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Symmetry-broken electronic phases support neutral collective excitations. For 

example, monolayer graphene in the quantum Hall regime hosts a nearly ideal 

ferromagnetic phase at filling factor ν=1 that spontaneously breaks spin rotation 

symmetry1–3. This ferromagnet has been shown to support spin-wave excitations known as 

magnons which can be generated and detected electrically4,5. While long-distance magnon 

propagation has been demonstrated via transport measurements, important 

thermodynamic properties of such magnon populations—including the magnon chemical 

potential and density—have thus far proven out of reach of experiments. Here, we present 

local measurements of the electron compressibility under the influence of magnons, which 

reveal a reduction of the ν=1 gap by up to 20%. Combining these measurements with 

estimates of the temperature, our analysis reveals that the injected magnons bind to 

electrons and holes to form skyrmions, and it enables extraction of the free magnon 

density, magnon chemical potential, and average skyrmion spin. Our methods furnish a 



novel means of probing the thermodynamic properties of charge-neutral excitations that is 

applicable to other symmetry-broken electronic phases. 

The interplay between electron-electron interactions and isospin degeneracy in Landau 

levels can give rise to symmetry-broken states such as quantum Hall ferromagnets (QHFMs)1,2. 

The spin polarized ν=1 state in monolayer graphene stands out due to its remarkable magnetic 

properties3 and represents a unique platform for exploring charge-neutral spin excitations that 

may be useful for spintronics applications. Recent transport experiments have shown that voltage 

biases exceeding the Zeeman energy scale EZ=gµBB provide enough energy for electrons in the 

ν=1 edge channel to flip their spin and scatter out of the edge channel. This transition launches a 

magnonic excitation that may propagate through the bulk and produce a non-local voltage that 

can be detected microns away4,5. However, measurements of the thermodynamic properties of 

this magnon system—critical for harnessing these novel charge-neutral excitations—remain 

outside the reach of both transport studies and conventional direct magnetic sensing owing to the 

dilute magnetization of the system. Here, we perform local electronic compressibility 

measurements of the ν=1 QHFM with a scanning single electron transistor (SET) and examine its 

response to the presence of magnons. We find that pumping magnons into the system results in a 

marked reduction of the charge gap, typically of about 15-20%. We argue that the gap reduction 

is a result of magnons binding with electrons or holes to form skyrmions, which, together with 

estimates of the temperature, allows us to determine the local magnon chemical potential and 

free magnon density in the system. The method of extracting thermodynamic properties of 

magnons introduced in our experiments suggests novel routes toward realizing and probing 

Bose-Einstein condensation in quantum Hall ferromagnets6, and is more broadly applicable to 

other flat-band systems with spontaneously symmetry-broken states.  



The device and measurement setup are shown in Fig. 1a-b. The hBN-encapsulated 

graphene device rests on a standard conducting Si/SiO2 substrate, and a narrow top gate (TG) 

covers part of the device to enable independent tuning of the local filling factor νTG. Fig. 1c 

shows the two-terminal conductance G2T between contacts 2 and 3 as a function of back-gate 

filling factor ν and DC bias VDC at a magnetic field B=11 T. Consistent with previous studies4,5, 

for –EZ< VDC <EZ, we see that G2T exhibits a plateau as a result of the quantization of σxy. 

However, the quantized Hall plateau disappears as soon as |VDC| reaches EZ, signaling the onset 

of magnon generation and absorption processes.  

To study the dependence of the ν=1 gap on the magnon population, we measure the 

electron chemical potential as a function of filling factor µ(ν) at each value of VDC. Fig. 1d shows 

two representative measurements of the electron chemical potential µ(ν) near ν=1, with top-gate 

voltage VTG = 0. Here, µ(ν) jumps sharply as ν passes through 1 due to the ν=1 gap, with the 

latter taken to be the maximal excursion of µ. The trace at VDC =10 mV (red curve in Fig. 1d) 

clearly exhibits a reduced gap compared to that at 0 mV (blue curve in Fig. 1d). A detailed VDC 

dependence of the gap values (summarized in Fig. 1e) exhibits a striking resemblance to that of 

the transport behavior. Specifically, the gap begins to change principally when VDC exceeds EZ, 

initially dropping sharply and reaching a ~20% suppression at the highest biases investigated. 

The gap reduction shown in Fig. 1d-e, observed at many different locations (see Extended Data 

Fig. 1), demonstrates the remarkable sensitivity of the ν=1 gap to the presence of magnons. 

An important piece of evidence that the ν=1 gap suppression observed for DC biases 

|VDC|>EZ results from magnon generation and absorption is its dependence on νTG. As a 

consequence of the spin order present in the region under the TG, magnons propagate freely 

across when νTG = ±1, but only weakly for νTG = 0 and not at all for νTG = ±2. Fig. 2a shows the 



AC nonlocal voltage VNL measured across contacts 5 and 6, normalized by the AC bias VAC 

applied between contacts 2 and 3. In addition to the vanishing nonlocal voltage for |VDC|<EZ, we 

find that for |VDC|>EZ, no significant signal is detected for |νTG|>2 nor for νTG=0; on the other 

hand, a strong non local-voltage is seen for 0<|νTG|<2, in accordance with the expected transport 

characteristics shown in previous studies4,5. Next, we perform gap measurements near contact 5 

as a function of νTG and VDC, using the same contacts for magnon generation. Fig. 2b shows the 

reduction in gap at each VDC, determined by subtracting from each point the average of the three 

traces with |VDC|<EZ at each νTG. As in the case of the transport measurement (Fig. 2a), 

deviations in the ν=1 gap are only observed for |VDC|>EZ and 0<|νTG|<2. Intriguingly, the bias 

dependence of the gap and the behavior of VNL appear to define three regimes. First, biases 

|VDC|<EZ result in no magnon generation and thus leave the gap intact. Second, for biases 

EZ<|VDC|≲4EZ the gap is suppressed rapidly and the magnitude of the VNL is large. Finally, for 

larger biases |VDC|≳4EZ the suppression is more gradual and the magnitude of VNL is vanishingly 

small. Overall, the observed similarities between the νTG dependence of VNL and the gap 

unambiguously establish that the gap suppression results from magnon propagation into the bulk.  

The first step toward understanding the gap suppression is to identify the nature of the 

charge excitation associated with the ν=1 gap in the absence of magnons. Theoretical studies2,7–12 

have proposed that the lowest-lying charged excitations at ν=1 are finite-size skyrmions, 

consisting of a single charge ±e “dressed” by one or more extra overturned spins or a valley 

texture. While valley skyrmions are believed to set the ν=1 gap under certain idealized 

conditions10–12, we find that they are unlikely to play a role in our observations (see Methods). 

For skyrmions comprised of flipped spins (referred to as “spin skyrmions”), the excitation energy 

is determined by the competition between EZ  and the exchange energy: larger skyrmions are 



favored by the exchange interaction, at the expense of EZ per flipped spin, resulting in an optimal 

number of flipped spins of order unity. To illustrate this point, we consider a model of spin 

skyrmions with s flipped spins13, whose occupation follows a Boltzmann distribution (see 

Methods). We also include electron-hole asymmetric Wigner crystal (WC)-like terms in the total 

energy to account for the regions of negative slope in µ stemming from the effects of correlation 

(Fig. 1d)14, along with an overall Gaussian broadening of µ(ν) to account for disorder. Extended 

Data Fig. 2 shows the best fits to the data using this phenomenological model. The satisfactory 

agreement between the fit and the data at many different locations validates our model and 

allows us to determine the Coulomb energy EC, which sets the overall scale for the skyrmion and 

magnon energies (see Methods), to be around 21.4 meV. Most notably, we find that <s>, the 

mean number of extra spins carried by a charge excitation, is less than 6% of an electron spin in 

the absence of injected magnons, establishing that the lowest-lying charge excitation consists of 

bare electrons and holes. 

The observed gap suppression can be naturally captured by extending the 

phenomenological spin skyrmion model to incorporate the presence of magnons15 (see Methods), 

where we describe the magnons by an effective Bose-Einstein distribution with chemical 

potential µm and electron temperature T. Since each magnon represents one flipped spin and 

therefore one unit of EZ, pumping magnons into the system amounts to externally supplying 

some of the work needed to flip spins. Assuming there is equilibration between the charge 

excitations and the free magnons, this results in a reduction of the Zeeman free-energy cost by 

µm per flipped spin for the spin skyrmion, favoring the formation of skyrmions over bare 

electrons or holes and thus suppressing the overall charge gap. To compare the predictions of this 

model with our experiments, we compute the ν=1 gap as a function of µm and T with the 



parameters obtained by fitting the measured zero-bias µ(ν) curves (see Fig. 3a and Methods). 

The results of these calculations indicate that considerable enhancements of µm and T are 

required to achieve the measured gap suppression at large biases (see constant gap contours in 

Fig. 3a). 

In order to use our model to extract the magnon chemical potential µm, an independent 

estimate of the electron temperature T as a function of DC bias is required. Such an estimate is 

furnished by a measurement of the longitudinal resistance Rxx in the presence of magnon 

pumping. Keeping contact 2 grounded, we apply an AC bias between contacts 1 and 4 and 

measure the longitudinal AC voltage Vxx across contacts 5 and 6. We emphasize that this 

measurement of Rxx is different than the non-local voltage and is not expected to be directly 

sensitive to contributions from magnon generation and absorption (see Methods). Strikingly, we 

find that the measured Rxx displays a sudden increase for |VDC|>EZ, indicative of its magnon 

origin. The comparison of the bias-dependent Rxx measurement with a measurement of Rxx at 

zero bias as a function of temperature (Fig. 3c) suggests that injecting magnons into the system 

results in the electron temperature heating up to approximately 3 K. By finding the best-fit 

temperature for each VDC, we extract quantitative values of the electron temperature T (Fig. 3d), 

which spans three distinct regimes. In the low-bias regime |VDC|<EZ, no magnons are generated 

and T remains at base temperature. Between EZ and approximately 4EZ, T increases rapidly as a 

function of bias. Finally, above ~4EZ, T saturates and once again remains constant to the highest 

biases investigated. We have performed similar estimates using a variety of circuit 

configurations, both two- and four-terminal (Extended Data Figs. 3, 4 and 5), which point to a 

similar range of temperatures. 



Estimates of T(VDC) and the results of our model calculations allow us to relate the 

measured gap values to µm. Specifically, we determine µm(VDC) (Fig. 3e) by matching our 

measured gap values and T to the simulation results (Figs. 3a and d, see Extended Data Fig. 6 for 

analysis at another location). As in the case of T, the measured gap, and VNL, we find that 

µm(VDC) exhibits three separate regimes. At low bias |VDC|<EZ, we have µm=0 in accordance with 

the general properties of the Bose-Einstein distribution. At intermediate bias EZ<|VDC|≲4EZ, we 

observe no increase in µm, despite the presence of magnon transport signatures in VNL (Extended 

Data Fig. 7). Thus, the behavior of the measured gap in the intermediate bias regime can be 

explained as a result of heating due to the injected magnons without invoking the possibility of 

skyrmion formation. At high bias, 4EZ≲|VDC|, where T ~ 3 K, we extract values of µm in excess 

of zero, as expected in the presence of magnon pumping. We emphasize that the gap suppression 

observed in this regime cannot be explained by heating alone, as this would require the 

temperature to continue to increase linearly beyond VDC=±5 mV and reach as high as 6 K at 

VDC=±10 mV, in direct contradiction to the temperature estimated from our zero-bias Rxx 

measurements (Figs. 3b-c and Extended Data Fig. 3).  

Further insight can be gained by examining the density nm of equilibrated free magnons 

obtained from our calculations and the mean number of overturned spins per skyrmion <s> as a 

function of VDC. Fig. 3f shows the extracted nm(VDC) in units of magnons per flux quantum ϕ0. In 

the range EZ<|VDC|≲4EZ, the finite VNL and gap suppression measurements demonstrate that 

magnons are at work (Extended Data Fig. 7). However, we find that µm does not increase in this 

range and nm therefore remains negligibly small. We speculate that two possible scenarios may 

explain this apparent contradiction. One hypothesis is that for EZ<|VDC|≲4EZ there is an 

additional population of magnons, possibly of very long wavelength, which are not in thermal 



equilibrium with the electrons, and thus are not captured in the computed nm despite contributing 

to G2T and VNL. A second, more exotic possibility is that in fact only a very small number of 

magnons is present in this bias regime, which would imply that a highly efficient mechanism of 

transport is responsible for the changes in G2T and VNL. On the other hand, for 4EZ≲|VDC|, a finite 

population of equilibrated free magnons emerges that appears to scale linearly with VDC. We note 

that for a ~100 µm2 sample at 11 T, the highest equilibrium magnon density of ~3×10-3 per ϕ0 

corresponds to a total number of equilibrated magnons only of order 300. It is possible that a 

population of non-equilibrated magnons also persists in this regime. In any case, these 

observations suggest that the absorption rate of magnons at the contacts may be outpaced by the 

finite population of free magnons, causing VNL to weaken and G2T to level off at high biases 

(Extended Data Fig. 7). Finally, the corresponding <s> (Fig. 3g) displays a similar trend as nm 

and reaches 3 excess overturned spins at the highest biases, consistent with our overall 

mechanism of gap suppression. The reason for the change in behavior as VDC exceeds 4EZ is not 

known.  

In a low-density electron system, correlation effects induced by the Coulomb repulsion 

between carriers can result in negative (inverse) electronic compressibility dµ/dn16,17, which we 

observe at ν=0+ε, ν=1±ε and 2±ε (Figs. 4a-b). The associated correlation energy scale, 

approximated in our model to leading order by the energy of a classical Wigner crystal 𝐸!"~√𝜀, 

governs the magnitude of the negative compressibility. Intriguingly, we find that the negative-

compressibility features at ν=1±ε respond differently to VDC than those at ν=0+ε and 2±ε, with 

those at ν=1± ε being greatly diminished at high bias voltages. The pronounced reduction with 

increasing bias for EZ<|VDC|≲4EZ is presumably due to heating, but the reduction with increasing 

bias beyond this point, where the electron temperature is found to be constant, signals that the 



strength of correlations is suppressed by the presence of magnons. A possible explanation is that 

formation of skyrmions may decrease the magnitude of the correlation energy, because the 

electric charge of a skyrmion is more spread out than for a bare electron or hole in the lowest 

Landau level. Comparison of the averaged negative compressibility for ν=0+ε, ν=1±ε and 2±ε 

(Fig. 4c and d) shows that only near ν=1 is it sensitive to VDC, providing additional evidence for 

the magnon origin. Further study is required to fully establish the microscopic mechanism of 

these effects.   

Looking ahead, the methods of measuring µm demonstrated here can be used to map out 

this important quantity over extended spatial regions. As the gradient of µm is the driving force 

of magnon currents, such studies may provide further new insights into the nature of magnon 

transport in the system18. One can also envision applying our technique to electronic states with 

exotic magnetic order. In particular, the ν=0 state in monolayer graphene has been predicted to 

support spin superfluidity, in which magnons can propagate without dissipation6,19. Our 

experiments also suggest a novel strategy to effectively reduce EZ, or equivalently the spin-g-

factor, by increasing the magnon chemical potential µm, which can be used to drive spin 

transitions in complex systems like fractional quantum Hall states11,20–22. This raises the 

possibility of dynamical control of quantum phases analogous to recent pump probe 

experiments23, but using magnetic excitations instead of THz. Finally, our combined ability of 

manipulating and probing magnon chemical potential is immediately applicable to intriguing 

correlated insulating states recently reported in moiré superlattice systems, which are expected to 

support electrically-addressable neutral excitations similar to the ν=1 QHFM24–26. 
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Methods 

Sample preparation. The device consists of monolayer graphene encapsulated by two layers of 

hexagonal boron nitride on a p-doped Si substrate with a 285 nm layer of SiO2, and was 

fabricated using a dry transfer technique. A gold top gate was defined using electron-beam 

lithography and thermally evaporated Cr/Au. The final device geometry was defined by electron 

beam lithography and reactive ion etching. Edge contacts were made by thermally evaporating 

Cr/Au while rotating the sample using a tilted rotation stage. 

 

Measurements. All measurements were carried out in a 3He cryostat with a base temperature of 

approximately 500 mK. Transport measurements were performed using standard lock-in 

techniques with a 100 µV excitation with frequencies ranging from 17 to 40 Hz. The temperature 

dependent measurements were recorded by applying current to a resistive heater located at the 
3He stage. SET tips were fabricated using the procedure described in Ref. 27. The diameter of 

the SET is approximately 100 nm, and it was held ~300 nm above the encapsulated graphene. 

Compressibility measurements were performed using DC and AC techniques similar to those 

described in Ref. 27. The SET serves as a sensitive detector of the change in electrostatic 

potential 𝛿𝜑, which is related to the chemical potential of the graphene flake by 𝛿𝜇 = −𝑒𝛿𝜑 

when the system is in equilibrium. In the AC scheme used to measure 𝑑𝜇/𝑑𝑛, an AC voltage is 

applied to the Si back gate to weakly modulate the carrier density of the graphene, and the 

corresponding changes in SET current are converted to chemical potential by normalizing the 

signal by that from a small AC bias applied directly to the sample. For DC measurements, an 

analog PID controller is used to maintain the SET current at a fixed value by changing the tip-

sample bias. The corresponding change in sample voltage provides a direct measure of 𝜇(𝑛). 

 

Spin skyrmion model. In order to capture the n=1 gap suppression by the presence of magnons, 

we formulate a skyrmion model that takes into account the effects of finite temperature and non-

zero charge density on the measured chemical potential µ(n). We assume that both the density of 



overturned spins and the deviation from n=1 is small. The energy of an elementary charged 

excitation at n=1, 𝐸#
$,& , is given by  

𝐸#
$,& = 𝜖#

$,& + 5𝑠 + '
(
7𝐸), 

 

where e and h denote electron-like and hole-like excitations, respectively, 𝑠 is the number of 

excess flipped spins (𝑠 = 0 for a bare electron or hole) bound to the charge, 𝜖#
$,& is the energy of 

the charged excitation in the absence of Zeeman coupling (i.e. due to Coulomb interaction 

alone), and 𝐸) = 𝑔𝜇*𝐵 is the Zeeman energy. In the absence of Landau level mixing, particle-

hole symmetry implies 

𝜖#$=𝜖#&. 

The skyrmion energies 𝜖#$ are taken to be 𝜖+$ = 0.6266𝐸,, 𝜖'$ = 0.5737𝐸,, 𝜖($ = 0.5438𝐸,,  

𝜖-$ = 0.5248𝐸,, and 𝜖#.-$ = (0.3133 + /

(#12)
!
"
)𝐸,, where the numbers were taken from finite 

size calculations by Wójs and Quinn13  and the expression for s>3 is an extrapolation which gives 

the correct limiting value for infinite s, while 𝛾 = 0.5320 and 𝑥 = 3.327 are chosen to fit the 

values for s = 2 and 3. The Coulomb energy EC is defined as $
"

45#
, where 𝜀 is the background 

dielectric constant and 𝑙6 is the magnetic length.  Here, however, we treat EC as an adjustable 

fitting parameter, for which we obtain values corresponding to choices of 𝜀 in the range 10.0 to 

12.4.   

If we assume that energy, charge, and SZ are conserved, then maximizing the entropy 

leads to Boltzmann distributions for both species of spin-s skyrmion 

𝑛#$ = 𝑒7(8$%7#9&79)/; 

𝑛#& = 𝑒7(8$'7#9&19)/;, 

where 𝑛#$ and 𝑛#& denote, respectively, the densities of electron-like and hole-like skyrmions with 

𝑠 overturned spins in units of inverse flux quanta, respectively, and we have introduced the 

electron chemical potential 𝜇 and the chemical potential associated with flipped spins—i.e. the 



magnon chemical potential—𝜇<. The total electron and hole densities 𝑛$ and 𝑛& are then given 

by 

𝑛$ = ∑ 𝑛#$# ,	𝑛& = ∑ 𝑛#&# , 

and the total charge density, or equivalently the filling factor ν, is 

n = 1 + 𝑛$−𝑛&. 

These formulae show that, for fixed total density, both the population of charge carriers with 

total spin s and the electron chemical potential—and thus the gap to charged excitations—

depend on the temperature and the magnon chemical potential.   

The above formulation determines the filling factor n as a function of	𝜇, 𝜇<, and 𝑇 under 

the assumption that the charged excitations do not interact. However, the experimental 𝜇$(𝑛) 

curves exhibit strong negative compressibility near n=1, indicating that substantial correlation 

effects are present. At 𝑇=0, for sufficiently low carrier densities, in the absence of impurities, 

electrons or holes are expected to form a Wigner crystal, whose energy per carrier has been 

calculated to be14  

𝐸!"(n) = 𝐸,(−0.782133|n− 1|
!
" + 0.2410|n− 1|

(
" + 0.16|n− 1|

)
") 

 

This would give a contribution to the chemical potential at 𝑇 =0 of   

𝛿𝜇!"(n) =
𝑑(|n− 1|𝐸!"(n))

𝑑n ≈
3
2𝐸!"(n)sign(n− 1) 

Although a Wigner crystal is expected to melt at a temperature that is much smaller than EWC, it 

is expected that the energy of the correlated liquid is not much different from that of the Wigner 

crystal. Thus, we assume that the contribution of the correlation energy to the chemical potential 

has the phenomenological form  

𝛿𝜇=>?(n) = 𝑎$,&
3
2𝐸!"(n)sign(n− 1) 



where 𝑎$,& are parameters we fit to experiment, which we allow to be different in order to reflect 

the observed asymmetries between electrons and holes in our system. We then calculate the 

densities of skyrmions at finite temperatures using 

𝑛#$ = 𝑒7(8$%7#9&791@%8*+(n))/; 

𝑛#& = 𝑒7(8$'7#9&191@'8*+(n))/;. 

With these distributions, the equation n = 1 + ∑ (𝑛#$ − 𝑛#&)#  again constitutes a relation 

𝜇(n) for given values of 𝐸,, 𝜇<, 𝑇 and 𝑎$,&, which allows us to extract the thermodynamic 

parameters as follows. At zero DC bias, there is no magnon pumping and we take 𝜇< = 0 and 𝑇 

to be the cryostat base temperature at 11 T, 𝑇ABCD ≈ 0.8	K. Thus, the zero-bias chemical potential 

𝜇(n, 𝑉E, = 0) can be fit to obtain estimates of 𝐸,, 𝑎$,&, and a phenomenological Gaussian 

density broadening parameter ∆n. Extended Data Fig. 2 shows examples of the zero-bias fit 

results, together with the fit parameters, which are in excellent agreement with the experimental 

data. These fit parameters are then carried over to compute 𝜇(n) and calculate the n=1 gap as a 

function of temperature and magnon chemical potential (Fig. 3a and Extended Data Fig. 6a).  An 

independent estimate of the electron temperature from transport thus allows us to relate the 

measured gap value under magnon pumping to the corresponding 𝜇<. Examples of the resulting 

estimates of 𝜇<	are shown in Figs. 3e and Extended Data Fig. 6b, where the error bar is 

estimated by allowing a 3% difference between the measured and calculated gap together with 

the propagated error from the temperature estimates.  

Knowledge of the magnon chemical potential at each value of DC bias 𝜇<(𝑉E,), along 

with the estimate of the electron temperature, allows us to estimate the remaining 

thermodynamic quantities of interest. The average number of excess flipped spins per skyrmion 

<s>(VDC) may be calculated straightforwardly from the distributions via  

< 𝑠 >= ∑ 𝑠(𝑛#$ + 𝑛#&)# /(𝑛$ + 𝑛&). 

The total density of free magnons 𝑛< is given by 

𝑛< = (𝑁*)7' W 𝑛𝐤<

	|𝐤|IJ,-.

, 



with 𝑛𝒌< being the density of magnons at wavevector k given by the Bose-Einstein distribution 

𝑛𝐤< = '

$(0𝐤
&23456&)/97'

. 

where 𝜖𝐤<= 1.2533𝐸DL(1 − 𝑒
:";#

"

< 𝐼+ 5
J"5#"

M
7) and 𝐼+ is a modified Bessel function of the first 

kind, is the energy of a free magnetoexciton, without the Zeeman contribution28,29. The cutoff 

kmax is determined self-consistently by iterating the condition 𝑘NBL( 𝑙*( =
MO=%

O&(J,-.)
, where 

𝜖< = W 𝑛𝐤<

	|𝐤|IJ,-.

(𝜖𝐤< + 𝐸P) 

is the energy density of the free magnons, until convergence is achieved within 0.01%. The 

reason for our cutoff choice is as follows. For 𝑘𝑙* ≫ 1, a magnetoexciton consists of an electron 

and a hole separated by a large distance, 𝑑 = 𝑘𝑙*
(, and its energy will be equal to 2𝜖+$. In 

thermal equilibrium at low temperatures, the total number of magnons per flux quantum with 

𝑘𝑙* ≫ 1 will be given by 𝑛<.~
'
(
𝑘NBL( 𝑙*(𝑒(7(O=

%)/;, and the associated energy will be 𝜖<~2𝑛<. 𝜖+$. 

On the other hand, if 𝜇 is at the center of the energy gap, we should have 𝑛$ = 𝑛& = 𝑒(7O=%)/;. 

Equating these quantities, we obtain the result for 𝑘NBL stated above. This relation is consistent 

with the observation that for a system of linear size 𝐿, with just a single magnon present, the 

requirement 𝑑 < 𝑟𝐿, with 𝑟 a constant of order unity, gives 𝑘NBL of order 𝐿/𝑙*
(. 

 

Rxx and G2T thermometry. To obtain an estimate of the electron temperature T independent of 

our compressibility measurements, we perform Rxx measurements in the presence of magnon 

generation using the circuit shown in Extended Data Fig. 3. To generate magnons, a DC bias is 

applied to contact 3, while contact 2 is grounded; in this case, no AC modulation is applied to the 

magnon generation contacts.  Strikingly, the measured Rxx as a function of DC bias (Extended 

Data Fig. 3) displays an abrupt change when the applied DC bias exceeds Zeeman energy, 

reminiscent of the response observed in the magnon transport experiments with AC modulation 

applied to contact 3 (Fig. 1). However, we emphasize that the change in Rxx is not caused by 

magnon absorption events as in the case of the VNL signal discussed in the main text, because the 

AC modulation used for monitoring Rxx is not applied to the contacts used for magnon 



generation.  Extended Data Fig. 3c and d show Rxx measured using the same circuit with no DC 

bias applied to contact 3 as a function of temperature. Remarkably, we find good agreement 

between an Rxx trace measured at a given DC bias and that at a given temperature (Fig. 3d, where 

the error bar is estimated by matching the Rxx with DC bias to the temperature Rxx up to 5% 

error), suggesting that the change in Rxx at a DC bias greater than Zeeman is equivalent to raising 

the temperature of the system. Comparing these two Rxx measurements therefore allows us to 

determine the temperature of the system when magnons are pumped into the system and 

determine 𝜇< uniquely. 

Alternatively, the two-terminal conductance G2T may be used as a proxy for the 

temperature instead of the four-terminal Rxx. Extended Data Fig. 4a and b respectively show the 

bias- and temperature-dependent two-terminal conductance G2T measured with an AC voltage 

between contacts 1 and 4 using the circuit shown in Extended Data Fig. 3a. As in the case of the 

Rxx measurements, once the system has heated beyond T~5 K, the principal signatures of the 

quantum Hall effect vanish (in this case, the plateau), thus placing an overestimated but crucial 

upper bound for the temperature of our system. Extended Data Fig. 4c shows G2T at -10 mV DC 

bias compared with a selection of zero-bias traces taken at various temperatures, which points to 

a temperature in the range of ~3 K, in good agreement with the results obtained by analyzing Rxx. 

We have verified this behavior in numerous circuit configurations, both in two-terminal and 

four-terminal configurations, which consistently point to the same range of temperatures 

(Extended Data Fig. 5, except for positive biases in Extended Data Fig. 5h, which is likely due to 

a bad contact). We regard the Rxx measurements as a more reliable indicator of temperature, as 

G2T is more susceptible to effects stemming from contact resistance. Nevertheless, our 

observation that both the Rxx and G2T thermometry techniques yield approximately the same 

electron temperature leads us to conclude that reliable estimates can be derived from either 

technique. 

 

Role of valley skyrmions. The n=1 quantum Hall state in suspended graphene was originally 

proposed to support valley skyrmions as its lowest-lying charged excitations10,11,30. In 

encapsulated devices, however, the presence of the boron nitride substrate may break sublattice 

symmetry and therefore disfavor the formation of valley skyrmions. Although we do not find 



direct evidence for a gap at the charge neutrality point in our device, we observe a robust 

incompressible state at ν=5/3, with an incompressible peak comparable in magnitude to that 

occurring at ν=1/3 and 2/3 (Extended Data Fig. 8). The conspicuous absence of this state in 

previous local compressibility measurements on suspended devices was attributed to low-lying 

valley-skyrmionic excitations with energy less than that of a Laughlin quasiparticle11,27. Thus, 

the observation of robust incompressible states at ν=5/3 strongly suggests that valley skyrmions 

are disfavored in our sample. Moreover, previous thermal activation measurements at ν=1 under 

tilted magnetic fields on encapsulated devices3 report an effective g-factor greater than 2, 

indicating that the lowest charged excitations carry extra flipped spins. Finally, within the spin 

skyrmion model of gap suppression, we do not expect the presence of magnons to alter the 

energy cost of adding a valley skyrmion. Hence, we conclude that valley skyrmions are unlikely 

to play a significant role in the observed n=1 gap reduction.  

 

Discussion of possible gap at the CNP. To search for evidence for sublattice symmetry 

breaking, we performed high resolution local compressibility measurements near the CNP at 

zero magnetic field, which we compare to a model that considers the sublattice-gapped Dirac 

form 𝜇(𝑛) = ]∆="

M
+ RS>

"T
ℏ"

, where ∆+ and 𝑣V are the sublattice gap and the Fermi velocity 

respectively. Extended Data Fig. 9 shows two fits of the measured inverse compressibility at zero 

magnetic field to the sublattice-gapped Dirac model, one with disorder broadening and one 

without. The un-broadened fit favors a scenario in which with sublattice gap is zero. The 

broadened fit, however, yields a mean squared error (MSE) approximately one-half that of the 

unbroadened fit, and favors a scenario in which the sublattice gap is approximately 12.3 meV 

with a broadening of 7×109 cm-2, consistent with that extracted from our fit to the n=1 gap at 

high magnetic field. These considerations suggest that sublattice symmetry is likely broken by 

the BN substrate, disfavoring the formation of valley skyrmions, despite the compressibility 

signature of the gap being obscured by disorder broadening at zero magnetic field. 
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Figure 1 

 

Fig. 1 | Device characterization and n=1 sensitivity to magnons. a, Schematic of the 
experimental setup. Red and blue arrows denote the hot and cold quantum Hall edge states, 
respectively. Green curve denotes magnon generation for 𝜇 < −𝐸). b, Optical micrograph of the 
hBN-encapsulated monolayer graphene device (scale bar 2 µm). TG denotes top gate. c, Two-
terminal conductance G2T near the n=1 plateau measured at 11 T between contacts 2 and 3 with 
the zero volts applied to the top gate. The plateau breaks down principally around ±EZ. d, µ(n ) 
measured at 11 T in the bulk near contact 5 at VDC=0 mV and 10 mV. The gap, taken as the peak 
excursion, is suppressed in the case of VDC=10 mV. e, Bias-dependent energy gap extracted from 
chemical potential measurements as in d. The gap begins to reduce near ±EZ marked by the gray 
dotted lines. 

  



Figure 2 

 

Fig. 2 | Nonlocal magnon transport and gap suppression. a, AC nonlocal voltage VNL 
measured between contacts 5 and 6 as a function of top gate filling factor nTG and DC bias VDC 
applied across contacts 2 and 3. A nonlocal voltage appears near ±EZ (black dotted lines) in 
accordance with the standard picture of magnon transport. b, Change in the measured n=1 
energy gap as a function of VDC and nTG. ΔGap is calculated at each point by subtracting the 
average of the gap values at |VDC|<EZ. As in the case of VNL, changes are only observed for 
EZ<|VDC| and 0<|nTG|<2. c, Line traces from b showing the sharp disappearance of gap 
suppression near nTG=0.  



Figure 3 

 

Fig. 3 | Thermodynamics of free and bound magnons. a, n=1 gap as a function of magnon 
chemical potential 𝜇</𝐸P and temperature T computed using the skyrmion model. b,	Rxx as a 
function of VDC applied to contact 3 near n=1 (see Extended Data Fig. 1a for circuit). The center 
of the n=1 plateau is around VBG=3.5 V. c, Rxx as a function of temperature with no bias applied 
to contact 3 near n=1 using the same circuit as b. d,	Temperature of the system as a function of 
VDC extracted from Rxx thermometry measurements (see Methods). Grey dashed lines mark the 
Zeeman energy. e-g, Magnon chemical potential 𝜇</𝐸P (e), free magnon density per flux 𝑛< (f) 
and the number of extra flipped spin carried by the charge <s> (g) extracted from the skyrmion 
model (see Methods). The shaded region corresponds to a medium-bias regime where heating 
due to the magnon injection plays a key role.    



Figure 4 

 

Fig. 4 | Suppression of negative compressibility by the presence of magnons. a,	𝑑𝜇/𝑑𝑛 near 
n=1 measured as a function of VDC. b, Representative 𝑑𝜇/𝑑𝑛 traces on the hole (left) and 
electron (right) sides of n=1 measured with VDC =0 mV (blue) and VDC =10 mV (red) showing 
that the negative compressible states are suppressed by the presence of magnons. c, Averaged 
𝑑𝜇/𝑑𝑛 on the hole (blue) and electron (red) sides of n=1 as a function of VDC. The grey dotted 
lines mark the Zeeman energy ±𝐸P. d, Average 𝑑𝜇/𝑑𝑛 on the other WC states as a function of 
DC bias, showing no suppression by the VDC. The grey dotted lines mark the Zeeman energy 
±𝐸P.  



Extended Data Figure 1 

 

Extended Data Fig. 1 | Additional examples of the n=1 gap suppression by the presence of 
magnons. a, Optical image of the device indicating the circuit used for magnon generation and 
the locations where the gap measurements were taken. b, Bias-dependent energy gap measured 
at location 2. The grey dotted lines mark ±EZ. While the origin of the small asymmetry for 
|VDC|<EZ is unclear, its magnitude is much smaller than overall suppression observed at higher 
bias, and the top gate dependence shows that the onset consistently occurs near  EZ (see Fig. 2). 
c-g, Chemical potential µ near ν=1 measured with VDC=0 mV (blue) and VDC=10 mV (red) at 6 
different locations. Although the local value of the ν=1 gap varies, its reduction by the presence 
of magnons is clearly reproduced in all the data sets.  



Extended Data Figure 2 

 

Extended Data Fig.2 | Fitting of the chemical potential in the absence of magnons. a-g, 
Chemical potential µ near ν=1 measured with 0 mV (blue circles) DC bias applied to contact 3 
and the best fit (red curves) using the skyrmion model by setting 𝜇<=0 mV (see Methods) at 7 
different locations. The values of EC obtained at these positions correspond to effective dielectric 
constants 𝜀 ranging from 10.0 to 12.4. 



Extended Data Figure 3 

 

Extended Data Fig. 3 | Rxx thermometry. a, Circuit used for Rxx measurements. Contacts 2 and 
3 are used to generate magnons. Contacts 1, 6, 5, and 4 are used to measure Rxx. The white 
arrows indicate the chirality of the current flow. b, Individual Rxx traces measured at base 
temperature with various values of VDC applied to contact 3 near n=1 using the circuit shown in 
a. The center of the n=1 plateau is around a back gate voltage of 3.5 V. c, Individual Rxx traces 
measured at various temperature with no bias applied to contact 3 near n=1 using the circuit 
shown in a. d, Individual Rxx traces measured at base temperature with 10 mV applied to contact 
3 (blue dots) and at various temperatures with 0 mV applied to contact 3 (orange, yellow and 
purple lines). The close agreement between the blue dotted line and the red line suggests that the 
effect of magnon generation on the Rxx measurement is primarily due to heating. These 
measurements also demonstrate that the increase in temperature due to magnon generation does 
not exceed 4.5 K at VDC=-10 mV.  



Extended Data Figure 4 

 

Extended Data Fig. 4 | Alternative derivation of electron temperature using two-terminal 
conductance G2T. a, Bias-dependent two-terminal conductance G2T measured in the vicinity of 
the ν=1 plateau. b, Temperature-dependent G2T measured at zero bias in the same range of 
electron densities. c, G2T measured at -10 mV DC bias compared with selected zero-bias traces at 
elevated temperature. 

  



Extended Data Figure 5 

 

Extended Data Fig. 5 | Temperature extraction from additional circuit configurations. a-d, 
circuit configurations in which additional bias-dependent (e-h) and temperature dependent (i-l) 
two-terminal transport measurements were carried out.  m-p, comparison of traces taken at 
VDC=-10 mV and at base temperature with zero-bias traces taken at various temperatures. In each 
panel the middle value of temperature is that found to agree best with the VDC=-10 mV trace in 
the least-squares sense. The good agreement between the -10 mV trace and the best-fit zero-bias 
trace indicates that the main effect of the bias in this circuit configuration is to elevate the 
temperature. q-s, additional Rxx data acquired simultaneously with G2T using the circuit 
configuration shown in d. Estimation from Rxx gives a slightly lower temperature than G2T. 



Extended Data Figure 6 

 
 

Extended Data Fig. 6 | Thermodynamics of free and bound magnons extracted from 
location 2. a, n=1 gap as a function of magnon chemical potential 𝜇</𝐸P and temperature T 
computed using the skyrmion model. b-d, Magnon chemical potential 𝜇</𝐸P (b), free magnon 
density per flux 𝑛< (c) and the mean number <s> of extra flipped spins carried by a charge (d), 
extracted from the skyrmion model (see Methods). The shaded region corresponds to a medium 
bias regime where heating due to magnon injected plays a key role.   

  



Extended Data Figure 7 

 

Extended Data Fig. 7 | Three regimes in magnon transport characteristics. a, G2T averaged 
over values of VBG on the n=1 plateau as a function of DC bias. b, VNL/VAC averaged over values 
of nTG for 0<nTG<2. On each plot, the low-, medium- and high-bias regimes are indicated by 
shading in the same manner as Fig. 3. 

 

 

 

 

 

  



Extended Data Figure 8 

 

Extended Data Fig. 8 | Robust ν=5/3 state. Local inverse compressibility 𝑑𝜇/𝑑𝑛 measured for 
0< ν <2. In contrast to local compressibility studies performed on suspended monolayer 
graphene devices, a prominent peak at ν=5/3—comparable in strength to those at 1/3 and 2/3, 
and stronger than that at 4/3—is evident, suggesting that valley skyrmion formation in the device 
is disfavored.  



Extended Data Figure 9 
 

 

 

Extended Data Fig. 9 | Zero-field fits to the Dirac point. a, Fit comparing measured data to a 
model with no disorder broadening. The fit favors zero sublattice gap. b, Fit comparing 
measured data to a model with disorder broadening. The fit favors a scenario with a 12.3 meV 
sublattice gap with a disorder-broadening parameter of approximately 7×109 cm-2, similar in 
magnitude to the broadening inferred from high-field compressibility measurements. The MSE 
of the broadened fit is improved compared to that of the unbroadened fit by more than a factor of 
two. 

 


