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ABSTRACT
In this paper we present a privacy-aware method for estimating
source-dominated microphone clusters in the context of acous-
tic sensor networks (ASNs). The approach is based on clustered
federated learning which we adapt to unsupervised scenarios by
employing a light-weight autoencoder model. The model is further
optimized for training on very scarce data. In order to best harness
the benefits of clustered microphone nodes in ASN applications, a
method for the computation of cluster membership values is intro-
duced. We validate the performance of the proposed approach using
clustering-based measures and a network-wide classification task.

Index Terms— federated learning, clustering, privacy, acoustic
sensor networks, autoencoder, unsupervised

1. INTRODUCTION

The continuously decreasing cost of acoustic sensors and the rise
in popularity of wireless networks and mobile devices have helped
to establish the technological infrastructure needed by (wireless)
acoustic sensor networks (ASNs). These are useful in a larger num-
ber of applications, ranging from smart-homes and ambient-assisted
living [1] to machine fault diagnosis [2] and surveillance [3].

Typically, ASN applications have to deal with multiple audio
sources being active at the same time. In many such scenarios, the
benefits provided by ASNs can be enhanced by having access to in-
formation regarding microphone nodes and their relation to the ac-
tive acoustic sources. An example is provided in [4, 5] where the
estimation of source-dominated microphone clusters based on hand-
engineered spectral feature representations helps improve the ASN’s
overall signal classification and source separation performance.

While clustering and processing of multiple microphones will
provide additional benefits to the aforementioned applications, the
transmission of data-rich signal representations in a potentially
unsafe (wireless) communication environment also poses serious
privacy risks. Even in a small-scale scenario such as a smart-home,
there are privacy hazards posed by eavesdroppers connecting to
the network and intercepting data [6]. Moreover, in a world where
privacy concerns have taken center-stage [7] and privacy policies
like the European Union General Data Protection Regulation (EU
GDPR) [8] aim to enforce principles such as ”privacy-by-design”,
a more privacy-sensible solution is recommended. Therefore, this
work steers away from using feature representations derived directly
from the raw audio data in favor of a more privacy-aware solu-
tion based on clustered federated learning (CFL) [9]. In this way,
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ASN nodes (clients) need only share locally learned neural network
parameter updates with a central node (server). Furthermore, by
exploiting the cosine-similarity measure between parameter update
vectors, a hierarchical clustering of clients can be achieved.

Federated learning (FL) [10, 11] and inherently CFL have been
designed for massively distributed systems that handle large amounts
of data and have been so far only used in (semi-) supervised learning
applications where (weak) classification labels were available. How-
ever, in our ASN scenarios, e.g., a smart-home, clustering has to be
performed on relatively short audio segments and, most importantly,
without access to training labels. Thus, the adaptation of CFL to this
unsupervised scenario and its implementation in the context of ASNs
becomes a challenging task. To approach this topic, we like to ex-
tend and study CFL in the context of ASNs with two simultaneously
active acoustic sources in a shoebox room.

The remainder of this paper is structured as follows: we first
discuss the relation to prior work, followed by a description of the
proposed methods. We then continue by detailing the experimental
scenarios and the results and finalize with conclusions and outlook.

2. RELATION TO PRIOR WORK
The estimation of source-dominated microphone clusters in ASN-
related scenarios has been previously explored using various ap-
proaches and with different target applications. These have ranged
from using coherence models [12] and energy decay information to
eigenvectors [13] and spectral features [2, 4, 5, 14]. In conjunction
with unsupervised fuzzy clustering, the latter works obtain robust
clustering and subsequently improved signal classification results.
Despite the mentioned advantages, no privacy-preserving compo-
nent is included, thus falling short of modern privacy requirements
[8, 15]. Moreover, supervised fuzzy clustering requires prior knowl-
edge about the number of sources [16].

Our proposed approach builds upon the concepts introduced
by the aforementioned works and focuses on adding a privacy-
preserving layer using a variation of FL [10, 11], namely CFL [9].
Spectral features which, although aggregated still retain privacy-
sensitive information [17], are replaced with more privacy-aware,
locally learned, neural network parameter updates. This approach
reduces privacy risks considerably on its own and even more in
conjunction with additional encryption, differential privacy [18], or
encoding schemes [19]. To solve the unsupervised clustering tasks
using CFL’s privacy advantages, we propose using a light-weight
autoencoder in each sensor node that permits unsupervised training.
CFL will then compare and cluster the local updates of these dis-
tributed autoencoders in a central server and assign nodes to acoustic
sources. To handle training with scarce data and to further reduce
the communication overhead that arises from transmitting deep neu-
ral network (DNN) model updates [20, 21], we limit the number of
transmitted parameters and update only a part of the autoencoder.
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Algorithm 1: Unsupervised CFL for the estimation of
source-dominated microphone clusters in ASNs

Input: Pre-trained autoencoder h, thresholds ε1, ε2 and ε3,
maximum no. of rounds maxτ

freeze all parameters of h except θ
while audio buffer ! = empty do

read audio D of M clients
initialize cluster list C = {{1, ..M}} with a single

cluster element that contains all M clients
C′ = {}
θc ← random initialization
for τ = 1 to maxτ do

for c ∈ C do
for i ∈ c do

∆θτi ← SGD(hθc(D i))
end
∆θ̄c =

∥∥∥ 1
|c|
∑
i∈c ∆θi

∥∥∥
∆θ̂c = maxi∈c(‖∆θi‖)
if ∆θ̄c ≤ ε1 & ∆θ̂c ≥ ε2 & |∇∆θ̄c| ≤ ε3

then
ai,j =

〈∆θi,∆θj〉
‖∆θi‖‖∆θj‖

, ∀i, j ∈ c
c1, c2 ← bi-partition (A)
θτ+1
c1 = θτc +

∑
i∈c1

|Di|
|Dc1

|∆θ
τ
i

θτ+1
c2 = θτc +

∑
j∈c2

|Dj |
|Dc2

|∆θ
τ
j

C′ = C′ + {c1, c2}
τ = maxτ + 1

else
θτ+1
c = θτc +

∑
i∈c
|Di|
|Dc|∆θ

τ
i

C′ = C′ + {c}
end

end
C = C′

end
end

3. UNSUPERVISED CLUSTERING USING CFL

3.1. Federated learning

Federated learning was introduced in [10, 11] as a method for large-
scale privacy-preserving distributed learning of neural network pa-
rameters. It works using a three-step iterative process over a given
number of communication rounds τ . In the first step, the clients syn-
chronize with the server by downloading the latest model parameters
represented by column vector θτ . In the second step each client i in-
dependently improves its own model parameters θτi by performing
stochastic gradient descent (SGD) [22] on their respective data D i.
In the third step, the clients upload their model parameters updates
∆θτi to the server for aggregation following

θτ+1 = θτ +

M∑
i=1

|D i|
|D | ∆θ

τ
i , (1)

where M is the total number of clients, D their total dataset, and | · |
denotes the cardinality of a dataset.

3.2. Clustered federated learning

It is shown in [9, 19] that for the cases where clients’ data comes
from different (incongruent) distributions, there is no single θ∗ that
can optimally minimize the loss of all clients at the same time. For

this reason, the authors suggest clustering the clients that have simi-
lar (congruent) distributions and training separate server models for
each resulting cluster. The clustering criterion proposed uses the co-
sine similarity measure ai,j between the nodes’ weight update vec-
tors following

ai,j =
〈∆θi,∆θj〉
‖∆θi‖‖∆θj‖

, (2)

where 〈·, ·〉 denotes the inner product and ‖·‖ the L2 norm. The
cosine similarities ai,j of all clients are collected in the symmetric
matrix A.

Hierarchical clustering using bi-partitioning can be recursively
applied using A. The resulting two clusters c1 and c2 of each bi-
partitioning step are derived such that the maximum cross-cluster
cosine similarity is always smaller than the minimum of either intra-
cluster cosine similarities [9]:

max
∀i∈c1,k∈c2

(ai,k) < min( min
∀i,j∈c1

(ai,j), min
∀k,l∈c2

(ak,l)). (3)

The process is recursively repeated, and new sub-clusters are ob-
tained, until the data distributions’ congruence condition is no longer
violated. The latter can be verified for each cluster c by analyzing
the mean and the maximum Euclidean norms of the weight update
vectors ∆θc, defined as

∆θ̄c =

∥∥∥∥∥ 1

|c|
∑
i∈c

∆θi

∥∥∥∥∥ and ∆θ̂c = max
i∈c

(‖∆θi‖). (4)

Whenever the server has reached a stationary solution but some
clients are still converging towards a locally stationary point, a low
value of ∆θ̄c in conjunction with a higher value of ∆θ̂c is ob-
served. This indicates incongruent data distributions and prompts
bi-partitioning.

3.3. Unsupervised clustered federated learning

In other works, FL and CFL have been used for improving a server-
based classification model with the goal of high classification accu-
racy. Our work, however, is only concerned with obtaining good
clustering results which can be further used to enhance subsequent
ASN-based applications. Moreover, we aim for a more general so-
lution that does not rely on the availability of labeled data, thus re-
quiring an unsupervised approach in the clustering process. As such,
we propose to use a light-weight autoencoder with a low number of
trainable parameters that are periodically re-initialized.

The proposed adaptation, along with the standard CFL algorithm
[9], are schematically described in Algorithm 1. Prior to performing
FL, the light-weight autoencoder h is pre-trained, after which all
layers except the bottleneck layer are frozen. The latter is always re-
initialized with random parameters before applying CFL. The reduc-
tion of trainable network parameters is necessary in order to avoid
overfitting [23] caused by the large discrepancy between the very
small number of training samples and the large number of parame-
ters of a complete model. Moreover, processing fewer parameters
reduces computational and bandwidth costs [20].

Additional to the incongruity verification based on ∆θ̄c ≤ ε1
and ∆θ̂c ≥ ε2 introduced in [9], we propose a supplementary verifi-
cation as to fit the high ∆θ̄c and ∆θ̂c variation generated by handling
a small number of training samples. This consists in thresholding the
gradient |∇∆θ̄c| ≤ ε3, based on the intuition that a small ∆θ̄c slope
indicates the system reaching a stationary solution regardless of the
absolute values of ∆θ̄c.
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Fig. 1. Cluster membership values (MVs) for unsupervised CFL where mean normalized intra- (a) and cross-cluster cosine similarities (b)
are aggregated in order to determine cluster reference nodes which in turn are used to compute MVs (c). Outliers are occasionally observed
due to specific acoustic constellations which include wall reflections and reverberation. Illustration regards a single simulation scenario.

3.4. Membership values
To assess the contribution of each node to its respective cluster we
propose the computation of cluster membership values (MVs) after
each bi-partitioning of clients into clusters c1 and c2. We first com-
pute the mean intra- and cross-cluster similarities for each client i
and stack them in vectors q and r , respectively, with

qi =
1

|cx| − 1

∑
j∈cx\−{i}

ai,j and ri =
1

|cy|
∑
k∈cy

ai,k (5)

for ∀i ∈ cx and (cx, cy) ∈ {(c1, c2), (c2, c1)}, where |·| denotes the
cardinality of a set. We further apply min-max normalization to q
and r after which we compute vector p that contains the aggregated
mean cosine similarity values for each client using a weighted sum,

pi = λ
qi −min(q)

max(q)−min(q)
+ (1− λ)

ri −min(r)

max(r)−min(r)
. (6)

Since the acoustic sources are modeled as spherical point sources,
nodes very close to a source pick up quite different signals from
other nodes which are dominated by a reverberant mixture of both
sources. This results in small mean intra-cluster similarity values
for nodes positioned close to the cluster source and those positioned
at extremities, thus requiring additional cross-cluster information in
order to distinguish them. After applying (6), only the nodes closest
to a cluster source will display small pi values. We further select the
node with the smallest pi value in each cluster as a reference node
and compute the MVs vector µ as the cosine similarities between
the cluster nodes and their respective reference node:

µi = ai,argmin(pj),∀i, j ∈ cx and cx ∈ {c1, c2} . (7)

Min-max normalization is again applied to vector µ. An example of
a single simulation scenario is provided in Figure 1. Additionally,
thresholding with µi = 0,∀µi ≤ v is also considered in order to
disregard nodes with low MVs.

4. EXPERIMENTS AND RESULTS

4.1. Database and simulation scenarios

For this work, we employ a subset of the LibriSpeech corpus [24],
namely train-clean-100, which consists of 251 speakers (125 female,

126 male) from audiobook recordings sampled at 16 kHz. We further
apply voice activity detection (VAD) and restructure the data into
25006 utterances of length 10 s each. Next, the dataset is split into
Libri-server with 157 speakers (79 female, 78 male) used to train
the autoencoder and gender recognizer and Libri-clients containing
94 speakers used to perform clustering and infer speaker genders.

The current work only considers two simultaneously active
sources randomly positioned in opposing quadrants of a shoe-
box room of size 4.7 × 3.4 × 2.4 m with the reverberation time
T60 = 0.34 s. The ASN deployed in the room consists of M = 16
microphone nodes, which are, as well, randomly spread under the
constraint that for every source, a minimum of three nodes is posi-
tioned within critical distance, thus having higher direct component
energy than reverberation energy. The random spread of sources and
microphones is performed ten times. For each constellation created,
20 gender-balanced speaker pairs are randomly selected from Libri-
clients resulting in 200 simulation scenarios. For each scenario, we
randomly select 16 utterances/speaker to perform CFL followed by
gender recognition using the estimated cluster configuration.

Each ASN node i is exposed to a mix of signals from both
sources s1 and s2, expressed as

xi(t) = s1(t) ∗ gs1i (t) + s2(t) ∗ gs2i (t), (8)
where gsji is the impulse response from source j to node i and is
simulated with CATT Acoustic using cone-tracing [25].

4.2. Server pre-training

The architecture of the proposed autoencoder h is detailed in Table
1. This is trained to reconstruct the Log-Mel Band Energy (LMBE)
input feature representation Y . The latter is extracted for each 10
s utterance as detailed in [26] using a short-time discrete Fourier
transform (STFT) with window length L1 = 0.064 s and step size
R1 = 0.032 s along with K = 128 Mel filters. Training is per-
formed on the Libri-server set for 300 epochs using an SGD opti-
mizer with a learning rate of lr = 0.1. The loss function that is min-
imized over the entire model parameters set Θ is the mean squared
error (MSE) between the input and reconstructed feature vectors:

min
Θ

Lmse(Y , Ŷ ) = min
Θ

1

N

N∑
n=1

(yn − ŷn)2. (9)

After the model is trained, the Θ parameters, except for subset θ,
are frozen. The initial number of O1 = 5999 trainable parameters

3



Table 1. Neural network architecture of autoencoder h.

Layer Input Operator Out
ch. Stride Kernel/

Nodes Activation

1 128 x 128 Conv2d 6 1 5 x 5 ReLu
2 6 x 124 x124 MaxPool - 2 2 x 2 -
3 6 x 62 x 62 Conv2d 16 1 5 x 5 ReLu
4 16 x 58 x 58 MaxPool - 2 2 x 2 -
5 16 x 29 x 29 Dense - - 29 ReLu
6 16 x 29 x 29 Unpool - 2 2 x 2 -
7 16 x 58 x 58 ConvTrans2d 6 1 5 x 5 ReLu
8 6 x 62 x 62 Unpool - 2 2 x 2 -
9 6 x 124 x 124 ConvTrans2d 1 1 5 x 5 Sigmoid

Table 2. Normalized cluster-to-source distance d̃szcx from cluster cx
to source sz , averaged over 200 scenarios.

c1 c2
s1 0.15 0.91
s2 0.87 0.14

is thus reduced to O2 = 841. This subset corresponds to the param-
eters of Layer 5 from Table 1. These are further re-initialized and
trained as described in the next subsection.

4.3. Clustering

The pre-trained autoencoder h detailed in Subsection 4.2 is em-
ployed for unsupervised CFL as indicated in Algorithm 1. The
MSE loss function introduced in (9) acts only on parameters sub-
set θ, as the rest of the parameters are frozen. We empirically set
ε1 = 0.0134, ε2 = 0.005, ε3 = 0.0007, andmaxτ = 25 communi-
cation rounds. Each of the total M = 16 clients trains for one epoch
in every round τ , with lr = 0.1. The clients’ input feature represen-
tation Y i is computed based on the 10 s time-domain signal xi(t)
as detailed in (8), where s1 and s2 are selected from the Libri-clients
dataset. The MVs defined in (6) are computed using λ = 0.5.

To evaluate and compare the clustering performance to state-
of-the-art solutions [4], we employ from the latter the normalized
cluster-to-source distance from cluster cx to source sz as

d̃szcx =
‖ρsz − ρ̄cx‖
‖ρs1 − ρs2‖

, ∀cx ∈ {c1, c2} and sz ∈ {s1, s2}, (10)

where ρsz is the geometric position of source sz and ρ̄cx is the av-
erage of geometric positions of nodes i assigned to cluster cx which
are weighted by their respective MVs. Table 2 shows d̃szcx averaged
over all 200 simulation scenarios.

It can be observed that low values of d̃s1c1 and d̃s2c2 are obtained,
indicating that the MV-weighted cluster centers are each situated in
close proximity to their dominant source. The high d̃s2c1 and d̃s1c2 val-
ues validate that the MV-weighted cluster centers are, concurrently,
situated away from their opposing sources. The obtained metrics
point towards good cluster predictions, comparable to results in [4].

4.4. Gender recognition

In order to assess the clustering performance from a utility stand-
point, we further implement a gender recognition task. To this
end, we first train a gender recognition model e on the Libri-server
dataset, where a part of the clean signals is randomly augmented
with male-female reverberant signal mixtures. The model architec-
ture is described in Table 3, where the input feature representation
Y is extracted for L1 = 0.064, R1 = 0.02, and K = 40. Training
is performed for 13 epochs using a cross-entropy loss function and
an SGD optimizer with lr = 0.01. Testing is performed for all 200

Table 3. Neural network architecture of gender recognizer e.

Input Operator Out
ch. Stride Kernel/

Nodes
Batch
norm. Activation Dropout

501×40 Conv2d 32 1 5×40 Yes ReLU -
497×32 MaxPool - 1 5×1 - - -
99×32 Conv2d 64 1 3×32 Yes ReLU -
92×64 MaxPool - 1 92×1 - - -
1×64 Dense - - 64 - ReLU 50%
1×64 Dense - - 2 - Softmax -

Table 4. Aggregated gender recognition Accuracy (Acc) and F1-
score (F1) of estimated clusters, without and with membership value
(MV) weighting using threshold v. Results reflect 200 scenarios.

no
MV

MV
v=0

MV
v=0.5

MV
v=0.9

Acc(%) 90 96 97 99
F1(%) 89 96 97 98

simulation scenarios indicated above, utilizing the utterances from
Libri-clients used to generate clustering estimations.

The proposed evaluation metrics are Accuracy (Acc) and F1-
score (F1), where the ground truth gender label of a node is given
by the gender of the source with the shortest first peak delay of the
impulse response. The ground truth gender label of a cluster is given
by the mode of the ground truth gender labels of its constituting
nodes. The predicted gender label of a cluster is the mode of pre-
dicted gender labels of its nodes. Since each node processes 16 ut-
terances/scenario, its gender label is given by the mode of gender
predictions across the utterances. The evaluation metrics are aver-
aged across all 200 simulation scenarios. Results are shown in the
first column of Table 4.

The aforementioned results are further improved by taking into
account the nodes’ dominant-source proximity indicated by the
MVs. In this case, the predicted gender label of a cluster is given
by the sum of MV-weighted node predictions normalized by the
sum of MVs. In the second column of Table 4, it is observed how
the MV-weighting has a positive effect on gender recognition per-
formance as smaller/larger distances between sources and nodes
imply less/more reverberation and signal interference, thus leading
to more/less accurate node-wise gender predictions.

Moreover, in an additional experiment, the MVs smaller than
a threshold v are set to 0 to exclude poorly performing nodes. The
threshold is systematically varied and results are shown in the second
to last columns of Table 4. The results from the previous experiment
where no thresholding was used correspond to v = 0. It is ob-
served that for an increasing v, gender recognition scores gradually
improve. This, in conjunction with the previous results, indicates
that the proposed clustering approach has a significant performance-
enhancing effect on a network-wide task.

5. CONCLUSIONS AND OUTLOOK

We have proposed an unsupervised adaptation of CFL to ASN sce-
narios by using a light-weight autoencoder as server and isolating
a subset of its parameters for re-initialization and re-training in FL
rounds. An additional bi-partitioning indicator was introduced along
with a novel method for generating cluster membership values. It
has been empirically demonstrated that the presented privacy-aware
approach offers good clustering performance by means of cluster-
to-source distance measures and the performance of a multi-sensor
gender recognition task. A more comprehensive investigation using
a larger variety of acoustic conditions along with a more detailed
assessment of privacy risks is planned for future works.
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