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Abstract—In this paper, we present the submitted system for
the third DIHARD Speech Diarization Challenge from the DKU-
Duke-Lenovo team. Our system consists of several modules: voice
activity detection (VAD), segmentation, speaker embedding ex-
traction, attentive similarity scoring, agglomerative hierarchical
clustering. In addition, the target speaker VAD (TSVAD) is used
for the phone call data to further improve the performance. Qur
final submitted system achieves a DER of 15.43% for the core
evaluation set and 13.39% for the full evaluation set on task 1,
and we also get a DER of 21.63% for core evaluation set and
18.90% for full evaluation set on task 2.

Index Terms—Speaker Diarization, Speaker Recognition, Deep
Learning, Self-attention, Target-speaker Voice Activity Detection

I. INTRODUCTION

Speaker diarization is the task of breaking up the audio into
homogeneous pieces that belong to the same speaker, and it
aims to determine “who spoke when” in a continuous audio
recording. A traditional speaker diarization system always
contains several modules: voice activity detection (VAD),
segmentation, speaker embedding extraction, and clustering.

While this kind of traditional speaker diarization system
has been successful in many domains, including meeting,
interview, conversation, it still difficult to mitigate the success
to more challenging corpora, such as web videos, speech
in the wild, child language recordings, etc. [1]]. One of the
problems is recognizing the speaker in an overlapping region,
and an extremely noisy background is also harmful to a
diarization system. To raise more researchers’ attention on
such challenging data, the third DIHARD speech diarization
challenge was held, where the data is drawn from a diverse
sampling of sources [2].

It is difficult for traditional speaker diarization system to
find the speaker in an overlapping region, but some pre- and
post-processing can be employed to solve this problem. In the
VoxCeleb Speaker Recognition Challenge 2020 (VoxSRC-20)
[3], Xiong et al. [4] employed conformer-based continuous
speech separation (CSS) as the pre-processing to separate
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the overlapping speech. Besides, Ivan et al. used target-
speaker voice activity detection (TSVAD) as post-processing
to predicts the activity of each speaker on each time frame
on the CHIME-6 challenge. Recently, an end-to-end system
was proposed in [Sf, and it can also recognize the speaker in
overlap, which shows a better performance than the traditional
method does in the CallHome corpus.

Our submitted system contains several modules. First, we
partition the data into conversation telephone speech (CTS)
and non-conversation telephone speech (NCTS) since the CTS
data is upsampled to 16k from 8k audio signal. Second, for
CTS and NCTS data, we train an 8k and a 16k speaker
embedding extractor to extract embeddings for audio seg-
ments. Third, we perform different clustering methods on
CTS and NCTS data, including agglomerative hierarchical
clustering (AHC) and spectral clustering (SC). Finally, we
employ TSVAD on the CTS data, which significantly improve
the performance. For task 2, an additional ResNet-based VAD
model is employed to remove the non-speech region from the
data.

The rest of this paper is organized as follows: Section 2
describes the details of the dataset we used in this challenge.
Section 3 introduces our submitted systems and algorithms for
different tasks. Section 4 presents the experimental results and
analysis. Finally, section 5 concludes this paper.

II. DATA PARTITION AND DATA RESOURCES

From the evaluation plan, we notice that the conversation
telephone speech (CTS) data are upsampled from 8kHz audio
signal while others are 16kHz audio signal. In addition, the
CTS data only contains two speakers. Considering that the
CTS data is so different from the remaining non-conversation
telephone speech (NCTS) 16kHz audio signal, we build two
different systems for CTS data and NCTS data. For NCTS
data, we employ the system described in [|6]. For CTS data, we
first use AHC to determine the homogeneous speaker region.
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Fig. 1. The architecture of the VAD model

Then, we extract speaker embedding for each speaker and
perform TSVAD to get the diarization results.

To partition the evaluation set into CTS and NCTS data, we
extract the STFT spectrogram on the first 100 seconds of each
recording and compare the maximum value in the frequency
bin above 4kHz. If this maximum value is greater than the
threshold, the recording is classified as NCTS; otherwise, it
is CTS data. The threshold is 0.07, which is obtained from
the development set. Finally, we downsample the CTS data to
8kHz.

For NCTS data, we use Voxceleb 1 & 2 [7] as the training
dataset for speaker embedding extraction. AMI meeting corpus
[8], ICSI meeting corpus [9] and voxconverse dev set [3]
are used for similarity measurement. MUSAN dataset [10] is
employed for data augmentation.

For CTS data, we first downsample the Voxceleb 1 & 2 data
to 8kHz and then train another speaker embedding model that
is suitable for 8k data. Finally, the TSVAD model is trained
on a collection of SRE-databases, including SRE 2004, 2005,
2006, 2008, and Switchboard.

III. DETAILED DESCRIPTION OF ALGORITHM
A. VAD

The architecture of the VAD model is shown in Figure [I]
The VAD model consists of a ResNet18 [11]], a global average
pooling (GAP) layer, a 2-layer Bi-LSTM with 64 units per
direction as well as a dropout rate of 0.5, and two fully-
connected layers followed by a sigmoid function. The widths
(number of channels) of the residual blocks are {16, 32, 64,
128}, and the corresponding strides are {(1, 1), (1, 2), (1, 2),
(1, 2)}. The dimensions of two fully-connected layers are 64
and 1, respectively. Given a Mel-filterbank, the ResNet18 can
extract the feature maps for speech and non-speech regions.
Then, the GAP layer is employed on each channel and get a C-
dimensional vector for each frame, where C is the number of
channels. Finally, a 2-layer Bi-LSTM captures the sequential
information, and a fully-connected layer predicts the frame-
level speech likelihood.

The VAD model is trained on the DIHARD III development
set, where 90% of data is for training and the remaining
data is for validation. Data augmentation with MUSAN and
RIRS corpora is employed to improve the performance, where
ambient noise and music are used for the background additive
noise and RIRS for reverberation. We do not split the data into
CTS and NCTS in VAD model training.

The acoustic features are 32-dimensional log Mel-filterbank
energies with a frame length of 25ms and a hop size of 10ms.
The data is broken up into 4s segments with a shift of 2s.
During the training phase, we employ the stochastic gradient
descent (SGD) optimizer and the binary cross-entropy (BCE)
loss with an initial learning rate of 0.1. The learning rate
decrease by a factor of 0.1 every 20 epoch. For evaluation,
we also break up all data into 4s segments with 2s overlap.
The output of the overlapping region between two consecutive
segments is the mean of the prediction of these segments. The
decision threshold is set to 0.5.

B. Speaker Embedding Extraction

We adopt the same structure in [[12] as the speaker embed-
ding model, including three components: a front-end pattern
extractor, an encoder layer, and a back-end classifier. We
employ the ResNet34 as the front-end pattern extractor, where
the widths (number of channels) of the residual blocks are {32,
64, 128, 256}. Then, a global statistic pooling (GSP) layer
projects the variable length input to the fixed-length vector.
This vector contains the mean and standard deviation of the
output feature maps. Finally, a fully connected layer extracts
the 128-dimensional speaker embedding. We use the ArcFace
[13] (s=32,m=0.2) as the classifier. The detailed configuration
of the neural network is the same as [[14].

We also perform data augmentation with MUSAN and RIRS
datasets. For the MUSAN corpus, we use ambient noise,
music, television, and babble noise for the background additive
noise. For the RIRS corpus, we only use audio from small and
medium rooms and perform convolution with training data.

The acoustic features are 80-dimensional log Mel-filterbank
energies with a frame length of 25ms and a hop size of 10ms.
The extracted features are mean-normalized before feeding
into the deep speaker network. We train two speaker embed-
ding model. One is trained with 16kHz data, which is used for
NCTS data. Another is trained with 8kHz downsampled data,
which is used in AHC and TSVAD model for CTS data.

C. Segmentation

For NCTS data, we employ uniform segmentation with a
window length of 1.5s and a shift of 0.75s on the speech
region for training, and a window length of 1.5s and a shift
of 0.25s on the speech region for inference.

For CTS data, we first employ uniform segmentation with
a window length of 0.5s and a shift of 0.25s on the speech
region. Then, we extract speaker embedding for each segment
and merge the consecutive segments if the cosine similarity
of these two segments is greater than a predefined threshold.
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Fig. 2. The architecture of the Att-v2s model

After two segments are merged to a new segment, the embed-
ding of this new segment becomes the mean of the previous
two segments. We merge these segments recursively until all
cosine similarity between two consecutive segments is lower
than the threshold. The threshold is set to 0.6, which is tuned
from the development set.

D. Similarity Measurement and Clustering

For NCTS data, we employ an attention-based neural net-
work to measure the similarity between two segments. The
network architecture and training process are the same as
the attentive vector-to-sequence (Att-v2s) scoring in [6]]. The
architecture of this transformer-based model consists of a
multi-head self-attention module and several linear layers, as
Figure [2] shows.

The input m,; is a sequence where each frame is a con-
catenation of two embeddings. Then the similarity matrix S
is extracted as follows:

Si = [Si1, Si2, -+, Sin] = fate(my) )]
L1 T2 ... Tp

where S; is the i-th row of the similarity matrix S, m; is the i-
th row of the network input, and x; is the speaker embedding

Z;

of the i-th segment. For j-th entry m;; = in m;, the

corresponding output is .5;;.

The first linear layer contains 256 units. The self-attention-
based encoder contains two heads with 128 attention units. The
dimension of the last two linear layers is 1024 and 1, followed
by a sigmoid function. During the training phase, we employ
the Diaconis augmentation [15]] on the embedding sequences
with a probability of 0.5 for data augmentation. The binary
cross-entropy (BCE) loss function and the stochastic gradient
descent (SGD) optimizer are employed with an initial learning
rate of 0.01. The learning rate decreases twice to 0.0001 with

mixture speech target speaker's speech

ResNet 34 ] [Speaker Embedding]

Extractor
- speaker
Linear embedding

concat

Im
|

‘ 2-layer Bi-LSTM ]

copy¢
0

frame-level
speaker features

Linear

Fig. 3. The architecture of the TSVAD model

a factor of 0.1. Then, we finetune the model on the whole
development set for 30 epochs with a fixed learning rate of
0.0001, and we do not use a validation set. For inference, we
use the segments with a window length of 1.5s and a shift of
0.25s. Finally, we employ spectral clustering (SC) [16] to get
the diarization result. For more details, please refer to [6].

For CTS data, we use cosine distance to measure the
similarity between two segments. Then, we perform AHC to
cluster these segments. Note that this clustering step is not
to obtain the final diarization result. We want to find the
speech region for each speaker, and the speech region should
contain as less overlap as possible. Since we already know
that CTS data only contains two speakers, we can cluster all
segments into two clusters, and the center of each cluster is
the mean of all speaker embeddings. Since our purpose is to
find two speakers’ speeches without overlap, we set a high
stop threshold of 0.6. And the two clusters will be used to
extract the target speaker embedding for TSVAD later.

After we get these two clusters, we can still assign other
segments to these clusters to get the final diarization results for
comparison. The center embedding for each cluster is fixed.
Once the cosine distance between the speaker embedding of
a segment and each cluster center embedding is lower than
another predefined threshold, we consider it as an overlapping
segment, and it will be added to each cluster. The threshold
is set to 0.0, which is tuned from the development set.

In the next section, we will use these speech regions to
extract the speaker embedding for each speaker and perform
TSVAD to obtain a more accurate result.



E. TSVAD

We only perform TSVAD for CTS data. The model is
similar to the model in [17]], [[18]], but the training strategy
and network architecture are different. First, we only detect
the speech region, which means that the task becomes a binary
classification. Another difference is that we use a ResNet34
to further extract the frame-level speaker identity information
instead of directly using acoustic features. Figure [3] shows
the structure of our TSVAD model. First, a ResNet with a
fully-connected layer extracts the 128-dimensional frame-level
speaker identity vector. Then, the target speaker embedding
is concatenated to each frame of speaker identity vector as
the input of a target speaker detector, which consists of two
Bi-LSTM layers. Finally, a fully-connected layer predicts if
a frame contains the target speaker. The speaker embedding
extractor is the same as the model in Section 3.3.

In the training phase, the parameters of ResNet34 is the
same as the front-end ResNet of the speaker embedding
extractor. These parameters of ResNet34 are frozen during
the early training phase, and we only update the parameters
in the Bi-LSTM and Linear layers. After these parameters
converging, we unfreeze the parameters of the ResNet34 in
the left of Figure 3. Then we train the whole model for several
epochs until converging.

The acoustic features are 80-dimensional log Mel-filterbank
energies with a frame length of 25ms and a hop size of 10ms.
During the training phase, we first use Kaldi Tools [[19] to get
the VAD label for training data. We randomly select 8s of a
speaker’s audio to extract the target speaker embedding and
randomly select 4s to 20s speech as the input of ResNet34 to
extract frame-level speaker identity, as show in Figure |3| The
learning rate is set to 0.0001 when ResNet34 is frozen and
0.00001 when ResNet34 is unfrozen. The stochastic gradient
descent (SGD) optimizer and the binary cross-entropy (BCE)
loss are employed. During the finetuning stage, we use the
first 41 recordings as the finetuning set and the remaining
20 recordings as the validation set. The learning rate is set
to 0.00001. During the inference phase, some post-process
are employed to get the final diarization result. First, we
perform 11-tap median filtering on the output of the neural
network. Then we decide the target speech for each speaker
by a predefined threshold of 0.65. Note that we only perform
TSVAD on the speech region. Thus, some frames may be
misclassified as non-speech because the output of each target
speaker is lower than the threshold. We choose the speaker
with larger output as the target speaker for these frames.

IV. EXPERIMENTAL RESULTS
A. VAD

In the DIHARD III challenge, the VAD labels for the
evaluation set are available in task 1 but should be excluded
from task 2, so we do not test our model on the evaluation set.
The model is trained on the 90% of the development set and
validated on the remaining 10% data. Table [[] shows that the
training accuracy is 96.8% and validation accuracy is 94.9%,
which means that our model is not overfitted.

TABLE I
VAD ACCURACY ON THE DEVELOPMENT SET

Validation set

94.9%

Training set

96.8%

Accuracy

B. Clustering

Table |LI| shows the results of NCTS data, CTS data on the
development set in task 1. For NCTS data, we provide the
DER before finetuning on the development set. For CTS data,
we provide the DER of AHC clustering on the development
set. Note that all result of CTS data is on the last 20 recordings.
For the whole dataset, the result is the combination of the CTS
data and NCTS data on the development set. Table |LII| shows
the total DER on the evaluation set.

TABLE II
SYSTEM PERFORMANCE (DER) ON DEVELOPMENT DATASET (TASK 1)

Dataset Method DER (%)
NCTS att-v2s + SC 16.05
CTS Cosine + AHC 15.07
CTS TSVAD 10.60
CTS (adapt) TSVAD round 1 7.80
CTS (adapt) TSVAD round 2 7.63

C. TSVAD

Table [ also shows the results of the TSVAD model on
the CTS data. We first directly evaluate the performance of
the CTS dataset. Then, we use the first 41 recordings in
the CTS for finetuning (adapt) and test on the remaining 20
recordings. After obtaining the diarization results (round 1)
from the TSVAD model, we extract each speaker’s speech
from this result and feed it to our TSVAD model again to get
the results (round 2). Results show that the DER also decreases
in the 2nd round, but it no longer changes in the later round.

The results show that the TSVAD model significantly re-
duces the DER from 15.07% to 7.63%. Table shows the
total DER with TSVAD on the evaluation set. Since we only
submit our TSVAD-based results to task 2, some entries in
Table [[II] are missed.

D. Discussion

Our TSVAD model shows a good performance on the CTS
data. From the experiments in [[18]], it seems that xvector is
not as good as the ivector as the target speaker’s embedding.
However, in our experiment, the speaker embedding extracted
by the ResNet-based model shows good performance com-
pared with the ivector-based method. The main reason may
be that we use a ResNet34 to further extract the frame-level
speaker feature, which can help the later Bi-LSTM layers
to find the relationship between each frame and the target
speaker’s embedding. Besides, we copy the parameters of
the pre-trained speaker embedding extract to the ResNet34 to
extract the frame-level speaker identity, which speeds up the
converging.



TABLE III
SYSTEM PERFORMANCE (DER) ON EVALUATION DATASET (TASK 1 & 2)

Dataset Method DER on full set (%) DER on core set (%)
task1 NCTS (adapt) & CTS att-v2s + SC & Cosine + AHC 16.34 17.03
NCTS (adapt) & CTS (adapt) att-v2s + SC & TSVAD round 2 13.39 15.43
task2 NCTS (adapt) & CTS att-v2s + SC & Cosine + AHC - -
; NCTS (adapt) & CTS (adapt) att-v2s + SC & TSVAD round 2 18.90 21.63

Although TSVAD shows a good performance on the CTS
data, it has poor performance on the NCTS data. The reason
may be that the NCTS data comes from various domains and
some recordings are extremely noisy. Our speaker embedding
cannot extract enough speaker identity for such noisy record-
ings. We will train our model for each domain in the future.

V. CONCLUSION

In this paper, we provide a detailed description of our
diarization system. We break up the dataset into CTS and
NCTS data and evaluate the performance of them. We also
employ TSVAD for the CTS to find the overlapping region
and reduce the DER. In task 1, our final submission achieves
a DER of 13.39 and 15.43 on the full and core evaluation set.
In task 2, we achieve a DER of 18.90 and 21.63 on the full
and core evaluation set. We rank 4th place on task 1 and 3rd
place on task 2.
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