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In the Landau levels of a two-dimensional electron system or when flat bands are present, e.g. 
in twisted van der Waals bilayers, strong electron-electron interaction gives rise to quantum Hall 
ferromagnetism with spontaneously broken symmetries in the spin and isospin sectors. Quantum 
Hall ferromagnets support a rich variety of low-energy collective excitations that are 
instrumental to understand the nature of the magnetic ground states and are also potentially 
useful as carriers of quantum information. Probing such collective excitations, especially their 
dispersion 𝜔𝜔(𝑘𝑘), has been experimentally challenging due to small sample size and measurement 
constraints. In this work, we demonstrate an all-electrical approach that integrates a Fabry-Pérot 
cavity with non-equilibrium transport to achieve the excitation, wave vector selection and 
detection of spin waves in graphene heterostructures. Our experiments reveal gapless, linearly 
dispersed spin wave excitations in the E = 0 Landau level of bilayer graphene, thus providing 
direct experimental evidence for a predicted canted antiferromagnetic order. We show that the 
gapless spin wave mode propagates with a high group velocity of several tens of km/s and 
maintains phase coherence over a distance of many micrometers. Its dependence on the magnetic 
field and temperature agree well with the hydrodynamic theory of spin waves. These results lay 
the foundation for the quest of spin superfluidity in this high-quality material. The resonant 
cavity technique we developed offers a powerful and timely method to explore the collective 
excitation of many spin and isospin-ordered many-body ground states in van der Waals 
heterostructures and open the possibility of engineering magnonic devices. 

 

I. INTRODUCTION 

Spin wave (SW) excitations, also known as magnons, offer fundamental insight into the 
nature of a magnetically ordered system, similar to phonons of a crystal. In an easy-axis 
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ferromagnet (FM), SW excitations are gapped at zero momentum k = 0 by the energy cost of 
flipping a spin. On the other hand, an easy-plane FM or antiferromagnet (AFM) supports linearly 
dispersed, gapless SW excitations that correspond to an in-plane precession of the order 
parameter [1-4]. A magnetic system can also form topological spin textures such as a skyrmion 
[5,6]. These low-energy collective excitations are potentially useful as information carriers. 
Magnons in AFM materials are particularly attractive given their ultrafast dynamics and low 
energy dissipation [4,7-10]. Furthermore, theory predicts that gapless magnons of an easy-plane 
AFM or canted-antiferromagnet can form a Bose-Einstein condensate and transport spin in a 
superfluid-like manner without dissipation; this topic has gathered intense interest of the 
spintronic community lately [7,11-18].  

Two-dimensional electron systems (2DESs) placed in a magnetic field constitute an 
important class of quantum magnets. Here, magnetism develops in the Landau levels of non-
magnetic materials because strong electron-electron interaction leads to spontaneously broken 
spin and isospin symmetries [5,19-25]. This phenomenon is known as quantum Hall 
ferromagnetism (QHF). QHF gives rise to skyrmions in semiconductor 2DESs [5]. Graphene 
materials enrich the physics and phenomenology of QHF by introducing isospins such as valley 
or layer/sublattice [19,20,22]. For instance, the E = 0 Landau levels of AB-stacked bilayer 
graphene is expected to support a spin-valley coherent, canted-antiferromagnetic (CAF) phase 
with in-plane rotational symmetry [22] and gapless, linearly dispersed SW excitations that 
correspond to an in-plane precession of the Néel vector [14,16,26-28]. This gapless magnon 
mode is predicted to support spin superfluidity [12-18]. To date no direct evidence of the CAF 
order has been obtained. Quantum Hall ferromagnetism and a plethora of spin, valley and charge 
density wave excitations also manifest in a growing family of magic-angle-twisted van der 
Waals bilayers where flat bands are formed without a magnetic field [29-32].   

Probing the low-energy collective excitations of a QHF system has been experimentally 
challenging. Scattering techniques used to measure the excitations of bulk magnets, e.g. inelastic 
neutron or Brillouin light scattering [4,7,33,34], do not function readily at the low temperatures 
where QHF typically occurs. Specialized techniques, e.g. surface acoustic waves, have been 
developed to study magnetic excitations of a semiconductor 2DES [35-37]. Nonetheless, 
accessing the dispersion 𝜔𝜔(𝑘𝑘) over a range of k remains difficult and the microscopic size of van 
der Waals heterostructures presents additional challenge to any spectroscopic technique. New 
experimental approaches are needed to explore the rich physics, phenomena and technological 
potential of van der Waals quantum magnets.   

In this work, we demonstrate an all-electric method to probe SW excitations in graphene 
heterostructures, including the attainment of the dispersion relation 𝜔𝜔(𝑘𝑘). Key to this approach is 
the integration of a high-quality Fabry-Pérot (FP) cavity into a multi-terminal transport device, 
which enables the selective excitation of magnons of discrete wave vectors through resonant 
transmission. We present unprecedented experimental evidence of gapless, linearly dispersed 
SW excitations in the E = 0 Landau level of bilayer graphene, directly validating the theoretically 



 3 

predicted CAF order. The SW propagates coherently with a high group velocity of several tens 
of km/s, the magnetic field dependence of which agrees well with a hydrodynamic model. We 
examine intrinsic and extrinsic sources of dissipation by varying temperature and a number of 
relevant experimental conditions. These results open the door for the quest of spin superfluidity 
and the development of more complex magnonic device geometries in this high-quality QHF 
platform. Our experimental method is compatible with a wide range of sample geometry and 
measurement conditions. We envision its applicability to other symmetry-broken magnetic 
ground states in van der Waals materials.    

 

II. DEVICE FABRICATION AND CHARACTERIZATION 

Our bilayer graphene devices are fabricated using van der Waals dry transfer, side contact 
and precision alignment techniques [38-40] with three layers of gates (5 in total). Figs. 1(a) and 
(b) show the optical micrograph and schematic sideview of device 606. In areas Q3 and Q4, the 
filling factor 𝜈𝜈 and displacement field D are controlled by the aligned top and bottom gates. The 
bottom gates are etched into the profile of a quantum point contact. We use this geometry to 
control areas Q3 and Q4 separately. The bulk filling factor 𝜈𝜈B in the rest of the device is 
controlled by the global graphite gate. All contacts reside outside the range of the global gate and 
are heavily doped by the Si backgate. The use of two long contacts adjacent to the dual-gated 
region is a salient feature of our design that promotes SW excitation and detection, as we will 
show below. In a magnetic field, we observe well-developed integer quantum Hall effect (IQHE) 
in the bulk and the dual-gated regions. Appendix A gives a detailed description of the fabrication 
steps of devices 606 and 611 and the characteristics of device 606.  

 
Fig. 1. (a) An optical image of device 606. The black, blue and white dashed lines outline the edges of the 
bilayer graphene sheet, the graphite bottom gate, and the graphite global gate respectively. Areas Q3 and 
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Q4 are gated by aligned top and bottom gates. The opening of the quantum point contact is 106 nm. Side 
contacts are made to the bilayer graphene sheet gated by the 295 nm SiO2/doped Si backgate. (b) A 
schematic side view along the red dashed line in (a).  

 

III. NON-LOCAL MEASUREMENT SETUP 

Figure 2 shows the non-local measurement setup we use to electrically excite and detect spin 
wave transmission through area Q4. In this setup, Q4 is set to the CAF phase of 𝜈𝜈 = 0 while Q3 
is set to the layer-polarized (LP) phase, which is non-magnetic and insulating [22,24,25,40,41]. 
Conduction through the quantum point contact is pinched off (See Fig. 8 in appendix A). We 
note that neither the CAF nor the LP phase carries edge states [22,24,25,40,41] and because of 
the large width of the insulating middle region (w = 2 μm for device 606 and 1.6 μm for device 
611), no edge state on the left could directly transmit to the right [42,43]. The bulk is set to 
filling factor 𝜈𝜈B = 2, which is fully spin polarized [41]. We apply a varying dc and a small fixed 
ac voltage Vdc + 𝛿𝛿Vac between contacts 2 and 3 and measure a non-local ac voltage signal 𝛿𝛿VNL 
as a function of Vdc on the right side of Q4, e.g. between contacts 8 and 7. We examine the 
differential non-local signal dVNL/dV ≡ 𝛿𝛿VNL/𝛿𝛿Vac and integrate dVNL/dV over Vdc to obtain VNL. 
Figs. 2(a) and (b) show respectively the flow of the high chemical potential (red) and low 
chemical potential (blue) edge states under different dc bias conditions. Previous studies 
examining SW excitations of a spin polarized quantum Hall state have detected appreciable non-
local dVNL/dV in similar measurement setups [44,45]. 

 
Fig. 2. The non-local differential voltage measurement setup used in Fig. 3(a) and (b) corresponding to 
negative and positive dc bias conditions respectively. We apply a varying dc bias Vdc and a small ac bias (𝛿𝛿Vac 
= 10 μV, f  = 17 Hz) between two contacts on the left side of the device and measure a non-local ac differential 
voltage 𝛿𝛿VNL on the right side of the device. A 1 kΩ resistance is used to monitor the ac current. Electrons 
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riding on edge states departing from a negatively/positively biased contact acquire a high/low chemical 
potential and are represented in red/blue lines with the chirality given by the magnetic field. Blue and orange 
arrows indicate the polarization of spin in the bulk and near the contacts, where heavy doping by the Si 
backgate gives rise to additional edge states. 𝜀𝜀𝑛𝑛 indicates chemical potential redistribution at a contact caused 
by magnon absorption.   

 

IV. RESULTS AND DISCUSSIONS 

We first examine the scenario in which both the bulk and area Q4, called the middle region 
from now on, are set to 𝜈𝜈 = 2, where spins are polarized along the external field direction. 
Figure 3(c) plots the non-local differential signal dVNL/dV and the integrated VNL. Both exhibit a 
Vdc threshold of approximately the Zeeman energy 𝐸𝐸z = 𝑔𝑔𝜇𝜇B𝐵𝐵 (𝑔𝑔 = 2). This is because SW 
excitation in an easy-axis FM is gapped by the spin-flip energy cost of 𝐸𝐸z. Further, because a 
fully spin-up polarized FM can only support the propagation of spin-down SWs, the non-local 
VNL carries the same sign for both positive and negative Vdc’s. This is indeed what Fig. 3(c) and 
previous studies at the 𝜈𝜈 = 1 of monolayer graphene showed [44,45]. While only spin-down SW 
are emitted, the emission occurs at source (drain) contacts respectively for Vdc < 0 ( > 0) [44].   

 
Fig. 3. Excitation, transmission and absorption of gapless SWs through a quantum Hall canted 

antiferromagnet. (a) Two edge states emitted by a contact below (not shown) and carrying high chemical 
potential -eVdc scatter with edge states local to the heavily doped contact region shaded in green, emitting SW 
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with net spin up into the CAF phase. SW transmits through the CAF phase through a precession of the Néel 
vector. Absorption at a probe contact leads to a chemical potential redistribution 𝜀𝜀i, which is measured in VNL. 
(b) An optical image of the illustrated area in device 606. l = 3.5 µm, w = 2 µm and d = 0.8 µm. (c) dVNL/dV 
and integrated VNL with 𝜈𝜈M = 2. The gray dashed lines mark 𝐸𝐸z = 𝑔𝑔𝜇𝜇B𝐵𝐵 (𝑔𝑔 = 2) = 0.87 meV. From device 
611. (d) VNL (Vdc) in two devices with the middle region tuned to the CAF phase. Both show an onset VT much 
smaller than 𝐸𝐸z = 1.0 meV in this set up. Intrinsic and extrinsic contributions to VT are discussed in Appendix 
E. (e) The differential signal dVNL/dV in device 606. (f) A false-color graph of dVNL/dV as a function of the D-
field of the 𝜈𝜈M = 0 region. D* ~ 80 mV/nm separates the CAF phase at low D and the LP, non-magnetic phase 
at high D. The non-local signal is only detected in the CAF phase. Similar behavior is observed in device 611 
(Appendix C).   

A qualitatively different behavior is expected for an easy-plane AFM or CAF state, which 
transmits magnons through the in-plane precession of the Néel vector. Both spin-up and spin-
down SWs can be transmitted and translate into VNL of opposite signs in the detection region. In 
a system with in-plane U(1) symmetry, the k = 0 mode is expected to be gapless [14,26-28]. 

Indeed, the characteristics of the non-local signal changes drastically when the middle region 
of our device is tuned to the putative CAF phase of 𝜈𝜈 = 0. The results are shown in Figs. 3(d) 
and (e). Here, VNL varies approximately linearly with Vdc, changes sign at Vdc = 0 and commences 
at |Vdc| much smaller than 𝐸𝐸z. For example, the low-temperature threshold VT is only 0.025 mV in 
device 606 while 𝐸𝐸z = 1.0 meV. Further, the non-local signal abruptly disappears when 𝜈𝜈 = 0 
transitions to the non-magnetic LP phase at large D-field, indicating the necessity of a magnetic 
order in its detection (Fig. 3(f)). These observations are generally consistent with the 
transmission of gapless SWs through a CAF phase.  

The dVNL/dV signal in our device reaches up to 0.5 with an average of ~ 0.2 (Fig. 3(d) and 
(e)). It is very large compared to prior graphene devices [44,45] and several orders of magnitude 
larger than the heavy metal/magnetic insulator interfaces studied in Refs. [8-10]. We attribute the 
large signal to the unique design of our devices shown in Figs. 3(a) and (b). Heavy doping by the 
Si backgate leads to the crowding of many edge states in the green shaded area (Fig. 3(a)). This 
doping profile causes a rapid decrease of the carrier density adjacent to the 𝜈𝜈M = 0 region, which 
facilitates strong inter-edge scattering. Under a negative dc bias an electron scattered from a “hot” 
edge carrying canted up-spin to a “cold” edge carrying canted down-spin releases net spin-up 
angular momentum into the CAF region. Similarly, net spin-down angular momentum is released 
with a positive dc bias. This process can occur at E << 𝐸𝐸z due to gradual spin reorientation in the 
vicinity of the CAF region (Fig. 9 in Appendix B and [14]). Thus, only contacts adjacent to a 
CAF region can emit gapless SWs (Transmission of gapped SWs through a FM/CAF junction is 
discussed in Appendix H). In our device, this process occurs along the entire length of contact 3, 
which is several μm long, in comparison to individual “hot spots” in conventional Hall bar 
structures [44]. The absorption of SW is dominated by contact 8 on the right side of the CAF 
region; this causes dVNL/dV to be roughly symmetric in Vdc, as our data in Fig. 3(e) shows.  

A more quantitative description of the above process is given in Appendix B, where we 
calculate VNL using the spin chemical potential redistribution method introduced in Ref. [44]. 
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Our analysis can satisfactorily explain the sign, symmetry and magnitude of the non-local signal 
we observed in a variety of measurements using different contact configurations and in magnetic 
field of both directions.  

More strikingly, highly reproducible oscillations in dVNL/dV and corresponding step-like 
features in VNL develop at low temperatures (Figs. 3(d) and (e)) and also additional data on 
device 611 in Appendix C). They are strongly reminiscent of discrete standing waves of a 
confined geometry, e.g. the resonant transmission of a FP cavity [46,47]. Here the FP cavity is 
that of the SWs. The structure of our devices – a dual-gated region sandwiched between two 
parallel contacts – motivated us to consider the scenario of a one-dimensional FP cavity. As 
illustrated in Fig. 4(a), standard FP resonance produces transmissions at wavevectors satisfying 
𝑘𝑘𝑛𝑛 = 𝑛𝑛 𝜋𝜋 𝑤𝑤⁄  and corresponding magnon energies 𝐸𝐸n = 𝑛𝑛𝐸𝐸1, where the fundamental mode 𝐸𝐸1 =
ℏ𝑣𝑣𝑎𝑎𝑎𝑎 𝜋𝜋 𝑤𝑤⁄ . Here 𝑣𝑣𝑎𝑎𝑎𝑎 is the velocity of the SW and 𝑛𝑛 = 1, 2, 3…labels the mode number. The nth 
harmonic manifest as peaks in dVNL/dV at the corresponding dc bias Vn = ± En/e. The large 
amplitude of the oscillations suggests long SW dephasing length of many micrometers in our 
devices, a necessary condition to explore spin superfluidity [14,16]. We focus on signals within 
± Ez since in this range only excitations on the gapless CAF SW branch are allowed [26,27]. 

 
Fig. 4. Fabry-Pérot resonance of a CAF cavity. (a) illustrates the resonant selection of wavevector 𝑘𝑘𝑛𝑛 and 
corresponding discretization of a linearly dispersed SW. (b) dVNL/dV vs Vdc at selected temperatures. Traces 
are vertically stacked for clarity. Short black dashed lines mark the zero-signal position of each trace. (c) plots 
dVNL/dV at T = 0.33 K (blue) and 2 K (purple) with the mode numbers labeled in the plot. We probe the long 
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wavelength limit where 𝑘𝑘𝑛𝑛𝑙𝑙B < 0.23 for the entire range. The n = 1 and 2 modes are suppressed at low 
temperatures, likely due to a small contact barrier (Fig. 14(a) of Appendix E). Irregularities of the oscillations 
are attributed to non-uniformity of the cavity, similar to Ref. [46]. (d) Vn vs mode number n at selected 
temperatures. Solid lines are fits to data that pass through the origin. Free parameter fitting yields y-axis 
intercepts less than ½E1 at all temperatures. (e) plots the T dependence of the slope dVn/dn extracted from the 
fitting. B = 8.9 T in all figures. From 606. Analysis of the FP resonance in device 611 is given in Appendix C.      
 
In Fig. 4(b) we plot dVNL/dV vs Vdc at selected temperatures from 0.33 to 20 K with an expanded 
version of the 0.33 K data shown in Fig. 4(c), together with the labeling of the harmonics n = 1 
to 17. Figure 4(d) tracks Vn at different temperatures. For each mode, Vn remains a constant at T 
< 2 K and increasingly shifts to larger value at higher temperature. At each temperature, Vn vs n 
is well described by a linear fit through the origin, which validates the FP resonance model.  

The constant slope of dVn/dn = 0.06 mV/mode we obtained at T < 2 K (Fig. 4(e)) yields a 
velocity of 𝑣𝑣𝑎𝑎𝑎𝑎 = 57 km/s at B = 8.9 T. A T-independent SW velocity at low temperatures is in 
excellent agreement with the hydrodynamic theory of SW [3]. In conventional AFM materials, 
anisotropy often leads to the opening of a gap at k = 0 [4]. Although k = 0 is not accessible in our 
experiment due to the finite size of the CAF region, fitting the data without constraints yields y-
axis intercepts less than ½ E1 at all temperatures, from which we estimate an upper bound of 
𝐸𝐸0 = 30 μeV for a possible gap opening at k = 0. The small value of 𝐸𝐸0, which is roughly 3% of 
𝐸𝐸z, indicates that the CAF phase of bilayer graphene has a nearly ideal easy-plane Néel order. 
This is perhaps not surprising given the vanishing spin orbit coupling and lack of crystal fields in 
graphene. This character, together with the high quality of graphene devices, makes this system 
an ideal platform to explore spin superfluidity [14,16].  

In the hydrodynamic theory of an easy-plane AFM, the SW velocity 𝑣𝑣𝑎𝑎𝑎𝑎 is given by 𝑣𝑣𝑎𝑎𝑎𝑎2 =
𝜌𝜌s𝜒𝜒z−1, where 𝜌𝜌s is the spin stiffness constant that represents the energy cost of in-plane 
rotational misalignment between neighboring spin sublattices and 𝜒𝜒z−1 is the inverse transverse 
susceptibility that characterizes the preference of spin lying in the x-y plane [2]. Specifically a 
Hartree-Fock description produces  𝑣𝑣𝑎𝑎𝑎𝑎 = 2𝑙𝑙B𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃s�|𝑢𝑢⊥|𝑢𝑢� for bilayer graphene [26] (Eq. 1), 

where 𝑙𝑙B = � ℏ
𝑒𝑒𝑒𝑒

 is the magnetic length, 𝜃𝜃s is the spin canting angle measured from the z-axis, 

𝑢𝑢�  is a renormalized energy scale of the CAF phase and 𝑢𝑢⊥/z is the anisotropy energy in the x-y 
plane/z direction. The interplay of 𝑢𝑢z, 𝑢𝑢⊥, 𝐸𝐸z , and the valley anisotropy energy 𝐸𝐸v, which is 
proportional to the applied D-field, gives rise to multiple phases in the 𝜈𝜈 = 0 Landau level of 
bilayer graphene [22]. The easy-plane CAF phase occurs at small 𝐸𝐸v and 𝐸𝐸z , together with 𝑢𝑢z > -
 𝑢𝑢⊥ > 0. Using experimental parameters of Refs. [21,40,41], we obtain 𝑢𝑢� = 6 meV, 𝑢𝑢z ≈ 𝐸𝐸v =
10.4 meV, 𝑢𝑢⊥ ≈ − 1

7
 𝑢𝑢z = −1.5 meV, and a spin canting angle of 𝜃𝜃s ≈ 70∘at B = 8.9 T (See 

Appendix F for a detailed analysis). Eq. (1) gives an estimated 𝑣𝑣𝑎𝑎𝑎𝑎 = 74 km/s, in excellent 
agreement with 𝑣𝑣𝑎𝑎𝑎𝑎 = 57 km/s obtained in our experiment.  
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Fig. 5. Magnetic field dependence of the SW signal. (a) plots dVNL/dV at selected magnetic field from 8.9 

T to 18 T obtained in the Maglab (See Appendix D for the impact of noise on the measurement done at the 
MagLab). (b) The main panel plots Vn of three well-reproduced peaks marked in (a). The lower inset plots a 
differential ΔVn. Solid lines in both plots show √𝐵𝐵 scaling. Vn follows the √𝐵𝐵 scaling below 12 T and tends 
towards saturation at higher field. The upper inset plots the CAF/LP transition D* vs B obtained in Ref. [41] 
with linear (gray dashed line) and 𝐵𝐵0.56 (black solid line) scaling.  

The magnetic field dependence of 𝑣𝑣𝑎𝑎𝑎𝑎 further corroborates the above analysis. Here, all 
interaction energies 𝑢𝑢� , 𝑢𝑢z, 𝑢𝑢⊥are proportional to the valley anisotropy energy 𝐸𝐸v∗ at the CAF/LP 
phase transition point.  𝐸𝐸v∗ = 0.13 D* is given by the transition field D* [41]. Experimentally D* is 
approximately linear in B at B < 12 T, and follows an empirical power law of B0.56 above 12 T 
(upper inset of Fig. 5(b)). The B-dependence of D* leads to a √𝐵𝐵 dependence of 𝑣𝑣𝑎𝑎𝑎𝑎 at B < 12 T 
and approximately no dependence at higher field. Figure 5(a) plots measurements of dVNL/dV 
obtained at B-fields ranging from 8.9 T to 18 T and Fig. 5(b) tracks the field evolution of Vn and 
ΔVn at several resonances, together with √𝐵𝐵 trendlines plotted for comparison. Though the data 
points have considerable spread, they are consistent with the two-segment scaling prescribed by 
D* (B). This behavior provides further support to the linear dispersion relation of the SW.  

At low temperatures (T < 2 K) and when the bulk filling factor is in the range of 1.8 < 𝜈𝜈B < 
2.2, the non-local signal in our devices reaches a steady state in amplitude and in the resonant En. 
These observations suggest that under these conditions the entire process of SW emission, 
transmission and detection is elastic, i.e. energy conserving, in our devices. Indeed, a constant 
spin wave velocity 𝑣𝑣𝑎𝑎𝑎𝑎 as T approaches zero is in excellent agreement with theory [3]. 
Deviations from this steady state occur as T is raised above 2 K or when 𝜈𝜈B departs from the 
spin-polarized 𝜈𝜈B = 2 (Fig. 16(a) in Appendix G). Figure 6(a) shows two representative T-
dependence of the normalized dVNL/dV peak height.  Both the n = 6 and the n = 14 harmonics 
remain steady at low temperatures, drop precipitously above 2 K and vanish at 10 - 20 K, with 
the n = 14 mode showing a more rapid decay. In Fig. 6(b), we plot the T-dependence of the 
integrated VNL. VNL also decreases with increasing temperature but not nearly as rapidly. For 
example, while dVNL/dV at n = 6 drops by a factor of 100 at 20 K, VNL at the same dc bias drops 
only by a factor of 3.   
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Fig. 6. Temperature dependence of the SW signal. (a) Normalized dVNL/dV peak height as illustrated vs T in an 
Arrhenius plot for mode n = 6 (up-triangle) and 14 (circle) as labeled in Fig. 4(b). Height = 1 at 0.33 K. The 
inset compares the two modes on a linear T scale. (b) plots the integrated VNL (Vdc) at selected temperatures. 
The inset plots normalized VNL (T) at two Vdc’s marked by the arrows.  

The strong T-dependence our dVNL/dV data in Fig. 6(a) shows can potentially be explained 
by the occurrence of thermally activated magnon-phonon and magnon-magnon scattering events 
and their dependence on the incident magnon momentum [2,3,48]. These processes cause 
decoherence of the SW and thus a rapid decay of the FP resonances and the redistribution of 
spectral weight to all modes. Thus, their impact on the integrated VNL is much smaller. Increasing 
temperature may also reduce the transmission of the SW through the now weakened CAF phase. 
However, this loss is partially compensated by the growing population of thermally excited 
magnons. These competing factors could account for the much gentler decay of VNL with T, as 
our data in Fig. 6(b) shows.    

At elevated temperatures, fits to our data suggest an apparent increase of dVn/dn or 𝑣𝑣𝑎𝑎𝑎𝑎 with 
increasing T (Fig. 4(e)), which is opposite to trends observed in conventional FM and AFM 
materials [33,48,49]. Further departure of 𝜈𝜈B from the spin polarized 𝜈𝜈B = 2 also leads to a 
systematic blueshift in Vn (Fig. 16(a) in Appendix G), similar to the effect of raising temperature. 
In the latter measurement, all conditions of the CAF region are held constant so that the blueshift 
of Vn must originate from external mechanisms. Similar blueshift of Vn is observed when the 
magnetic field is lowered (Fig. 16(d) in Appendix G). Taken together, these measurements point 
to the opening of energy dissipation channels in the emission and detection of the SWs outside 
the CAF region. We suspect that the spin polarization of the quantum Hall FM plays an 
important role. A more in-depth understanding requires microscopic modeling of the voltage-to-
spin interconversion processes [28]. In Appendix H, we briefly discuss the transmission of 
gapped SW excitations through a FM/CAF junction created in device 606. Similar to photons, 
the creation of more sophisticated magnonic devices can help advance the understanding and 
technological potential of magons in the arena of quantum information transport [7]. 

 

V. CONCLUSION 

In summary, we presented the observation and properties of a linearly dispersed, gapless SW 
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excitation in a quantum canted-antiferromagnet formed in bilayer graphene. Our results offer 
direct evidence for this predicted magnetic order and pave the path to the explorations of spin 
superfluidity in this highly coherent many-body system through microwave radiation or 
Josephson junction effect. The integration of a resonant Fabry-Pérot cavity and the all-electrical 
approach enabled the studies of low-energy collective excitations inaccessible to previous 
experimental techniques. We expect our method to be applicable to a wide range of spin and 
isospin-ordered quantum magnets emergent in van der Waals materials and heterostructures.  

 
APPENDIX A: MATERIALS AND LOCAL MEASUREMENTS 

1. Device fabrication 

Devices 606 (Fig.1) and 611 (Fig.12) contain three layers of gating. The global gate and the 
bottom gates are made of multi-layer graphite flakes. The bottom gates are etched into the shape 
of a quantum point contact (in device 606) or a strip (in device 611) using standard O2 plasma 
reactive ion etching (RIE) recipe. The devices are fabricated using the following procedure: 1) 
Transfer of h-BN/graphite global gate to SiO2/Si substrate following Ref. [50]. We have 
employed this method in our recent studies [39,40,51]. 2) Anneal in Ar/O2 atmosphere at 450°C 
for 3 hours to remove polymer residue from the transfer. 3) Transfer and pattern the graphite 
bottom gate using e-beam lithography and RIE. 4) Anneal the stack again using the same 
annealing procedure. 5) Transfer a h-BN/BLG/h-BN stack. Here the bilayer graphene sheet is 
bigger than the global gate. 6) Anneal the stack again. 7) For devices 606, we define the Hall-bar 
structure of the bilayer graphene using e-beam lithography and RIE (CHF3/O2 plasma). 8) 
Pattern and deposit Cr/Au side contacts [50]. 9) Pattern and deposit Ti/Au top gates that align 
with the bottom gates using an alignment procedure we developed previously with a typical 
precision of 10-15 nm [38,39]. For device 611, in step 7) we pattern and deposit the Ti/Au top 
gate in the shape of a Hall bar + two handles. 8) Etch the h-BN/BLG/h-BN stack using the top 
gate as the mask. 9) Pattern and deposit the Cr/Au side contacts. The top gate overhangs the 
bottom gate by about 165 nm on each side. This creates another resonant condition that manifests 
in the non-local signal of device 611 shown in Fig. 12.     

2. Characteristics of device 606 

The operation of device 606 employs 6 gates, which are the Si backgate VSi, the graphite 
global gate VGG, the top and bottom gates that control areas Q3 and Q4 respectively VTG3, VBG3, 

VTG4, and VBG4 (see Fig. 8(a)). VSi is biased to a large voltage, e.g. 60 V to dope the contact areas 
unless otherwise mentioned. The bulk carrier density n and filling factor 𝜈𝜈B is controlled by the 
global gate VGG. Sweeping VGG at a fixed B-field enables us to determine its gating efficiency 
and examine the characteristics of the bulk bilayer graphene. As Fig. 7(b) shows, IQHE is well 
developed in the bulk. By measuring the resistance from electrode 2 to 5, i.e. R2-5, as a function 
of VTG3 and VBG3, we determine the charge neutrality point (CNP) of area Q3 and the VTG3 - VBG3 

relation, which is shown in Fig. 7(c). Similar measurements are performed on area Q4 and the 
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resulting VTG4 - VBG4 relation is also given in Fig. 7(c).  As expected from the stacking process, 
VTG3 behaves similarly to VTG4 and VBG3 behaves similarly to VBG4. In Fig. 7(d), We measure 
RXY(2-8) as a function of VTG3 with Q4 at the LP insulating phase of 𝜈𝜈 = 0. 1/RXY(2-8) displays a 
series of well quantized plateaus as VTG3 changes. This allows us to determine the gating 
efficiency of VTG3 and also VBG3 through the VTG3 - VBG3 relation. Similar measurements are 
performed on Q4 to determine the gating efficiency of VTG4 and VBG4. Table 1 summarizes the 
gating efficiencies of all 5 gates. In the majority of our measurements, we position Q3 at the LP 
phase of 𝜈𝜈 = 0 by applying a large DQ3 = 400 mV/nm [41] unless otherwise mentioned.  

 
Fig. 7. (a) An optical image of device 606. (b) Bulk RXX (to the right of the QPC) and RXY (to the left of the 
QPC) vs VGG showing well-developed IQHE in the bulk of the bilayer graphene. (c) VTG3 – VBG3 and VTG4 – 
VBG4 relations and the gate voltage offsets corresponding to DQ3 = 0 (-0.206 V, 0 V) and DQ4 = 0 (-0.214 V, 0 
V). (d) RXY (VTG) across area Q3 (red trace). Area Q4 is at the LP insulating phase of 𝜈𝜈 = 0 with DQ4 = 400 
mV/nm so that RXY(2-8) is dominated by Q3. The bulk remains at 𝜈𝜈B = 4 (blue trace). Table 1 summarizes the 
gating efficiencies of all five gates and the thickness of the h-BN flakes used.   

Due to a small misalignment of the top and bottom gates as illustrated in Fig. 8(a), varying 
DQ3 or DQ4 while keeping Q3 and Q4 at the CNP also changes the carrier density inside the 
opening of the QPC. We take advantage of this effect to vary the carrier density inside the QPC 
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opening while holding the bulk filling factor 𝜈𝜈B constant. The impact of DQ3 and DQ4 on the QPC 
is quantified by measuring R2-8 across the QPC at different DQ3 or DQ4 and tracking the shift in 
VGG for a point of constant density. Examples are shown in Figs. 8(b) and 8(c) while Fig. 8(d) 
plots the resulting VGG - DQ3 (DQ4) relations. The positive sign of the slopes in Fig. 8(d) indicate 
that both top gates protrude into the QPC opening as shown in Fig. 8(a). For an extended 
discussion on this subject we refer the reader to Fig. S6 of Ref. [38]. Here we use a large DQ3 to 
pinch off the QPC completely. The operation conditions and the conductance across the QPC are 
shown in Fig. 8(e). Figure 8(f) illustrates the filling factors and phases in different parts of device 
606 under the measurement condition of Fig. 3.     

 
Fig. 8. (a) illustrates the misalignment of the top and bottom gates forming the QPC in device 606. The 
positive slopes in (d) indicate that both top gates extend into the opening. (b) 1/RD(2-8) versus VGG at varying 
DQ3. DQ4 = 116 mV/nm. (c) 1/RD(2-8) versus VGG at varying DQ4. DQ3 = 116 mV/nm. Tracking the shift of the 𝜈𝜈 
= 3 plateau allows us to obtain the relation between VGG and either DQ3 or DQ4. The results are plotted in (d). (e) 
1/RD(2-8) versus VGG at DQ4 =110 mV/nm and DQ3 = 400 mV/nm (black trace). Also plotted is 1/RXY in the 
bulk (blue trace) for reference. In the majority of our non-local measurements, we set DQ3 = 400 mV/nm, DQ4 = 
30 mV/nm and VGG = 0.8 V. In this configuration the bulk is at 𝜈𝜈B = 2, Q3 is in the LP phase, and Q4 is in the 
CAF phase. We obtain the expected QPC conductance (orange dashed trace) by shifting the measurement at 
DQ4 = 110 mV/nm by -0.42 V according to the gating relation in (d). It shows that the QPC opening sits 
squarely on the 𝜈𝜈 = 0 plateau. (f) illustrates the filling factor of different areas and edge states flow in this 
configuration. 
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APPENDIX B: THE NON-LOCAL MEASUREMENT METHOD AND MECHANISMS 
OF SPIN WAVE EMISSION AND DETECTION 

We use Yokogawa GS200 to apply a dc voltage and add a small ac excitation 𝛿𝛿Vac generated 
by a lock-in amplifier through a transformer and a divider. 𝛿𝛿Vac = 10 μV at 17 Hz is used unless 
otherwise mentioned. The non-local voltage 𝛿𝛿VNL is measured by a Stanford SR860 lock-in with 
a NF LI-75A preamplifier. We calculate and present the dc voltage dropped on the sample using 
𝑉𝑉dc = 𝑅𝑅B

𝑅𝑅B+𝑅𝑅C
𝑉𝑉dc′ , where 𝑉𝑉dc′  is the applied dc voltage, 𝑅𝑅B is the sample resistance excluding 

contacts, and 𝑅𝑅C is the total non-sample resistance  including the two contacts, cryostat wiring 
and the 1 kΩ resistor shown in Fig. 2. At a bulk filling factor of 2, 𝑅𝑅B ≈ 13 kΩ and 𝑅𝑅C ≈ 1.8 kΩ 
in device 606. Both remain constant in our measurements. 𝑉𝑉dc = 0.88𝑉𝑉dc′ . In device 611, 𝑅𝑅C ≈
13 kΩ and 𝑉𝑉dc = 0.49𝑉𝑉dc′  at 𝜈𝜈 = 2.      

In the following we provide qualitative and quantitative accounts of how gapless SW 
excitations are generated and detected in our non-local measurement. Our descriptions largely 
follow the model developed by Wei et al for gapped SW excitations [44] and are adpated to the 
unique characteristics of the CAF phase as illustrated below. Figures 2(a) and 2(b) of the main 
text compare the non-equilibrium edge state flow in the cases of a negative/positive dc bias. The 
bulk (𝜈𝜈B = 2) supports two edge states with spin-up polarization. They depart from contact 2 
with high chemical potential 𝜇𝜇 = - eVdc with a negative dc bias and terminate at contact 3. In the 
area between contact 3 and the CAF region, these two edge states with canted up-spins interact 
strongly with edge states departing and terminating at contact 3 but carrying opposite, canted 
down-spins as illustrated in Fig. 9. Strong inter-edge transitions launch SWs into the CAF phase 
from contact 3. A negative Vdc launches SW of net spin up, which gives rise to a positive VNL. A 
positive Vdc launches SW of net spin down, resulting in a negative VNL. Different from a spin 
polarized quantum Hall state [44], the CAF phase supports the transmission of both types of SWs 
by further canting of its spin vectors [13].        

 
Fig. 9. A schematic of the gradual canting of spins due to the effective field created by the CAF state following 
Ref. [14]. The canting enables a gapless transition of an electron from the inner edges (quasi spin-up) to the 
outer edges (quasi spin-down), with the net spin angular momentum carried away by the emission of a SW into 
the CAF phase. Transition in the opposite direction reverses the net spin angular momentum transmitted and 
hence the sign of the detected non-local signal.  
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On the other side of the CAF region, SWs are absorbed by individual contacts, resulting in a 
chemical potential redistribution 𝜀𝜀𝑖𝑖 at each contact. A SW of net spin up cannot propagate in the 
bulk of 𝜈𝜈 = 2, which is already fully polarized in the up direction. Thus, all magnons are 
absorbed by contact 8 next to the CAF region (Fig. 2(a)). While multiple contacts can absorb 
magnons with net spin down (Fig. 2(b)). Following Ref. [44], we write down the following 
expressions for the chemical potential at the probe contacts: 

For Vdc < 0: 
C8:   4𝜇𝜇8 = 2𝜇𝜇7 + 2𝜇𝜇8 − 𝜀𝜀8    (S1) 

C7:   4𝜇𝜇7 = 2𝜇𝜇6 + 2𝜇𝜇7    (S2) 
C6:   4𝜇𝜇6 = 2𝜇𝜇6 + 2𝜇𝜇5    (S3) 

C5:   4𝜇𝜇5 = 2𝜇𝜇8 + 2𝜇𝜇5 + 𝜀𝜀8    (S4) 
Therefore, 

𝜇𝜇8 = 𝜇𝜇7 −
𝜀𝜀8
2     (S5) 

𝜇𝜇7 = 𝜇𝜇6 = 𝜇𝜇5    (S6) 
The non-local voltage 𝑉𝑉NL(8− 7) is: 

𝑉𝑉NL(8− 7) =
𝜇𝜇8
−𝑒𝑒 −

𝜇𝜇7
−𝑒𝑒 =

𝜀𝜀8
2𝑒𝑒     (S7) 

The differential voltage 𝑑𝑑𝑉𝑉NL(8−7)
𝑑𝑑𝑑𝑑

 is: 

𝑑𝑑𝑉𝑉NL(8− 7)
𝑑𝑑𝑑𝑑 =

𝑑𝑑(𝜀𝜀82𝑒𝑒)

𝑑𝑑(𝜇𝜇sd−𝑒𝑒)
= −

1
2
𝑑𝑑𝜀𝜀8
𝑑𝑑𝜇𝜇sd

    (S8) 

𝜇𝜇sd is the source-drain chemical potential, which is positive for Vdc < 0. Equations S7 and S8 
produce positive 𝑉𝑉NL(8− 7) and negative  𝑑𝑑𝑉𝑉NL(8−7)

𝑑𝑑𝑑𝑑
 for Vdc < 0, in agreement with data shown 

in Figs. 3(d) and 3(e).   

For Vdc > 0: 
C8:   4𝜇𝜇8 = 2𝜇𝜇7 + 2𝜇𝜇8 + 𝜀𝜀8 − 𝜀𝜀7    (S9) 

C7:   4𝜇𝜇7 = 2𝜇𝜇6 + 2𝜇𝜇7 − 𝜀𝜀6 + 𝜀𝜀7    (S10) 
C6:   4𝜇𝜇6 = 2𝜇𝜇6 + 2𝜇𝜇5 + 𝜀𝜀6 − 𝜀𝜀5    (S11) 
C5:   4𝜇𝜇5 = 2𝜇𝜇8 + 2𝜇𝜇5 − 𝜀𝜀8 + 𝜀𝜀5    (S12) 

Therefore, 

𝜇𝜇8 = 𝜇𝜇7 +
1
2 (𝜀𝜀8 − 𝜀𝜀7)    (S13) 

𝜇𝜇7 = 𝜇𝜇6 +
1
2 (𝜀𝜀7 − 𝜀𝜀6)    (S14) 

𝜇𝜇6 = 𝜇𝜇5 +
1
2 (𝜀𝜀6 − 𝜀𝜀5)    (S15) 

𝜇𝜇5 = 𝜇𝜇8 +
1
2 (𝜀𝜀5 − 𝜀𝜀8)    (S16) 
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The non-local voltage 𝑉𝑉NL(8− 7) is: 

𝑉𝑉NL(8 − 7) =
𝜇𝜇8
−𝑒𝑒 −

𝜇𝜇7
−𝑒𝑒 = −

1
2𝑒𝑒 (𝜀𝜀8 − 𝜀𝜀7)    (S17) 

The differential voltage 𝑑𝑑𝑉𝑉NL(8−7)
𝑑𝑑𝑑𝑑

 is: 

𝑑𝑑𝑉𝑉NL(8 − 7)
𝑑𝑑𝑑𝑑 =

𝑑𝑑 �− 1
2𝑒𝑒 (𝜀𝜀8 − 𝜀𝜀7)�

𝑑𝑑(𝜇𝜇sd−𝑒𝑒)
=

1
2
𝑑𝑑(𝜀𝜀8 − 𝜀𝜀7)
𝑑𝑑𝜇𝜇sd

    (S18) 

Equations S17 and S18 again produce the correct sign for VNL and dVNL/dV given that 𝜇𝜇sd is 
negative for Vdc > 0. Because contact 8 is much larger and much closer to the CAF phase than 
contact 7, it plays a dominant role in the detection of VNL. This makes VNL an approximately odd 
function of Vdc and dVNL/dV an approximately even function of Vdc, as our data in Figs. 3(d) and 
3(e) show.  

 
Fig. 10. (a) The same measurement setup as in Fig. 2(b), but with the B-field pointing in the opposite direction. 
All edge states near the CAF phase departure from contact 3 and have the same chemical potential. Electron 
scattering cannot happen. (b) The measured non-local differential signal using the configuration in (a) is 
negligible within ± EZ = 1 meV, in comparison to signal amplitude > 0.1 in the other B-field direction. (c) The 
measured non-local differential signal using the configuration shown in the inset is very small because both 
contacts 1 and 2 are away from the CAF region. 

We have experimented with measurement setups different from that used in Fig. 2. Both the 
presence of the CAF phase and an active contact in its immediate vicinity (Contact 3 or 8 in Fig. 
10(a)) are essential to the emission and detection of the gapless SWs, independent of whether the 
SW is emitted from the left side or the right side of the sample. In Fig. 10(a), because of the 
direction of the magnetic field, all edge states near contact 3 are on the same chemical potential 
so no gapless SW is emitted there and we observe negligible non-local signal in Fig. 10(b). In 
Fig. 10(c), the voltage probes are some distance away from the CAF region. Because the spin 
polarized bulk does not support the transmission of gapless SWs, the measured VNL is also close 
to zero in the range of |Vdc| < Ez. 

When the middle region is set to 𝜈𝜈 = 2 (Fig. 3(c)), or when both source and drain contacts are 
away from the CAF region (Fig. 17), we observe SWs with an excitation gap, similar to what has 
been reported in the literature. In these scenarios, only SW with net spin down is transmitted and 
it is emitted by the drain/source contact in the case of a positive/negative dc bias. The non-local 
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VNL (8-7) remains negative and the differential signal dVNL/dV changes sign at zero bias. This is 
indeed what we observed. A more detailed discussion of gapped SW excitation and transmission 
is given in Appendix H. 

 
APPENDIX C: FABRY-PÉROT RESONANCES IN DEVICES 606 AND 611  

  In Figure 11, we present data and analysis of the Fabry-Pérot oscillations in the Vdc > 0 
regime of device 606. Data from both bias directions overlap strongly and yield very similar 
results on 𝑣𝑣𝑎𝑎𝑎𝑎. A small difference could be due to a slight bias dependence of the contact 
resistance or impurity states and geometrical imperfections that respond to positive/negative dc 
biases differently. An intrinsic asymmetry caused by the detection of the SW can also contribute. 
See discussions in Appendix B.  

 
Fig. 11. dVNL/dV and analysis for positive dc bias in device 606. (a) compares dVNL/dV vs positive Vdc (orange 
line) and negative Vdc (black dotted line) at T = 2.5 K with the resonance peaks labeled for both traces. The two 
data overlap very well. (b) Vn vs mode number n at selected temperatures and linear fits to the data. (c) 
Temperature dependence of the slope dVn/dn extracted from the fittings in (b). The low-T slope of 0.055 mV 
yields 𝑣𝑣𝑎𝑎𝑎𝑎 = 52 km/s, in comparison to 𝑣𝑣𝑎𝑎𝑎𝑎 = 57 km/s extracted from the negative Vdc data. 

Figure 12 presents data from device 611. In this device, the active region supporting gapless 
SW transport is the area inside the red box in Fig. 12(a), where the dual gated region is 
positioned at the CAF phase of 𝜈𝜈 = 0 with D = -30 mV/nm. Figure 12(b) presents the properties 
of the bulk and the measured non-local signal and analysis are shown in Figs. 12(c)-(e). As Fig. 
12(a) shows, the top gate is larger than the bottom gate by 165 nm on each side (This was done 
purposefully). We suspect that this arrangement creates two resonant cavities of width 1.27 𝜇𝜇m 
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and 165 nm respectively. Our data in Fig. 12(d) indeed shows two sets of resonance peaks with 
very different spacings. The spacing between the sharp resonance peaks is roughly 0.4 mV while 
the oscillations similar to that in device 606 have a period of 0.059 mV (Fig. 12(c)). The ratio 
between the two periods, 0.4 mV/0.059 mV agrees well with the inverse ratio of the two cavity 
widths 1270 nm/165 nm. The linear fitting of the finely spaced oscillations in Fig. 12(e) yields a 
SW velocity of 36 km/s at 7 T. This value is generally consistent with that of 50-60 km/s 
obtained in device 606 at 8.9 T given the field difference. Similar to device 606, Fig. 12(f) shows 
that the non-local signal in device 611abruptly disappears when the dual-gated area transitions to 
the non-magnetic insulating phase at large D-field, again demonstrating the unambiguous role of 
the CAF phase in the detection of the SW signal.   

 
Fig. 12. Characteristics and non-local measurements on device 611. (a) An optical image and a schematic of 
the active region. The black, blue and white dashed lines outline the edges of the bilayer graphene sheet, the 
graphite bottom gate, and the graphite global gate respectively. The bottom gate is a strip of width 1.27 µm. 
The Au top gate includes a “belly” that coincides with the edge of the bilayer graphene sheet and two “handles” 
that overhang the bottom gate by about 165 nm on each side. (b) 1/RXY(8-6) vs the global gate voltage VGG 
showing well developed IQHE at bulk filling factor 𝜈𝜈B = 2. (c) and (d): dVNL/dV vs Vdc at 7 T and two 
different temperatures showing the two sets of Fabry-Pérot resonances. Contacts 1 and 3 are used as source 
and drain and the non-local differential voltage is measured from 9 to 8. (e) A linear fit of the fine oscillations 
similar to that of device 606 yields a slope of 0.059 mV, which corresponds to a SW velocity of 36 km/s. (f) 
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shows the evolution of the non-local signal as a function of DM of the dual-gated area in (a). The transition at 
65 mV/nm corresponds to the CAF/LP phase transition of 𝜈𝜈 = 0 [41].   

APPENDIX D: THE IMPACT OF RF NOISE ON THE FABRY-PÉROT RESONANCES 

 

 
Fig. 13. Sensitivity of Fabry-Pérot resonance to RF noise. (a) and (b) are from a He3 cryostat equipped with 
RF filtering using thermocoax cables (THERMOCOAX, Inc. Model: 1 Nc Ac 05, length > 2 m). The sample is 
thermal cycled to above 20 K in between (a) and (b). Resonant peaks in dVNL/dV reproduce very well, apart 
from occasional small shift. (c) and (d) are obtained at the MagLab using the dilution fridge of the 18 T system 
(SCM1). They reproduce the envelope of the non-local signal but exhibit larger onset dc bias and substantially 
fewer resonance peaks. Environmental noise that leads to decoherence is likely the cause. The severity of the 
problem also depends on what other instruments are running at the same time. The situation in (d) is worse 
than in (c). From device 606. T = 0.33 K. B = 8.9 T. Data presented in Fig. 5(a) were obtained in the run of 
panel (c), where we tracked the magnetic field dependence of the three strong resonance peaks that reproduce 
well to 18 T.           

 

APPENDIX E: CONTRIBUTIONS TO THE DC BIAS THRESHOLD VT IN GAPLESS 
SW EXCITATIONS 

Although our measurements probe the gapless SW dispersion of the CAF phase, several 
intrinsic and extrinsic factors give rise to a finite onset bias VT. The first is the finite size of the 
CAF region, which produces discrete resonant modes at 𝑘𝑘𝑛𝑛 = 𝑛𝑛𝑛𝑛/w, where n = 1, 2, 3…. In 
addition, the properties of the contact area play an important role in the emission and detection of 
gapless SWs. Figure 14 gives two examples. Fig. 14(a) shows the temperature dependence of the 
first three Fabry-Pérot modes in device 606. The first two modes n = 1, and 2 are suppressed at 
low temperatures and only appear at T  > 1.5 K, probably due to thermal activation over a small 
contact barrier. Fig. 14(b) plots traces taken on device 611 at four different VSi voltages. 
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Measurements taken at VSi = 45 and 60 V show the characteristics of gapless SW excitations 
with a small and stable threshold VT. At lower VSi, the data increasingly take on the symmetry 
and threshold of gapped SWs that propagate through a spin polarized bulk. See Appendix H for 
an expanded discussion on a FM/CAF junction. These measurements show that heavy doping of 
the emission/detection contacts, which leads to crowed edge states in their vicinity, is necessary 
to probe gapless SW excitations. 

 
Fig. 14. The threshold bias VT in the measurement of gapless SW signal. (a) dVNL/dV at different temperatures 
illustrating the decrease of VT with increasing temperature. Modes 1 and 2 only appear at T = 1.5 K and above. 
Modes of n = 3 and above are not impacted by the threshold shift. From device 606. (b) The decrease of VT 
with increasing contact area doping. From device 611. See Fig. 12(a) for measurement setup. Traces are 
vertically shifted for clarity. In both devices, the onset of the non-local signal occurs at VT << EZ with VSi = 60 
V.        

 

APPENDIX F: THE PHASE DIAGRAM AND ENERGY SCALES OF THE 𝝂𝝂 = 0 STATE 
IN BILAYER GRAPHENE 

Previous experiments have shown that all relevant interaction energies and the Landau level 
gaps of the E = 0 octet in bilayer graphene (𝜈𝜈 = 0, ±1, ±2, ±3) scale linearly with 𝐵𝐵⊥ up to 12 T 
[21,41]. The 𝜈𝜈 = 0 phase diagram is driven by competing interaction energies 𝑢𝑢z, 𝑢𝑢⊥, 𝐸𝐸z, and 𝐸𝐸v. 
𝑢𝑢z and 𝑢𝑢⊥ are anisotropy energies in the z-axis and x-y plane respectively. 𝐸𝐸z is the Zeeman 
energy proportional to Btot and 𝐸𝐸v is the valley anisotropy energy proportional to the applied D-
field [22,24,25,40,41]. Small 𝐸𝐸v and 𝐸𝐸z, together with 𝑢𝑢z > - 𝑢𝑢⊥ > 0, give rise to the easy-plane 
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CAF phase studied here. Increasing 𝐸𝐸z through Btot drives a transition to an easy-plane FM phase 
at 𝑢𝑢⊥ = −𝐸𝐸z

2
 while increasing 𝐸𝐸v drives a transition to a partially layer polarized (PLP) non-

magnetic phase at 𝐸𝐸v = �𝑢𝑢z2 − 𝑢𝑢⊥2  in a pure 𝐵𝐵⊥ field [22]. Figure 15 plots a phase diagram from 
our previous work [40]. At 𝐵𝐵⊥ = 3 T , the CAF-PLP phase transition occurs at D* = 34 mV/nm 
and the CAF-FM transition occurs at Btot = 11.2 T. Together with 𝐸𝐸v (meV) = 0.13 𝐷𝐷 (mV

nm
) 

determined in Ref. [41], we obtain 𝑢𝑢⊥ = −0.65 meV and 𝑢𝑢z = 4.4 meV or 𝑢𝑢⊥ ≈ − 1
7

 𝑢𝑢z. The 
approximately linear D* (B) relation at low field (inset of Fig. 5(b)) yields 𝑢𝑢z (meV) ~ 1.1 𝐵𝐵⊥ (T). 
Measurements of the CAF-FM transition [24,40] also suggest a linear 𝐵𝐵⊥ scaling for 𝑢𝑢⊥. This 
allows us to estimate the corresponding energies at 8.9 T to be:  
𝑢𝑢z ≈ 𝐸𝐸v∗ = 10.4 meV,𝑢𝑢⊥ ≈ − 1

7
 𝑢𝑢z = −1.5 meV. Here we used the measured D* = 80 mV/nm. 

The spin canting angle 𝜃𝜃𝑠𝑠 is given by cos𝜃𝜃s = 𝐸𝐸z
2|𝑢𝑢⊥|, which is about  70° and verifies that indeed 

the spins lie nearly in the x-y plane. The velocity of the SW in the CAF phase is given by 𝑣𝑣𝑎𝑎𝑎𝑎 =

2𝑙𝑙B𝑠𝑠𝑖𝑖𝑛𝑛𝜃𝜃s�|𝑢𝑢⊥|𝑢𝑢�, where 𝑢𝑢�  is a renormalized interaction energy at 𝜈𝜈 = 0 [26]. Following Ref. 
[26], we use the measured gap of the CAF phase Δ0 in suspended bilayer graphene [21] to 
estimate 𝑢𝑢�  . Δ0 (meV) ≈ 1.7 𝐵𝐵⊥ (T) in Ref. [21] and 𝑢𝑢� = 89
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Δ0 = 0.67𝐵𝐵⊥ [26]. This gives 𝑢𝑢�  = 6 

meV at 8.9 T. This energy is consistent with the T-dependence of the resistance of the CAF 
phase shown in experiment [40]. It is also reasonable compared to the scaling of 𝑢𝑢z and other 
exchange-dominated energy scales of the system. For example, the 𝜈𝜈 = 2 gap Δ2 (meV) ≈
1.2𝐵𝐵⊥ (T) [41,52].  

 
Fig. 15. The phase diagram of 𝜈𝜈 = 0 in bilayer graphene at 𝐵𝐵⊥ = 3 T showing the CAF-LP transition at 34 
mV/nm and the CAF-FM crossover at Btot = 11.2 T. Adapted from Ref. [40]. 
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APPENDIX G: THE BULK FILLING FACTOR AND MAGNETIC FIELD 
DEPENDENCE OF THE NON-LOCAL dVNL/dV 

 
Fig. 16. The dependence of dVNL/dV on the bulk filling factor 𝜈𝜈B and the external magnetic field with a 
constant gating condition of the CAF phase. (a) and (b) show the evolution of dVNL/dV as a function of 𝜈𝜈B in 
device 606 and 611 respectively. The non-local signal is insensitive to the change of 𝜈𝜈B in the filling factor 
range of 𝜈𝜈B = (2 ± 0.2-0.3) (regions within the black dashed lines in both graphs). Further deviation of 𝜈𝜈B leads 
to amplitude reduction and simultaneous blueshift of resonant mode energies. The details are sample 
dependent. (c) characterizes the shift of the mode energy at two different filling factors as indicated by the blue 
and red dashed lines in (a). Larger shifts are observed for higher harmonics. Δ𝑉𝑉n is roughly linear in n, as the 
dashed lines show. (d) shows the evolution of dVNL/dV as a function of B while keeping 𝜈𝜈B = 2. Blueshift of 
resonant modes occurs at B < 7.5 T. This trend is at odds with the theoretical expectation of a decreasing SW 
velocity with decreasing B, as discussed in the main text. We suspect that a weakened 𝜈𝜈B = 2 at lower field 
reduces the spin polarization of the bulk and the blueshift of the modes share the same origin as the 
𝜈𝜈B dependence shown in (a) and (b). A microscopic understanding of the non-equilibrium emission and 
detection process including dissipation channels can help understand these observations. 

 
APPENDIX H: TRANSMISSION OF GAPPED SPIN WAVE THROUGH A FM/CAF 
JUNCTION  

The use of a contact adjacent to the CAF phase is essential to the excitation of gapless SWs. 
When both source and drain contacts are distant, as illustrated in Fig. 17(a), we observe gapped 
SW signals (Fig. 17(b)). In this setup, the SW is launched/reflected in the bulk of a FM and 
transmitted through a FM/CAF junction. As Fig. 17(b) shows, the envelope and symmetry of 
dVNL/dV is characteristic of a ferromagnet, where the signal onsets at a finite dc bias VT. Figures 
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17(c) and 17(d) plot the evolution of dVNL/dV with increasing B-field and the B-dependence of 
VT respectively. VT increases linearly with B with a slope of 0.09 mV/T, which is consistent with 
the contribution of Ez (g = 2 gives 0.11 mV/T), but saturates to a value of ~ 1.7 mV at field 
below 10 T. We again observe pronounced and reproducible oscillations in dVNL/dV. Figure 17(e) 
compares the oscillations in Fig. 17(b) with that of the gapless SW signal in Fig. 4(b). The 
remarkable correspondence of the two profiles allows us to identify the resonant modes of the 
CAF cavity occurring at quantized longitudinal momentum 𝑘𝑘𝑥𝑥 = 𝑛𝑛 𝜋𝜋 𝑤𝑤⁄ . Figure 17(f) plots the 
dc bias of the modes Vn vs n. Vn extrapolates to a finite gap at 𝑛𝑛 = 0. Its rapid change with n 
translates to a strong dependence of 𝜔𝜔 on 𝑘𝑘𝑥𝑥 .    

Several aspects of the data can be understood by recognizing the effect of energy 𝜔𝜔 and 
transverse momentum 𝑘𝑘𝑦𝑦 conservation on the SW transmission at the 𝜈𝜈 = 2 / 𝜈𝜈 = 0 junction (41). 
As illustrated in the inset of Fig. 17(f), the dispersion in the 𝜈𝜈 = 2 region follows 𝜔𝜔′�𝑘𝑘𝑥𝑥′,𝑘𝑘𝑦𝑦� =
𝐸𝐸z + 𝑎𝑎(𝑘𝑘𝑥𝑥′2 +𝑘𝑘𝑦𝑦2) while in the CAF region 𝜔𝜔(𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦) = 𝑣𝑣𝑎𝑎𝑎𝑎𝑘𝑘 = 𝑣𝑣𝑎𝑎𝑎𝑎�𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2 with 𝑘𝑘𝑥𝑥 given by 
𝑘𝑘𝑥𝑥 = 𝑛𝑛 𝜋𝜋 𝑤𝑤⁄ . Energy conservation dictates a large 𝑘𝑘𝑦𝑦 when 𝑘𝑘𝑥𝑥 is small, which in turns increases 
the Zeeman gap by 𝑎𝑎𝑎𝑎𝑦𝑦2. This additional term could increase VT beyond the Zeeman term. The 
strong dependence of 𝜔𝜔 on 𝑘𝑘𝑥𝑥 our data show likely originates from the involvement of a large 𝑘𝑘𝑦𝑦, 
which means the SW is incident at the interface with a small angle 𝜃𝜃 as illustrated in Fig. 17(a). 
This scenario is supported by the dimensions of the device and the measurement setup. A 
quantitative understanding of transmission at heterojunctions will enable the design of magnonic 
devices (42) and further unleash the power of SW excitation as a useful tool to probe 
fundamental phenomena of magnetic systems.    

 
Fig. 17. SW transmission through a FM/CAF junction. (a) The measurement setup. At the 𝜈𝜈 = 2 / 𝜈𝜈 = 0 
interface, 𝜔𝜔 = 𝜔𝜔′ and 𝑘𝑘𝑦𝑦 = 𝑘𝑘𝑦𝑦′. (b) dVNL/dV obtained in the setup shown in (a). The dashed lines mark the 
bias threshold VT. (c) plots dVNL/dV obtained at selected magnetic fields as labeled. (d) plots the B-dependence 
of the threshold VT averaged for ± Vdc and a linear fit to the data with a slope of 0.09 mV/T. (e) overlays the 
data in (b) (Vdc > 0, red solid line) with the corresponding trace in Fig. 4(b) (blue dotted line, expanded in Vdc 
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by × 4.55 and shifted horizontally). The remarkable overlap indicates that both arise from the FP resonance of 
the CAF region. (f) plots Vn vs n extracted from (e). The dotted line is a guide to the eye. From device 606. The 
gray dashed line has a slope of 0.42 mV/mode, which is 7 times of the low-T slope in Fig. 4(e). This indicates 
𝑘𝑘𝑦𝑦 ≫ 𝑘𝑘𝑥𝑥 and a shallow SW incidence as illustrated in (a). The inset of (f) illustrates the 𝜔𝜔 − 𝑘𝑘𝑥𝑥 relations in the 
FM (blue line) and the CAF (red line) regions. The CAF phase also supports a gapped dispersion with  
𝜔𝜔0 = 2𝐸𝐸z (12) but this branch is not activated due to energy conservation.   
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