MVDR-based methods, which obtained
an SDR of 19.1 dB.

2. The unfolding training further improves the performance
to 21.5 dB, which narrowed the gap between the estimated and
oracle signal-based MVDR to 2 dB.

3. A causal Beam-Guide TasNet is explored for online pro-
cessing, illustrating that the Beam-Guided TasNet is effective
even though the utterance-level information is unreachable. The
performance degradation caused by causality was alleviated,
with SDRs improved from 11.4 dB to 14.0 dB by replacing
Beam-TasNet with the Beam-Guided TasNet.

2. The proposed Beam-Guided TasNet
2.1. Beam-TasNet

Suppose that speech signals from S sources are captured by C
microphones,

yc =

S∑
s=1

xs,c. (1)

The Beam-TasNet integrates the time-domain network and the
beamforming to estimate signal image xs,c on microphone c
from source s with a given mixture yc. As plotted in Fig.1(b),
the baseline Beam-TasNet is mainly composed of an MC-Conv-
TasNet [6], a permutation solver, and an MVDR beamformer.
Given a multi-channel input {yc}c indicating a collection of
yc along channels (c = 1, ..., C), MC-Conv-TasNet generates
x̂s,c representing the estimated image of source s on channel c.
The MC-Conv-TasNet utilizes a parallel encoder (ParEnc) for
encoding the input multi-channel signal into a 2-dimensional
temporal-spectro representation Rc [6]:

Rc = ParEnc({yc}c, c), (2)

1The core codes are available at
https://github.com/hangtingchen/Beam-Guided-TasNet
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Figure 1: (a) Beam-Guided TasNet with a 2-stage framework for iterative refinement. (b) The signal processing routine in the Beam-
TasNet, the first and the second stage model. The dashed lines are the additional input for the second stage model.

a separator to estimate the temporal-spectro masks:

{M̂s,c}s = Seperator(Rc), (3)

and a decoder to recover the single-speaker waveform:

ẑs,c = Dec(M̂s,c �Rc), (4)

where� is Hadamard product, c indicates the reference channel
and can be determined by the order of the input. The permuta-
tion solver determines the source order by comparing the sim-
ilarity across channels with the output of the first channel.The
MVDR beamformer accepts the reordered estimation and cal-
culates the SCM for each source,

Φ̂
Targets
f = 1

T

∑T
t=1 Ẑs,t,f Ẑ

H
s,t,f (5)

Φ̂Interfers
f = 1

T

∑T
t=1(Yt,f − Ẑs,t,f )(Yt,f − Ẑs,t,f )H (6)

where Φ̂
Targets
f /Φ̂Interfers

f denotes the speech/interference
SCMs for source s, Y and Ẑ denotes the short-time Fourier
transform (STFT) spectra of {yc}c and {ẑs,c}c, ·H denotes Her-
mitian transpose. The signal enhanced by the MVDR beam-
forming is calculated by

x̂s,c = MVDR(Φ
Targets
f ,ΦInterfers

f , c)HYt,f , (7)

where reference channel c is indicated by a one-hot vector [7].
In summary, the Beam-TasNet uses MC-Conv-TasNet to es-

timate SCMs Φ̂ with the estimated multi-channel image signals
{ẑs,c}s,c (MC-Conv-TasNet(Φ̂|yc)) and uses MVDR beam-
forming to estimate x̂s,c (MVDR(x̂s,c|yc, Φ̂)), which can be
formulated as

{x̂s,c}s = Beam-TasNet({yc}c, c). (8)

with each channel served as the reference channel and then do
beamforming on the reference channel c.

2.2. MIMMO model

MC-Conv-TasNet uses different channel orders to obtain
temporal-spectro representation for the reference channel
(Eq.2), for example, R1 for channel order [1,2,3,4] and R4 for
channel order [4,1,2,3]. To obtain estimated signal, MC-Conv-
TasNet needs to be run inC times, whereC is the channel num-
ber. We call estimating the reference channel as “multi-channel
input, single-channel multi-source output” (MISMO). For fast

inference, we adopt MIMMO inference on MC-Conv-TasNet.
The network accept {yc}c to generate

R = ParEnc({yc}c), (9)

the separator estimates the temporal-spectro masks for all chan-
nels and sources:

{M̂s,c}s,c = Seperator(R), (10)

and the parallel decoder recovers the single-speaker waveform:

ẑs,c = ParDec(M̂s,c �R), (11)

where ParDec generates signals for different channels using dif-
ferent decoders. MC-Conv-Tasnet only need to be run in one
time to get estimated signals for all sources and channels.

2.3. Beam-Guided TasNet

As plotted in Fig.1(a), the first stage in the Beam-Guided TasNet
employs the original Beam-TasNet, which performs BSS with
the MVDR beamforming. In the second stage, the network per-
forms source separation additionally guided by the beamformed
signal. The encoder of the MC-Conv-TasNet in the second stage
accepts (C + S × C) channels, including C-channel mixtures
and S × C-speaker beamformed signals.

As shown in Fig.1(b), we first feed the mixture signal yc
through Beam-TasNet(1) to obtain the enhanced single-speaker
signals x̂(1)s,c ,

{x̂(1)s,c}s,c = Beam-TasNet(1)({yc}c). (12)

Then the second stage uses a second Beam-TasNet to accept
x̂
(1)
s,c and yc and to generate x̂(2:1)s,c ,

{x̂(2:1)s,c }s,c = Beam-TasNet(2)({yc}c, {x̂(1)s,c}s,c). (13)

where superscript ·(2:1) indicates that the signal is generated by
the second stage in the first iteration. In such a way, the second
Beam-TasNet integrates the strength of the MVDR beamform-
ing into the data-driven model. Different from target speaker
extraction [8] and neural spatial filtering [9, 10], we deduce the
source information by the enhanced signal calculated by the
MVDR beamforming.

The framework leads to a directed cyclic flow of multi-
channel signals with iterative refinement implemented on the



second stage (Fig.1(a)). MIMMO is achieved by separately set-
ting each channels as the reference channel in the MVDR beam-
forming. The second stage can iteratively accept x̂(2:n−1)

s,c and
generate x̂(2:n)s,c ,

{x̂(2:n)s,c }s,c = Beam-TasNet(2)({yc}c, {x̂(2:n−1)
s,c }s,c), (14)

where n = 2, 3, ... denotes the iteration number. In sum-
mary, the MVDR beamforming estimates the distortionless sig-
nals with the given SCMs (MVDR(x̂

(2:n)
s,c |yc, Φ̂(2:n−1))); MC-

Conv-TasNet finds an optimal set of SCMs with the given dis-
tortionless signals (MC-Conv-TasNet(Φ̂(2:n)|yc, x̂(2:n)s,c )).

In the training procedure, we unfolds the second stage for
source-to-noise ratio (SNR) loss calculation to help the iterative
refinement in the second stage,

L = −SNR(ẑ(1)s,c , xs,c)−SNR(ẑ(2:1)s,c , xs,c)−SNR(ẑ(2:2)s,c , xs,c).
(15)

Since MC-Conv-TasNet with MIMMO can infer all channel in
one pass, we can train the whole network in an end-to-end way,
i.e., we do not need to train different stages sequentially.

2.4. The causal variant

Compared with non-causal models, the causal variant only uses
the current and the past audio information, which can be de-
ployed for online processing. A causal Beam-Guided TasNet
uses the causal MC-Conv-TasNet and the frame-by-frame up-
dated MVDR. We use channel-wise layer normalization to re-
place global layer normalization [3,11]. The permutation solver
and MVDR are updated in a frame-by-frame way, whose formu-
las can be found in Appendix A2.

2.5. Relation with other works

Beam-guided separation is similar to deep unfolding (DU), ex-
tending iteration steps into network layers. The significant dif-
ferences are two-fold. First, DU uses untied parameters for dif-
ferent iteration steps [12]. The proposed method uses shared
parameters in the second stage for different iteration numbers.
Second, DU combines the deep learning-based method with ex-
isting model-based methods. However, few model-based meth-
ods have studied iterating beamforming and signal estimation.
A theoretical discussion can be found in Appendix B.

Some researchers have used second-stage networks but do
not explore iterative refinement [13]. The method in [14] con-
ducts computer-resource-aware deep speech separation (CRA-
DSS). The major differences are three-fold. First, CRA-DSS
uses untied parameters for different blocks, similar to DU. Sec-
ond, the proposed second stage uses both yc and MVDR gen-
erated signal, while CRA-DSS only uses MVDR signal. The
important role played by yc will be stated in Section 4. Third,
CRA-DASS trains blocks sequentially while our MIMMO and
unfolding training make it can be trained end-to-end.

3. Experimental setup
We evaluate the proposed framework on the spatialized WSJ0-
2MIX corpus [5]. The reverberant mixtures were generated by
convolving the room impulse responses (RIRs) with the clean
single-speaker utterances. The RIRs were randomly sampled
with sound decay time (T60) from 0.2s to 0.6s. The signal-
to-interference ratio was sampled from −5 dB to +5 dB. The

2https://github.com/hangtingchen/Beam-Guided-
TasNet/blob/main/INTERSPEECH 2022 Appendix.pdf

Table 1: The settings of the hyper-parameters of MC-Conv-
TasNet in the baseline Beam-TasNet and the proposed Beam-
Guided TasNet with 2 stages. The notations follow [3].

Hyper-parameter Baseline First/Second stage

N 512 256
L 16 16
B 128 128
Sc 128 128
H 512 256
P 3 3
X 8 8
R 3 3

Model size (M) 5.4 2.7/2.8

dataset contains 20, 000 (∼ 30h), 5, 000 (∼ 10h), and 3, 000
(∼ 5h) multi-channel two-speaker mixtures in the training, de-
velopment and evaluation sets. Two dataset variations are avail-
able: a “min” version where the longer signal is truncated, and
a “max” version where silence is appended to the shorter sig-
nal [15]. The training and the development sets were generated
with a sampling rate of 8kHz and a mode of “min”; the testing
set was generated with a sampling rate of 8kHz and a mode of
“max” for word error rates (WERs) evaluation.

The first 4 channels out of 8 were used to train and evaluate
the models for a fair comparison with [4]. In evaluation, the
default first channel was chosen as the reference. The window
settings of the STFT were set as a 512 ms frame length and a
128 ms hop size in MVDR due to the considerable reverberant
time. In the frame-by-frame processing, the MVDR calcula-
tion was performed frame-wisely to obtain the SCMs, MVDR
filters, and enhanced signals.

The experiments were conducted using Asteroid toolkit
[16]. The Beam-TasNet was composed of two modules, MC-
Conv-TasNet and MVDR beamforming. Unlike [4], we did not
use voice activity detection-based refinement for simplicity and
fair comparison. We trained two stages jointly using permuta-
tion invariant training (PIT) and an SNR loss [17]. All models
were trained with 4-second segments and a maximum of 150
epochs. The detailed model architecture is listed in Table 1,
where the Beam-Guided TasNet had a roughly equal number of
parameters with the baseline Beam-TasNet. Without iterations
of the second-stage model, the proposed model has approxi-
mately the same computation cost as the baseline since they
have a similar total number of parameters and the TasNet occu-
pied most computation. One more iteration of the second stage
model yields half the computation cost of the baseline model.

We used BSS-Eval SDR [18] and WERs as the evaluation
metrics. The SDR metric was calculated by comparing the es-
timated x̂s,1 or ẑs,1 with the reference signal xs,1. The auto-
matic speech recognition (ASR) system was trained following
the scripts offered by the spatialized multi-speaker WSJ (SMS-
WSJ) dataset [19] to make the WER results reproducible.

4. Results and discussion
This section first performed an ablation study of Beam-Guided
TasNet and compared the performance with the baseline Beam-
TasNet and the oracle MVDR. Then, a causal framework was
explored to illustrate the effectiveness of the framework without
future information. Here we chose n = 4 to obtain the best
performance. Finally, we visualized the iterative processing to
demonstrate how the framework boosts the performance with
the guide of MVDR.



Table 2: Comparison of Beam-TasNet and Beam-Guided Tas-
Net under the non-causal condition. The angle feature (AF) [9]
was obtained by the direction calculated by SRP-PHAT [20].
] means MC-Conv-TasNet is a MIMSO model. † means the
second-stage model is trained without unfolding.

Model Iteration Input SDR↑ (dB) WER↓ (%)
number ẑs,1 x̂s,1 ẑs,1 x̂s,1

Beam-TasNet] - yc 12.7 17.2 21.8 14.0
Beam-TasNet - yc 12.7 17.4 22.1 13.4
1-Stage - yc 10.5 15.9 29.8 14.8

2-Stage 1 yc & ẑ
(1)
s,c 12.5 17.1 24.1 14.6

2-Stage 1 yc & AF 12.7 17.5 21.1 13.6

2-Stage 1 yc & x̂
(1)
s,c 18.2 19.1 14.0 12.3

2-Stage 1 x̂
(1)
s,c 17.4 17.3 14.0 13.0

3-Stage - yc & x̂
(2)
s,c 20.8 19.7 12.8 12.3

2-Stage† 2 yc & x̂
(2:1)
s,c 19.7 19.7 13.1 12.2

2-Stage 2 yc & x̂
(2:1)
s,c 20.7 20.0 12.9 12.1

2-Stage 4 yc & x̂
(2:3)
s,c 21.5 20.3 12.8 12.1

Oracle IRM - - 12.9 17.6 12.4 12.8
Oracle signal - - ∞ 23.5 11.7 11.9

Table 3: The performance of the causal systems. The gray cells
share the same results with those in Table 2.

Model Iteration Causal SDR↑ (dB) WER↓ (%)
number ẑs,1 x̂s,1 ẑs,1 x̂s,1

Beam-TasNet - 3 9.0 11.4 33.6 21.4
1-Stage - 7 11.7 16.7 25.4 14.0
1-Stage - 3 8.6 10.9 35.1 22.7

2-Stage 1 3 13.1 12.2 19.7 20.0
2-Stage 2 3 13.9 12.5 18.7 19.4
2-Stage 4 3 14.0 12.3 18.6 19.4

Oracle IRM - 3 12.9 14.0 12.4 13.6
Oracle signal - 3 ∞ 18.0 11.7 13.2

Table 2 lists SDR and WER results on the baseline Beam-
TasNet and the proposed Beam-Guided TasNet under the non-
causal condition. The baseline Beam-TasNet achieved an SDR
of 17.4 dB, 0.6 dB higher than [4]. We use MIMMO to directly
generate signal for all channels. The performance on MVDR is
sightly improved might due to the MIMMO considering the re-
lation of channels. The first stage model adopted a small-sized
model and achieved an SDR degradation of 1.5 dB and a WER
degradation of 1.4%. The second part of Table 2 showed that
using the second stage yielded SDR improvement and WER re-
duction with extra input of ẑs,c, angle feature and x̂s,c. The
one with x̂s,c obtained the best performance with the SDR im-
proved by 3.2 dB and the WER reduced by 2.5% compared
with the first stage. The MVDR beamformer is thought to play
a crucial role in performance improvement since its output x̂(1)s,c
presented a much higher SDR than ẑ(1)s,c . Only using x̂(1)s,c was
found worse than using yc & x̂

(1)
s,c . In the third part of Table 2,

the SDR and the WER was optimized to 19.7 dB and 12.2%
with 2 iterations, which was worse than 3-stage deep unfolding
model. However, using unfolding training loss (Eq.(15)) could
achieve similar performance. Ater 4 iterations, we got an SDR
of 21.5 dB and a WER of 12.1%, illustrating the effectiveness
of shared parameters. On the other hand, for oracle MVDR, ẑs,1
equals to xs,1 for the oracle signal. ẑs,1 was calculated based
on the ideal ratio masks (IRMs) for oracle mask, which uses
a window size of 32ms and a hop size of 16ms (Appendix C).
The proposed Beam-Guided TasNet dramatically narrowed the
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Figure 2: SDR(dB)/WER(%) vs. stage:iteration (1/2 : n) un-
der the causal/non-causal condition. The dashed lines are the
results of the baseline Beam-TasNet.

SDR and the WER gap with the oracle signal-based MVDR to
2.0 dB and 0.2% and exceeded those of the oracle mask-based
MVDR by 3.9 dB and 0.3%, respectively.

Table 3 lists results with the causal model. Introducing
causality into MC-Conv-TasNet and MVDR degraded the per-
formance. With the Beam-Guided TasNet and iterative process-
ing, the SDR and the WER was optimized from 11.4 dB and
21.4% to 14.0 dB and 18.6%. Again, the Beam-Guided TasNet
exceeded that of the oracle mask-based MVDR and the baseline
Beam-TasNet by 3.0 dB and 2.6 dB, respectively.

The iterative processing is visualized in Fig.2, where the
SDR and WER curves exhibit a nearly same trend on the non-
causal and causal setting. We explain the following 3 phenom-
ena. First, the lines of SDRs raise and intersect, indicating that
the Beam-Guided TasNet took the strength of MC-Conv-TasNet
and MVDR to optimize each other. With a more accurate es-
timation of SCMs, the MVDR beamforming got closer to its
upper bound gradually. However, the output of MC-TasNet in
the current iteration could always achieve a better SDR than the
output of MVDR in the previous iteration, which made ẑ(2:n)s,1

surpass x̂(2:n)s,1 at some point. Second, we found that after 3 or
4 iterations, the Beam-Guided TasNet could achieve best per-
formance. Third, the WER gap between ẑ(2:n)s,1 and x̂(2:n)s,1 was
eliminated after iterations. Under the non-causal condition, the
distortionless x̂(2:n)s,1 exhibited slightly lower WERs. Under the
causal condition, however, the WER curve indicated that ẑ(2:n)s,1

obtained better signal quality due to the inaccurate MVDR filter.
We list experiment results on unmatched noisy condition,

multi-speaker condition, learning anechoic signals and other
model test on LibriCSS in Appendix D-G.

5. Conclusion
In this paper, we propose the Beam-Guided TasNet, which re-
fines the multi-channel BSS iteratively with the guide of beam-
forming. The experiments presented considerable SDR im-
provement of 4.1 dB and 2.6 dB compared with the baseline
Beam-TasNet under the non-causal and causal condition, re-
spectively. In future work, we will further explore the design
of MIMMO with novel network architectures.



6. Appendix
6.1. A. Frame-by-frame processing

For online frame-by-frame processing, the permutation solver
calculates metrics based on the received signal to conduct
source reorder in a frame-by-frame method. In our practice,
the distance measurement methods, such as Euclidean norm and
correlation, can achieve similar performance. Here we use SNR
to reorder the sources, which corresponds to Euclidean norm.
The causal permutation solver obtains the order π̂c,t, which can
be expressed as,

π̂c,t = argmax
πc,t

S∑
s=1

SNR
(
x̂s,1[0 : nt], x̂πc,t(s),c[0 : nt]

)
,

(16)
where nt denotes the number of received samples until frame t.
The SCMs are updated as the followings:

Φ̂
Targets
t,f =

t− 1

t
Φ̂

Targets
t−1,f +

1

t
Ẑs,t,f Ẑ

H
s,t,f , (17)

Φ̂Interfers
t,f =

t− 1

t
Φ̂Interfers
t−1,f (18)

+
1

t
(Yt,f − Ẑs,t,f )(Yt,f − Ẑs,t,f )H, (19)

where Ẑs,t,f is reordered by π̂c,t.

6.2. B. Theoretical explanation

Different from Beam-TasNet, the proposed iterative scheme fo-
cus on finding a distribution p(yc;xs,c) parameterized by xs,c,
which maximizes the probability of generating the observed
data. According to [21], the loglikelihood log p(yc;xs,c) can
be decomposed into 2 terms using latent variable Φ:

log p (yc;xs,c) =KL [q(Φ)‖p (Φ | yc;xs,c)] (20)

+ Eq(Φ)

[
log

p (yc,Φ;xs,c)

q(Φ)

]
(21)

where Φ is the spatial correlation matrix Φ̂
Targets
f and

Φ̂Interfers
f . We can use MC-Conv-TasNet to estimate signals

and then obtain Φ̂ with the given yc and estimated parame-
ters x̂s,c, which corresponds to p(Φ|yc;xs,c). Since the neu-
ral network directly generates estimation, we can view the dis-
tribution as an impulse function. Then by setting q(Φ) =
p(Φ|yc;xs,c), maximizing the second item is equal to x̂c =

argmaxxs,c p
(
yc, Φ̂;xs,c

)
. With Bayes’ rule, the optimal x̂c

is equal to argmaxxcp(xc|yc, Φ̂), which can be viewed as
MVDR beamforming. Different from classic statistical mod-
els [22, 23], TasNet does not guarantee the estimated Φ̂ closer
to the oracle one. Thus, the proposed method may exhibit per-
formance degradation in iterations.

6.3. C. The effect of STFT window size on MVDR

The STFT settings affect the performance of oracle IRMs. A
longer window size and stride will lead to worse SDRs as the
phase plays a more important role. A window size of 512ms
results in an SDR of 11.0dB (w/o MVDR) and 14.7dB (w/
MVDR), similar to the Beam-TasNet paper, while a window
size of 32ms results in an SDR of 12.9dB (w/o MVDR) and
17.6dB (w/ MVDR).

Table 4: The performance of different window size for oracle
IRMs.

Window size Causal SDR↑ (dB) WER↓ (%)
(ms) ẑs,1 x̂s,1 ẑs,1 x̂s,1

512 7 11.0 14.5 28.1 15.8
32 7 12.9 17.6 12.4 12.8

512 3 11.0 10.6 28.1 20.9
32 3 12.9 14.0 12.4 13.6

6.4. D. Unmatched noisy condition

To evaluate the proposed framework under the noisy condition,
we simulated the noisy training and evaluation sets by mix-
ing WSJ0-2MIX dataset with real recorded noise from the RE-
VERB challenge [24]. The training set contains noise recorded
in a small room with an SNR range from 10 dB to 20 dB. The
evaluation set contains noise recorded in a medium and a large
room with an SNR range from 0 dB to 10 dB.

Table 5: The performance of non-causal models under the un-
matched noisy condition.

Model Iteration SDR↑ (dB) WER↓ (%)
number ẑs,1 x̂s,1 ẑs,1 x̂s,1

Beam-TasNet - 10.5 14.0 31.1 19.6
1-Stage - 9.7 13.6 33.7 20.3
2-Stage 1 15.2 15.1 17.7 18.1
2-Stage 2 16.2 15.5 16.5 17.7
2-Stage 4 16.5 15.6 16.3 17.7
Oracle IRM - 12.3 15.4 12.6 17.2
Oracle signal - ∞ 18.2 11.7 16.5

The experiment result in Table 5 indicates that the proposed
framework can deal with the noisy condition under unmatched
noise settings. Compared with the baseline Beam-TasNet, our
method achieved an SDR improvement of 2.5 dB and a WER
reduction of 3.3%.

6.5. E. Multi-speaker condition

We deployed the proposed methods on 2- and 3-speaker con-
ditions with a non-causal model using the 2- and 3-speaker
spatialized WSJ0-2MIX and WSJ0-3MIX datasets. We used
A2PIT [25] for training, which can be integrated with the pro-
posed Beam-guided TasNet by introducing multiple outputs.

The experimental results are listed in Table 6. We have
found that the proposed Beam-guided TasNet could outperform
the Beam-TasNet consistently under the 2- and 3-speaker con-
dition.

6.6. F. Learning anechoic signals

Previous experiments use models to learn single-speaker rever-
berant signals. Here we set the learning target to single-speaker
anechoic signals to perform both dereverberation and separation
tasks.

The experiment results in Table 8 exhibit that the Beam-
guided TasNet achieves an SDR of 17.3dB and a WER of
12.4%, far exceeding Beam-TasNet.



Table 6: The performance on the 2-/3-speaker dataset using
non-causal models.

Speaker Model Iteration SDR↑ (dB) WER↓ (%)
number number ẑs,1 x̂s,1 ẑs,1 x̂s,1

2

Beam-TasNet - 11.8 16.7 25.3 14.0
1-Stage - 11.0 16.1 28.4 14.6
2-Stage 1 18.4 19.1 14.2 12.4
2-Stage 2 20.0 19.8 13.2 12.1
2-Stage 4 20.9 20.3 13.1 11.9
Oracle IRM - 12.9 17.6 12.4 12.8
Oracle signal - ∞ 23.5 11.7 11.9

3

Beam-TasNet - 7.3 11.4 48.0 23.8
1-Stage - 6.4 10.6 52.6 25.8
2-Stage 1 12.4 13.7 22.5 17.2
2-Stage 2 14.6 14.8 17.5 15.5
2-Stage 4 15.8 15.5 15.9 14.5
Oracle IRM - 9.8 14.8 12.2 14.8
Oracle signal - ∞ 22.1 11.7 12.3

Table 7: The performance of non-causal models on spatialized
WSJ0-2MIX. The learning target and the reference signal for
SDR calculation is single-speaker anechoic signals.

Model Iteration SDR↑ (dB) WER↓ (%)
number ẑs,1 x̂s,1 ẑs,1 x̂s,1

Beam-TasNet - 10.8 14.6 29.8 15.2
1-Stage - 9.4 14.0 38.9 17.1
2-Stage 1 14.5 16.4 17.9 13.6
2-Stage 2 16.5 17.1 14.9 12.8
2-Stage 4 17.1 17.3 14.2 12.4
Oracle IRM - 11.4 12.0 11.1 15.5
Oracle signal - ∞ 21.1 10.2 11.4

6.7. G. Experiments on LibriCSS with frequency-domain
model

Table 8: The performance of non-causal models on LibriCSS.

Model Iteration WER↓ (%)
number 0S 0L OV10 OV20 OV30 OV40

Unprocessed - 11.8 11.7 18.8 27.2 35.6 43.3
DPT-FSNET - 7.1 7.3 7.6 8.9 10.8 11.3
1-Stage - 7.3 7.3 7.8 8.9 10.6 11.1
2-Stage 1 7.1 7.1 7.1 8.0 9.2 9.7
2-Stage 2 7.0 7.1 6.9 7.9 8.8 9.3
2-Stage 4 7.0 7.1 7.0 7.7 8.8 9.0

LibriCSS is a real-recorded dataset. The ASR engine uses
the original hybrid model [26]. We validate the iterative frame-
work on a frequency-domain model, named DPT-FSNET [27].
After iterations, we achieve a WER of 9.0% on OV40 subset,
3.0% lower than DPT-FSNETs.
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