
ar
X

iv
:2

10
2.

03
21

6v
1

 [
ee

ss
.A

S]
 5

 F
eb

 2
02

1

INTERMEDIATE LOSS REGULARIZATION FOR CTC-BASED SPEECH RECOGNITION

Jaesong Lee1, Shinji Watanabe2

1Naver Corporation 2Johns Hopkins University

ABSTRACT

We present a simple and efficient auxiliary loss function for auto-

matic speech recognition (ASR) based on the connectionist tempo-

ral classification (CTC) objective. The proposed objective, an inter-

mediate CTC loss, is attached to an intermediate layer in the CTC

encoder network. This intermediate CTC loss well regularizes CTC

training and improves the performance requiring only small modi-

fication of the code and small and no overhead during training and

inference, respectively. In addition, we propose to combine this in-

termediate CTC loss with stochastic depth training, and apply this

combination to a recently proposed Conformer network. We eval-

uate the proposed method on various corpora, reaching word error

rate (WER) 9.9% on the WSJ corpus and character error rate (CER)

5.2% on the AISHELL-1 corpus respectively, based on CTC greedy

search without a language model. Especially, the AISHELL-1 task

is comparable to other state-of-the-art ASR systems based on auto-

regressive decoder with beam search.

Index Terms— end-to-end speech recognition, connectionist

temporal classification, multitask learning, non-autoregressive

1. INTRODUCTION

End-to-end automatic speech recognition (ASR) has become a

promising approach for the speech recognition community. It sim-

plifies model design, training, and decoding procedure compared to

conventional approaches like hybrid systems using hidden Markov

model (HMM).

However, the improvement comes with a computational cost:

many state-of-the-art ASR architectures employ attention-based

deep encoder-decoder architecture [1–5], which requires heavy

computational cost and large model size. Also, the decoder runs

in an autoregressive fashion and requires sequential computation,

i.e., the generation of an output token can be started only after the

completion of the previous token.

Compared to the encoder-decoder modeling, the Connectionist

Temporal Classification (CTC) [6] does not require a separate de-

coder, thus allows designing more compact and fast models. Also,

CTC provides a greedy decoding algorithm for generating sentences

in a fast and parallel way, especially compared to autoregressive de-

coder of encoder-decoder models.

Although recent advances on architectural design [7, 8] and

pre-training method [9] have improved the performance with CTC,

it is usually weaker than encoder-decoder models, often credited

to its strong conditional independence assumption, and overcoming

the performance often requires external language models (LMs) and

beam search algorithm [10, 11], which demand extra computational

costs and effectively makes the model an autoregressive one. There-

fore, it is important to improve CTC modeling to reduce overall

computational overhead, ideally without the help of LM and beam

search.

There also has been a great interest on non-autoregressive

speech recognition toward reaching the performance of autoregres-

sive models [12–16], inspired by the success of non-autoregressive

models in neural machine translation [17–20]. Non-autoregressive

ASR would allow faster token generation compared to autoregres-

sive ASR, as the generation of a token does not directly depend on

the previous token. CTC itself can be viewed as an early instance

of non-autoregressive ASR, and recently proposed methods, Mask

CTC [13] and Imputer [14], use CTC as a part of non-autoregressive

modeling: they first generate initial output from CTC, then refine it

via the other network. Therefore, improving CTC is also important

for improving non-autoregressive methods in general.

In this work, we show the performance of CTC can be improved

with a proposed auxiliary task. The proposed task, named inter-

mediate CTC loss, is constructed by first obtaining the intermediate

representation of the model then computing its corresponding CTC

loss. The model is trained with the original CTC loss in conjunction

with the proposed loss, with a very small computational overhead.

During inference, the usual CTC decoding algorithm is used, thus

there is no overhead.

We show the proposed method can improve Transformer [21]

with various depths, and also Conformer [5], recently proposed ar-

chitecture combining self-attention and convolution layers. Also,

we show the method can be combined with the other regularization

method, stochastic depth [22, 23], for further enhancement.

The contributions of this paper are as follows:

• We present a simple yet efficient auxiliary loss, called inter-

mediate CTC loss, for improving performance of CTC ASR

network.

• We combine the intermediate CTC loss and stochastic depth

regularization to achieve better performance than using only

one of them.

• We show application to the Conformer encoder, recently pro-

posed architecture. We show the proposed method is also

effective for Conformer.

• We achieve comparable to state-of-the-art results, specifically

word error rate (WER) 9.9% on Wall Street Journal (WSJ)

and character error rate (CER) 5.2% on AISHELL-1, using

CTC modeling and greedy decoding only.

2. ARCHITECTURE

We consider a multi-layer architecture with the CTC loss function.

For given input x0 ∈ R
T×D of length T and dimension D, the

encoder consists of L layers as follows:

xl = EncoderLayerl(xl−1), (1)

where EncoderLayerl is the l-th layer of the network explained at

Section 2.2.

http://arxiv.org/abs/2102.03216v1

2.1. Connectionist Temporal Classification

CTC [6] computes the likelihood of target sequence y by considering

all possible alignments for the label and the input length T . For the

encoder output xL and target sequence y, the likelihood is defined

as:

PCTC(y|xL) :=
∑

a∈β−1(y)

P (a|xL) (2)

where β−1(y) is the set of alignment a of length T compatible

to y including the special blank token. The alignment probability

P (a|xL) is factorized with the following conditional independence

assumption:

P (a|xL) =
∏

t

P (a[t]|xL[t]) (3)

where a[t] and xL[t] denote the t-th symbol of a and the t-th repre-

sentation vector of xL, respectively.

At training time, we minimize the negative log-likelihood in-

duced by CTC by using PCTC(y|xL) in Eq. (2):

LCTC := − logPCTC(y|xL). (4)

At test time, we use greedy search to find the most probable align-

ment for fast inference.

2.2. Encoder

We use two encoder architectures: Transformer [21] and Con-

former [5]. Transformer uses self-attention (SelfAttention(·) shown

in Eq. (5)) for learning global representation, and layer normaliza-

tion [24] and residual connection [25] for stabilizing learning.

With Transformer, EncoderLayer(·) in Eq. (1) consists of:

xMHA
l = SelfAttention(xl−1) + xl−1, (5)

xl = FFN(xMHA
l) + xMHA

l , (6)

where FFN(·) denotes the feed forward layers.

Conformer combines Transformer and convolution neural layers

for efficient learning of both global and local representations.

With Conformer, EncoderLayer(·) in Eq. (1) consists of:

xFFN
l =

1

2
FFN(xl−1) + xl−1 (7)

xMHA
l = SelfAttention(xFFN

l) + xFFN
l (8)

xConv
l = Convolution(xMHA

l) + xMHA
l (9)

xl = LayerNorm(
1

2
FFN(xConv

l) + xConv
l). (10)

2.3. Stochastic Depth

Stochastic depth [22, 23] is a regularization technique for residual

network. It helps training of very deep networks by randomly skip-

ping some layers. It can be viewed as training an ensemble of 2L

sub-models, induced by removing some layers of the model.

Consider EncoderLayer(·) in Eq. (1) with residual connection:

xl = xl−1 + fl(xl−1) (11)

for some layer fl(·).
Let bl be a Bernoulli random variable which takes value 1 with

probability pl. During training, the layer is computed as:

xl =

{

xl−1 if bl = 0,

xl−1 +
1
pl

· fl(xl−1) otherwise.
(12)

Thus, with probability 1− pl, the layer skips the fl(xl−1) part.

The denominator 1
p1

ensures the expectation matches the Eq. (1).

During testing, we do not skip the layers and use Eq. (11).

The per-layer survival probability is given as pl = 1− l
L
(1−pL)

with hyper-parameter pL. This assigns higher skipping probability

to higher layers, as skipping lower layers may harm the overall per-

formance [22]. We use pL = 0.7 for all experiments.

3. INTERMEDIATE CTC LOSS

The stochastic depth aims to improve training of multi-layer network

using a stochastic ensemble approach, but the experiments show the

improvement only comes with sufficiently deep networks, e.g. with

24 or more layers [23].

We hypothesize that while the stochastic depth is effective for

regularizing higher layers, it is not effective for regularizing lower

layers, due to the its ensemble strategy. As each layer has own ran-

dom variable for skipping, the probability of skipping all high layers

is very low. Therefore, for most cases, the lower layers may rely on

the remaining higher layers rather than learn regularized representa-

tion by themselves.

In this context, we propose to skip the higher layers as a whole.

We choose a layer, called “intermediate layer”, and induce a sub-

model by skipping all layers after the intermediate layer. The sub-

model relies on the lower layers rather than higher layers, thus train-

ing the sub-model would regularize the lower part of the full model.

For the position of the intermediate layer, this paper mainly uses

⌊L/2⌋, as it seems a safe choice between lower and higher layers.

We later discuss other choices at Section 3.1.

As the sub-model and the full model share lower structure, it is

possible to denote the output of the sub-model as x⌊L/2⌋, the inter-

mediate representation of the full-model. Like the full-model, we

use a CTC loss for the sub-model:

LInterCTC := − logPCTC(y|x⌊L/2⌋). (13)

Then we note that the sub-model representation x⌊L/2⌋ is naturally

obtained when we compute the full model. Thus, after computing

the CTC loss of the full model, we can compute the CTC loss of

the sub-model with a very small overhead. The proposed training

objective is the weighted sum of the two losses:

L := (1−w)LCTC + wLInterCTC, (14)

where we use w = 0.3 for all experiments.

During testing, we do not use the intermediate prediction and

only use the final representation xL for decoding.

The intermediate loss can also be used jointly with stochastic

depth. We expect the intermediate loss regularizes the lower layers,

and the stochastic depth regularizes the higher layers, thus combin-

ing them further improves the whole model. We show the empirical

result at Section 4.

3.1. Position variants

We also consider different sub-model configurations and investigate

their effects. We consider the following variants:

• Lower than the middle. Depending on the number of lay-

ers L, the optimal ratio of lower layers to higher layers may

differ. To find the effect of position of the intermediate loss,

we consider lower position than middle, e.g., ⌊L/4⌋, for the

sub-model.

• Multiple sub-models. We consider multiple sub-models

rather than only one. For the number of sub-models K, we

compute the following loss:

−
1

K

K
∑

k=1

PCTC(y|x⌊ kL

K+1⌋
). (15)

For K = 1, the loss corresponds to Eq. (13).

• Random position. We also consider randomly choosing sub-

model among multiple models. We introduce a uniform ran-

dom variable u with range from ⌊L/2⌋ to L− 1, and choose

u-th layer for the intermediate representation.

We show the experimental results at Section 4.2.

3.2. Stochastic variant of Intermediate Loss

In Eq. (14), we compute the weighted sum of the two sub-models.

Instead, we may compute the stochastic variant of the loss, like

stochastic depth, as follows. Let b a Bernoulli random variable which

takes value 1 with probability w. the stochastic intermediate CTC

objective is:

L′ :=

{

LCTC if b = 0,

LInterCTC otherwise.
(16)

The loss coincides with Eq. (14) in expectation.

We argue the deterministic version is better than stochastic one

for gradient-based learning even if they have same expected value.

For the stochastic variant, the loss and its gradient only have access

to LInterCTC if b = 1, and the model may forget features useful for

LCTC but not for LInterCTC. On the other hand, the deterministic vari-

ant always computes two losses at the same time, therefore, the risk

of forgetting features is low.

At Section 4.2, we experimentally show while the stochastic

variant also improves the model, it is not so effective as the deter-

ministic one.

3.3. Application to other non-autoregressive ASR: Mask CTC

Mask CTC [13] consists of an encoder, a CTC layer on top of the

encoder, and a conditional masked language model (CMLM) [18].

During decoding, the model first generates initial hypotheses

from the CTC layer, and replaces any token of low probability (be-

low a given threshold) with special token <MASK>. The CMLM

predicts the token of masked position given the masked hypothesis.

During training, the target y is randomly masked and fed to

CMLM. The CMLM predicts the token of masked position for the

masked input. Let yobs the masked input and ymask the prediction for

the mask. The training objective is:

−wCTC logPCTC(y|xL)−(1−wCTC) logPCMLM(ymask|yobs, xL)
(17)

with hyper-parameter wCTC.

As the initial hypothesis is predicted from the CTC layer, its per-

formance is crucial for the overall performance. We aim to improve

the CTC layer using the proposed intermediate loss. We take the

intermediate output x⌊L/2⌋ from the encoder and compute the in-

termediate CTC probability PCTC(y|x⌊L/2⌋). The extended training

objective is:

−wCTC logPCTC(y|xL)−wInterCTC logPCTC(y|x⌊L/2⌋)

− (1− wCTC − wInterCTC) logPCMLM(ymask|yobs, xL). (18)

We present the experimental result for Mask CTC at Section 4.3.

3.4. Related work

Hierarchical CTC [26–28] (HCTC) introduced an auxiliary CTC

task based on the assumption that different layers learn different

level of abstraction. While HCTC looks similar to intermediate

loss, it requires additional labeling effort (e.g., phoneme) or various

tokenization (e.g., sub-word for high-level and character for low-

level), which may not be applicable for certain cases, e.g., when the

character-based tokenization is the best effort for the data like Man-

darin and Japanese [29]. In contrast, intermediate CTC is based on

the sub-model regularization, therefore it does not require additional

low-level labels, and it is natural to combine intermediate CTC with

stochastic depth.

[30] and [31] introduced additional networks to train the in-

termediate layer of the encoder for CTC and RNN-Transducer [32]

respectively. We note that intermediate CTC does not require addi-

tional network, and has very little overhead at the training time, in

contrast to [31], due to the structure of CTC architecture.

4. EXPERIMENTS

We evaluate the performance of intermediate CTC loss on the three

corpora: Wall Street Journal (WSJ) [33] (English, 81 hours), TED-

LIUM2 [34] (English, 207 hours), and AISHELL-1 [35] (Chinese,

170 hours). We use ESPnet [29] for all experiments. We use 80-

dimensional log-mel feature and 3-dimensional pitch feature for the

input, and apply SpecAugment [36] during training. For WSJ and

AISHELL-1, we tokenize label sentences as characters. For TED-

LIUM2, we tokenize label sentences as sub-words with sentence-

piece [37].

For WSJ, the model is trained for 100 epochs. For TED-LIUM2

and AISHELL-1, the model is trained for 50 epochs. After training,

the model parameter is obtained by averaging models from last 10

epochs. Note that we do not use any external language models (LMs)

or beam search, and only use greedy decoding for CTC. Thus, all

experiments are based on the non-autoregressive setup in order to

keep the benefit of fast and parallel inference of CTC.

4.1. Results

We show the experimental results for Transformer and Conformer

architectures. For each architecture, we compare four regularization

configurations:

• Baseline (no regularization)

• Intermediate CTC (“InterCTC”)

• Stochastic depth (“StochDepth”)

• Intermediate CTC + Stochastic depth (“both”)

For Transformer, we use 12-layer, 24-layer and 48-layer mod-

els. Table 1 shows the word error rates (WERs) for WSJ and TED-

LIUM2, and character error rates (CERs) for AISHELL-1.

For all of the experiment, intermediate CTC gives an improve-

ment over the baseline model. Stochastic depth improves 24-layer

and 48-layer models, but does not improve 12-layer models well

for WSJ and AISHELL-1. Using both the intermediate loss and

the stochastic depth gives better result than using only one of them.

Thus, we conclude the two methods have complimentary effects.

Additionally, we apply intermediate CTC to 6-layer Transformer

for WSJ, and get WER improvement from 21.1% to 18.3%. This

suggests the intermediate CTC is still beneficial for smaller net-

works.

For Conformer, we use 12-layer model. The results are at

Table 2. Again, intermediate CTC gives consistent improvement

Table 1. Word error rates (WERs) and character error rates (CERs)

for Transformer. See section 4.1 for details.

WSJ TED-LIUM2 AISHELL-1

(WER) (WER) (CER)

dev93 eval92 dev test dev test

12-layer 20.1 16.5 14.8 14.0 5.8 6.3

+ InterCTC 17.5 13.6 13.3 12.3 5.7 6.2

+ StochDepth 19.8 16.2 13.8 13.1 5.9 6.4

+ both 16.8 13.7 13.2 12.1 5.7 6.1

24-layer 17.8 13.9 12.6 12.2 5.4 5.9

+ InterCTC 15.3 12.4 11.5 10.6 5.1 5.6

+ StochDepth 16.3 12.7 11.9 11.2 5.2 5.7

+ both 14.9 11.8 10.9 10.2 5.2 5.5

48-layer 16.6 13.8 11.6 10.9 5.1 5.7

+ InterCTC 14.9 12.6 10.7 10.3 5.1 5.5

+ StochDepth 15.6 12.9 11.0 10.2 5.0 5.4

+ both 14.2 11.8 10.3 9.9 4.9 5.3

Table 2. Word error rates (WERs) and character error rates (CERs)

for Conformer. See section 4.1 for details.

WSJ TED-LIUM2 AISHELL-1

(WER) (WER) (CER)

dev93 eval92 dev test dev test

12-layer 15.2 12.4 10.5 9.8 5.4 6.0

+ InterCTC 13.4 10.8 9.7 9.1 5.1 5.6

+ StochDepth 13.1 10.8 11.1 10.7 5.2 5.8

+ both 12.0 9.9 10.8 9.9 4.7 5.2

over baseline. Stochastic depth gives improvement for WSJ and

AISHELL-1, but does not give improvement for TED-LIUM2.

The combination of intermediate loss and stochastic depth

achieves WER 9.9% for WSJ and CER 5.2% for AISHELL-1. For

WSJ, it outperforms the previously published non-autoregressive

results [13, 14, 38], and is close to the state-of-the-art autoregres-

sive result (9.3%) [39]. Also, for AISHELL-1, it outperforms

Transformer-based encoder-decoder models [40, 41], and is close

to the state-of-the-art autoregressive result (5.1%) [42]. Note that

the referred state-of-the-art results use an autoregressive decoder

and [42] also uses an external LM. On the other hand, our result is

solely based on CTC with greedy decoding, without LM or beam

search.

4.2. Study on Intermediate Loss design

To compare the proposed intermediate loss to the position variants

(Section 3.1) and the stochastic variant (Section 3.2), we conduct

additional experiments for WSJ corpus. The result is at Table 3. We

conduct the following experiments:

• Lower position. We conduct this variant for the 24-layer

model, which is sufficiently deep to consider a lower posi-

tion. We used 6th layer for the experiment. Despite the deep

network, the variant performs slightly worse than the default.

• Multiple positions. We conduct this variant for the 24-layer

and the 48-layers, which are very deep and more sub-models

may help. We use K = 3 for 24-layer and K = 7 for 48-

layer, to select all layer positions of power of 6. It gives a

small improvement for the 24-layer, but gives a mixed result

for the 48-layer.

• Random position. We conduct this variant for all models.

The result is mixed: it gives no improvement for the 12-layer

and the 24-layer, although a small improvement for 48-layer.

Table 3. Word error rates (WERs) of the intermediate loss variants

for WSJ. See Section 4.2 for details.
dev93 eval92

12-layer Default 17.5 13.6

Random 17.4 14.3

Stochastic 19.0 15.0

24-layer Default 15.3 12.4

Lower 15.8 12.9

Multiple 15.1 12.0

Random 15.4 12.4

48-layer Default 14.9 12.6

Multiple 15.4 12.1

Random 14.7 12.0

Table 4. Word error rates (WERs) of Mask CTC-based non-

autoregressive ASR for WSJ. See Section 4.3 for details.

threshold dev93 eval92

12enc-6dec 0.0 16.5 13.5

0.999 15.7 12.9

+ InterCTC 0.0 14.4 11.6

0.999 14.1 11.3

Mask CTC [13] 0.999 15.4 12.1

Align-Refine [38] - 13.7 11.4

• Stochastic variant. We conduct this variant for 12-layer

model. As discussed in Section 3.2, the stochastic variant

is worse than the deterministic one, although it is still better

than no regularization.

From the experimental results, we conclude that the proposed

design is a simple yet reasonable choice among the variants.

4.3. Application to other non-autoregressive ASR

We present an experimental result of Mask CTC-based non autore-

gressive ASR and intermediate loss, as described at Section 3.3. The

WSJ corpus is used for the experiment. We use wCTC = 0.3, and

for intermediate CTC variant, we also use wInterCTC = 0.3. We use a

Transformer model with 12-layer encoder and 6-layer decoder. The

model is trained for 500 epochs and parameters of last 60 epochs are

averaged.

Table 4 shows the WERs for Mask CTC. The second column

indicates the threshold of probability for CTC prediction; Mask CTC

uses 0.999 by default. If threshold is 0.0, the model does not use the

decoder and just treats the CTC result as the final prediction. We see

the intermediate CTC improves the performance of CTC prediction,

from 13.5% to 11.6%. We also see the improvement of CTC leads

the overall improvement of Mask CTC, as the WER reduced from

12.9% to 11.3%. It is also lower than Align-Refine [38] (11.4%)

which improves Mask CTC by modifying the role of CMLM. This

shows the intermediate loss helps the training of Mask CTC.

5. CONCLUSION

We present intermediate CTC loss, an auxiliary task for improving

CTC-based speech recognition. The proposed loss is easy to imple-

ment, has small overhead at training time and no overhead at test

time. We empirically show the intermediate CTC loss improves

Transformer and Conformer architectures, and combining the loss

with stochastic depth further improves training, reaching word er-

ror rate (WER) 9.9% on WSJ and character error rate (CER) 5.2%

on AISHELL-1, without an autoregressive decoder or external lan-

guage model.

6. REFERENCES

[1] Jan K Chorowski et al., “Attention-based models for speech

recognition,” in Proc. NeurIPS, 2015.

[2] W. Chan et al., “Listen, attend and spell: A neural network for

large vocabulary conversational speech recognition,” in Proc.

ICASSP, 2016.

[3] L. Dong, S. Xu, and B. Xu, “Speech-transformer: A no-

recurrence sequence-to-sequence model for speech recogni-

tion,” in Proc. ICASSP, 2018.

[4] Shigeki Karita et al., “Improving Transformer-Based End-to-

End Speech Recognition with Connectionist Temporal Clas-

sification and Language Model Integration,” in Proc. Inter-

speech, 2019.

[5] Anmol Gulati et al., “Conformer: Convolution-augmented

transformer for speech recognition,” in Proc. Interspeech,

2020.

[6] Alex Graves et al., “Connectionist temporal classification: la-

belling unsegmented sequence data with recurrent neural net-

works,” in Proc. ICML, 2006.

[7] Vineel Pratap et al., “Scaling up online speech recognition

using convnets,” in Proc. Interspeech, 2020.

[8] S. Kriman et al., “Quartznet: Deep automatic speech recog-

nition with 1d time-channel separable convolutions,” in Proc.

ICASSP, 2020.

[9] Alexei Baevski et al., “wav2vec 2.0: A framework for

self-supervisedlearning of speech representations,” in Proc.

NeurIPS, 2020.

[10] Yajie Miao, Mohammad Gowayyed, and Florian Metze,

“EESEN: End-to-end speech recognition using deep rnn mod-

els and wfst-based decoding,” in Proc. ASRU, 2015.

[11] Sei Ueno et al., “Acoustic-to-word attention-based model com-

plemented with character-level ctc-based model,” in Proc.

ICASSP, 2018.

[12] Nanxin Chen et al., “Listen and fill in the missing letters: Non-

autoregressive transformer for speech recognition,” 2020.

[13] Yosuke Higuchi et al., “Mask ctc: Non-autoregressive end-to-

end asr with ctc and mask predict,” in Proc. Interspeech, 2020.

[14] William Chan et al., “Imputer: Sequence modelling via impu-

tation and dynamic programming,” in Proc. ICML, 2020.

[15] Yuya Fujita et al., “Insertion-based modeling for end-to-end

automatic speech recognition,” in Proc. Interspeech, 2020.

[16] Zhengkun Tian et al., “Spike-triggered non-autoregressive

transformer for end-to-end speech recognition,” in Proc. In-

terspeech, 2020.

[17] Jiatao Gu et al., “Non-autoregressive neural machine transla-

tion,” in Proc. ICLR, 2018.

[18] Marjan Ghazvininejad et al., “Mask-predict: Parallel decoding

of conditional masked language models,” in Proc. EMNLP-

IJCNLP, 2019.

[19] Xuezhe Ma et al., “Flowseq: Non-autoregressive conditional

sequence generation with generative flow,” in Proc. EMNLP-

IJCNLP, 2019.

[20] Raphael Shu et al., “Latent-variable non-autoregressive neural

machine translation with deterministic inference using a delta

posterior,” in Proc. AAAI, 2020.

[21] Ashish Vaswani et al., “Attention is all you need,” in Proc.

NeurIPS, 2017.

[22] Gao Huang et al., “Deep networks with stochastic depth,” in

Proc. ECCV, 2016.

[23] Ngoc-Quan Pham et al., “Very Deep Self-Attention Networks

for End-to-End Speech Recognition,” in Proc. Interspeech,

2019.

[24] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton,

“Layer normalization,” 2016.

[25] K. He et al., “Deep residual learning for image recognition,”

in Proc. CVPR, 2016.

[26] Santiago Fernández, Alex Graves, and Jürgen Schmidhuber,

“Sequence labelling in structured domains with hierarchical re-

current neural networks,” in Proc. IJCAI, 2007.

[27] Kalpesh Krishna, Shubham Toshniwal, and Karen Livescu,

“Hierarchical multitask learning for ctc-based speech recog-

nition,” 2019.

[28] Shubham Toshniwal et al., “Multitask learning with low-level

auxiliary tasks for encoder-decoder based speech recognition,”

in Proc. Interspeech, 2017.

[29] Shinji Watanabe et al., “ESPnet: End-to-end speech processing

toolkit,” in Proc. Interspeech, 2018.

[30] A. Tjandra et al., “Deja-vu: Double feature presentation and

iterated loss in deep transformer networks,” in Proc. ICASSP,

2020.

[31] Chunxi Liu et al., “Improving rnn transducer based asr with

auxiliary tasks,” in Proc. SLT, 2020.

[32] Alex Graves, “Sequence transduction with recurrent neural

networks,” 2012.

[33] Douglas B Paul and Janet M Baker, “The design for the

wall street journal-based CSR corpus,” in Proc. Workshop on

Speech and Natural Language, 1992.

[34] Anthony Rousseau, Paul Deléglise, and Yannick Estève, “En-

hancing the TED-LIUM corpus with selected data for language

modeling and more TED talks,” in Proc. LREC, May 2014.

[35] Hui Bu et al., “Aishell-1: An open-source mandarin speech

corpus and a speech recognition baseline,” in Proc. O-

COCOSDA, 2017.

[36] Daniel S Park et al., “SpecAugment: A simple data augmenta-

tion method for automatic speech recognition,” in Proc. Inter-

speech, 2019.

[37] Taku Kudo and John Richardson, “SentencePiece: A simple

and language independent subword tokenizer and detokenizer

for neural text processing,” in Proc. EMNLP: System Demon-

strations, Nov. 2018.

[38] Ethan A. Chi, Julian Salazar, and Katrin Kirchhoff, “Align-

refine: Non-autoregressive speech recognition via iterative re-

alignment,” 2020.

[39] Sara Sabour, William Chan, and Mohammad Norouzi, “Op-

timal completion distillation for sequence learning,” in Proc.

ICLR, 2019.

[40] S. Karita et al., “A comparative study on transformer vs rnn in

speech applications,” in Proc. ASRU, 2019.

[41] Zhifu Gao et al., “San-m: Memory equipped self-attention for

end-to-end speech recognition,” in Proc. Interspeech, 2020.

[42] Xinyuan Zhou et al., “Self-and-mixed attention decoder with

deep acoustic structure for transformer-based lvcsr,” in Proc.

Interspeech, 2020.

	1 Introduction
	2 Architecture
	2.1 Connectionist Temporal Classification
	2.2 Encoder
	2.3 Stochastic Depth

	3 Intermediate CTC Loss
	3.1 Position variants
	3.2 Stochastic variant of Intermediate Loss
	3.3 Application to other non-autoregressive ASR: Mask CTC
	3.4 Related work

	4 Experiments
	4.1 Results
	4.2 Study on Intermediate Loss design
	4.3 Application to other non-autoregressive ASR

	5 Conclusion
	6 References

