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Abstract—Synthesized speech from articulatory movements
can have real-world use for patients with vocal cord disorders,
situations requiring silent speech, or in high-noise environments.
In this work, we present EMA2S, an end-to-end multimodal
articulatory-to-speech system that directly converts articulatory
movements to speech signals. We use a neural-network-based
vocoder combined with multimodal joint-training, incorporating
spectrogram, mel-spectrogram, and deep features. The experi-
mental results confirm that the multimodal approach of EMA2S
outperforms the baseline system in terms of both objective
evaluation and subjective evaluation metrics. Moreover, results
demonstrate that joint mel-spectrogram and deep feature loss
training can effectively improve system performance.

Index Terms—articulatory movement, end-to-end, multimodal
learning, neural network, speech synthesis

I. INTRODUCTION

Silent speech interfaces enable people to communicate
without the presence of an acoustic signal. Such techniques
can provide patients who suffer from vocal cord disorders
a more natural alternative way to communicate [I[]. Also,
these techniques can be helpful in situations requiring acoustic
silence, or in high-noise environments, since acoustic signals
are not required as input and thus background noises have a
greatly reduced effect. Various silent speech technologies have
been investigated, including magnetic resonance imaging [2],
[3]], electromyograms [4]], permanent magnetic articulograph
[S, and electromagnetic midsagittal articulography (EMA)
16]-[O.

In this study, we use EMA to collect the articulatory
movements data. EMA records the articulatory movements by
using an electromagnetic field to induce currents in sensors,
which are attached to articulators such as lips and tongue.
Previous studies have proposed several methods to convert
EMA signals towards acoustic features. [[10] uses a codebook
to store articulatory and acoustic parameters pairs, and then
estimates the spectrum of the articulatory data by selecting
neighbor samples in the codebook. Also, statistical models
such as Gaussian mixture models (GMM) [11]], hidden Markov
models (HMM) [[12f], fully connected neural network [13]],
and bidirectional long short-term memory (BLSTM) [[14], [[15]
have been used to map the articulatory movements to acoustic
signals. These studies have indicated that neural-network-
based methods achieve better performance than GMM and

HMM methods. However, they only use neural networks
to map the articulatory movements to spectral features, and
reconstruct the waveform with traditional parametric vocoders
such as STRAIGHT [16] and WORLD [[17]]. Since the neural-
network-based vocoders [18]], [[19]] have shown much superior
performance over traditional parametric vocoders, it is logical
to investigate the performance of using neural networks for
both articulatory-to-spectrum mapping and waveform recon-
struction. We propose an end-to-end multimodal articulatory-
to-speech system, EMA2S, that improves the existing speech
synthesis systems by applying two techniques: (1) a neural-
network-based vocoder and (2) a multimodal jointly training
method with a combined loss. Concerning the first, in addition
to demonstrating much superior performance over the tradi-
tional parametric vocoders, the neural-network-based vocoder
allows further development in an end-to-end trainable system
that directly converts articulatory movements into waveforms.
It is not bounded or required to fit the constraints of parametric
or independently trained vocoders. For the second, we jointly
train with a combined loss of different acoustic features: (a)
the spectrogram loss, (b) the mel-spectrogram loss, and (c)
the deep feature loss of spectral embeddings and articulatory
movement embeddings. The deep feature loss [20] measures
the dissimilarity between articulatory movement embeddings
and spectral embeddings. To calculate the deep feature loss,
both articulatory movements and spectrograms are used as
input data during training, but only articulatory movements
are necessary during inference. The introduction of the deep
feature loss allows synthesis models to learn a better represen-
tation of one modality (articulatory movements) from multiple
modalities (spectrograms and articulatory movements).

Experimental results show that our proposed system out-
performs a previous system in terms of mel-cepstral distortion
(MCD) [21]), perceptual evaluation of speech quality (PESQ)
[22], short-time objective intelligibility (STOI) [23]], character
correct rate (CCR) of a pre-trained automatic speech recogni-
tion (ASR) system [24], and a listening test. For the reason
that users will be more willing to use the device without using
invasive sensors, we investigate the system performance with
only four less invasive EMA sensors. The results reveal that
our proposed system still performs better than the previous
system.



The rest of the paper is organized as follows. Section
introduces the related works. The proposed EMA2S system is
presented in Section Experimental details and results are
given in Section to demonstrate the performance of the
proposed approach. Section [V] concludes our work.

II. RELATED WORK

In this section, we review Parallel WaveGAN (PWG) [19],
multimodal learning [25]], and deep feature loss [20] used in
our proposed model.

A. Parallel WaveGAN

PWG [19] is a non-autoregressive, fast, and effective paral-
lel waveform generation method based on a generative adver-
sarial network [26]]. PWG has shown superior performance to
parametric vocoders, and can train and inference faster than
autoregressive generative models such as WaveNet [18]].

PWG uses a joint training method of the multi-resolution
short-time Fourier transform (STFT) loss and the waveform-
domain adversarial loss. To calculate the adversarial loss,
PWG is composed of two separate neural networks: a genera-
tor and a discriminator. The input of the generator is auxiliary
acoustic features, which are mel-spectrograms and random
noises drawn from a Gaussian distribution, and the output of
the generator is the raw waveform in parallel. The generator
learns a distribution of realistic waveforms by trying to deceive
the discriminator to classify the generated samples as real. On
the contrary, the discriminator learns by correctly recognizing
the generated sample as fake and the ground truth sample as
real.

B. Multimodal Learning

Multimodal learning [25]] aims to learn relating information
from multiple modalities and fill the missing modality given
the observed ones. Numerous research has investigated the
effectiveness of incorporating different features into speech-
related systems, including text [27]-[30], videos [31]—[33],
bone-conducted microphone signals [34]], electropalatography
[35]], and articulatory movements [36[]—[38]].

C. Deep Feature Loss

Deep feature loss [20]] is defined as the dissimilarity of the
embeddings in neural networks. Previous research has shown
that deep features can capture the perceptual features of the
input, and deep feature loss can effectively improve the model
performance without adding the complexity of the processing
network itself [20], [39], [40].

III. PROPOSED METHOD

In this work, we propose an end-to-end multimodal
articulatory-to-speech system (EMA2S) that uses PWG [19] as
a vocoder and incorporates multimodal learning [25]] and deep
feature loss [20]. Unlike previous studies, the deep feature
loss in this work exploits the idea of multimodal learning,
and calculates the dissimilarity of two modalities’ embeddings
(EMA embeddings and spectral embeddings) instead of one
(EMA embeddings). The combination of multimodal learning

and deep feature loss is designed for low resource data such
as EMA signals since a network that extracts deep features
of low resource data (e.g., EMA signals) is more difficult to
obtain or train than a network that extracts deep features of
high resource data (e.g., audio signals). Furthermore, given the
objective to transform EMA signals to speech, the deep feature
loss calculated by EMA embeddings and spectral embeddings
aligns the training of the system.

A. Architecture

Fig. 1| depicts the proposed system, which includes an EMA
encoder E,,q, a spectral encoder Ej.., and a shared decoder
D. The spectral encoder is for guiding the training process of
the EMA encoder and the shared decoder, and the spectral
encoder will not be used in inference - only EMA features are
required in testing. The output of the decoder is a spectrogram.
This spectrogram will be transformed into a mel-spectrogram
and then reconstructed back to waveform by the PWG model.

The spectral encoder contains two BLSTM layers, and the
hidden units of the first and second layers are 196 and 256,
respectively. The BLSTM layers are followed by a linear layer
with 256 units and the rectified linear unit (ReLU). The EMA
encoder consists of two BLSTM layers with 128 and 256
hidden units, followed by a linear layer with 256 units and
the ReLU. The shared decoder consists of three BLSTM layers
with 256 hidden units, a linear layer with 513 units, and the
ReLU.

B. Training Stages and Loss Function

The training process contains two stages. The first stage
is to train the spectral encoder Ej.. and the shared decoder
D. The second stage is to train the EMA encoder E.,,, and
shared decoder D.

In the first stage, Espe. and D are optimized by minimizing
LM which is the reconstructed loss of spectral features,
including spectrogram loss Lg;,)ec and mel-spectrogram loss

LQL)@Z. LM is defined as follows:
L) = |D(Eapec(s)) — s
1
L3}, = [M(D(Bapec(s))) — M(s)| )
1 = 1)+ 1),

where s is the input spectrogram and M is the mapping from
spectrogram to mel-spectrogram.

In the second stage, E.,,, and D are optimized by min-
imizing L(®) which combines the reconstructed spectrogram
loss Lsf,)ec, the reconstructed mel-spectrogram loss Lg)el, and
the deep feature loss L((;). In this stage, the spectrogram and
mel-spectrogram are reconstructed from EMA embeddings
rather than spectral embeddings. The deep feature loss Ll(;c)
measures the dissimilarity between EMA embeddings and
spectral embeddings. We want the EMA embeddings close
to spectral embeddings because we assume that we can more
easily reconstruct the spectrograms and mel-spectrograms by

the spectral embeddings. L(® is defined as follows:
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where e is the input EMA signal.

IV. EXPERIMENTS

A. Experimental setup

In this study, we use the EMA data collected by NTT,
Tokyo, Japan [41]]. The sensor coils of EMA sensors are
placed at the upper lip (UL), lower lip (LL), upper jaw (UJ),
lower jaw (LJ), tongue tip (T1), tongue blade (T2), tongue
dorsum (T3), tongue rear (T4), and velum (VM) as shown in
Fig. 2] EMA records the Cartesian coordinates of each sensor
point at a sampling rate of 250 Hz, and the audio signals
are recorded at the same time with a sampling rate of 16
kHz. The dataset contains articulatory movements and speech
signals from three speakers, each providing 354 utterances.
The training set includes 304 utterances from each speaker,
and the testing set includes the remaining 50 utterances.

Fig. 2. The placement of EMA sensors.

We divide the EMA signals by the maximum value for
normalization, and we concatenate + frames for a five-frame
context window. For speech signals, we convert waveforms
to spectrograms by STFT and only use the magnitude com-
ponents to train the proposed model. The STFT settings are
the same as that of the pre-trained PWG model, which use a

window size of 1024 and a hop length of 256. The PWG used
in this work was pre-trained under the Japanese corpus JNAS
[42], which has the same sampling rate as that of our dataset.

We evaluate our results with objective evaluation metrics
including MCD [21]], PESQ [22], STOI [23]], and CCR of a
pre-trained ASR [24] system. We measure speech quality by
using MCD and PESQ, and we evaluate speech intelligibility
with STOI and CCR of a pre-trained ASR system. The CCR
is calculated using Levenshtein distance [43]].

For subjective evaluation, we conduct an A/B test for
subjective listening tests. The A/B test compares the baseline
system and the proposed system to determine which one brings
better signal quality. The testing data contain five questions for
each of the three speakers, resulting in a total of 15 questions.

B. Baseline System

The baseline system is based on the work in [15]], which
is composed of three fully-connected layers, a layer nor-
malization [44] layer, a sigmoid layer with 128 units, two
layers of BLSTM with 256 units, and a fully-connected output
layer. The input of the model is the EMA signal, while the
target is the concatenated feature of mel-cepstrum, aperiodic
parameters, FO and voice activity detection (VAD). WORLD
[17] is used to extract the feature parameters of spectral
envelope, aperiodic parameters and FO. The spectral envelope
is further processed into mel-cepstrum, and FO is further
processed into VAD. Each feature parameter was normalized
to zero mean and unit standard deviation. During inference,
WORLD generates a speech signal using the synthesized
speech parameters. Note that we skip the dynamic features
(delta features) and maximum likelihood parameter generation
algorithm used in [15]] because we have already considered the
forward and backward time series of the input EMA data.

C. Experimental results

1) Perceptual Analysis: Fig. 3] visualizes the ground truth
spectrograms as well as the reconstructed spectrograms. The
results show that reconstructed spectrograms are visually close
to the ground truths, which reveal that EMA signals can
be successfully transformed into speech signals. Also, as



Loss Eapec | MCD | PESQ | STOI | CCR

Baseline 7815 | 1279 | 0.696 | 0.818

S Lg?ec X | 8264 | 1259 | 0679 | 079

S L., L?, X | 7334 | 1320 | 0702 | 0841

S L. L., L&f) v | 8445 | 1303 | 0697 | 0.831

EMA2S JAONAE) v 7176 | 1.350 | 0.716 | 0.868
TABLE I

TRAINING LOSS AND THE NUMERICAL ANALYSIS OF THE ARTICULATORY-TO-SPEECH SYSTEMS.

indicated in the red boxes, the proposed EMA2S generated
speech with more details in the high-frequency bands and less
unnatural formant structures than the baseline system.

Baseline

EMA2S

Fig. 3. Visualization of spectrograms.

2) Numerical Analysis: To evaluate the combined loss, we
compared EMA2S performance with three configurations of
the articulatory-to-speech system (SI, S, and Si). SI has no
spectral encoder E.., and is trained with only spectrogram
loss LEPLC St is SI trained with both spectrogram loss Lép)ec
and mel-spectrogram loss Lfnil. Sur is St with multimodal

jointly training. It has a spectral encoder, and is trained with

spectrogram loss Lg%,)ec, Lg,)ec, and deep feature loss Lfif)

Table |I| organizes the corresponding training losses and
shows the performance of the different articulatory-to-speech
systems, including the baseline, SI, SII, SiiI, and the proposed
EMAZ2S. The check mark in the column FEg,.. indicates
whether the system contains a spectral encoder that used for
multimodal learning. The results reveal that EMA2S outper-
forms the baseline system in terms of MCD, PESQ, STOI,
and CCR. Moreover, the performance of the articulatory-to-
speech system can be improved by training the system with a
combined loss of spectrogram and mel-spectrogram and using
the multimodal jointly training method.

3) Listening Test: We recruited 10 participants for an A/B
test. Each participant must answer 15 questions, and each
question contains two speech waveforms of the same utterance.
One of the waveforms is generated by the baseline system, and
the other is generated by our EMA2S system. The participants
are asked to choose which waveform they prefer. Experimental
results in Fig. [ reveals that an average of 83% participants

voted for the proposed EMA2S system, and the remaining
17% of participants voted for the baseline system.

Speaker 1

Speaker 2

Speaker 3

Average
W Baseline BEMA2S

Fig. 4. The results (in percentage) of the A/B listening test.

4) Further Analysis: Because EMA requires a laboratory
environment for recording, we test EMA2S with only four less
invasive sensors (UL, LL, LJ, and T1) to improve the appli-
cability of the system, reasoning that without using invasive
sensors, users will be more willing to use the devices. Fig. [3]
shows that EMA2S with only four sensors (denoted as fewer)
can still achieve better performance than the baseline system.

14
13

12 1 05
1.1 ‘\\ s I I Q I 025
p NE 055 ) 0

1
s

PESQ STOI CCR
% Baseline (fewer) % EMAZ2S (fewer)
Baseline B EMA2S

Fig. 5. The average scores of different articulatory-to-speech systems.

V. CONCLUSION

We propose EMAZ2S, an end-to-end multimodal
articulatory-to-speech system that uses (1) a neural-network-
based vocoder and (2) a multimodal jointly training method
with a combined loss of spectrogram, mel-spectrogram, and
the deep feature. Experimental results reveal that our proposed
EMAZ2S system outperforms the baseline system in terms
of objective evaluation metrics and a subjective listening
test. In the future, we plan to increase the naturalness of
the synthesized speech by incorporating a natural language
model in the articulatory-to-speech system, and improve the
performance of the system with limited sensors as input.
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