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Surface-response functions are one of the most promising routes for bridging the gap between fully quantum-
mechanical calculations and phenomenological models in quantum nanoplasmonics. Within all the currently
available recipes for obtaining such response functions, ab initio calculations remain one of the most predominant,
wherein the surface-response function are retrieved via the metal’s non-equilibrium response to an external
perturbation. Here, we present a complementary approach where one of the most appealing surface-response
functions, namely the Feibelman d-parameters, yield a finite contribution even in the case where they are
calculated directly from the equilibrium properties described under the local-response approximation (LRA),
but with a spatially varying equilibrium electron density. Using model calculations that mimic both spill-in and
spill-out of the equilibrium electron density, we show that the obtained d-parameters are in qualitative agreement
with more elaborate, but also more computationally demanding, ab initio methods. The analytical work presented
here illustrates how microscopic surface-response functions can emerge out of entirely local electrodynamic
considerations.

INTRODUCTION

The plasmonic response of metallic nanostructures is com-
monly explored within the framework of classical electrody-
namics [1], while describing the free electrons of metals clas-
sically within the Drude-like local-response approximation
(LRA) [2]. This implies treating the electrons as a gas of nonin-
teracting electrons, homogeneously distributed inside the metal
and confined by a hard-wall at the metal’s surfaces. In this
fashion, any aspect of nonlocal (i.e., q-dependent) response [3–
5] are commonly neglected both in the bulk of the metal (e.g.,
finite compressibility of the Fermi gas) and at its surface (e.g.,
Friedel oscillations and electronic spill-out associated with a
finite work function).

Despite its neglect of quantum-mechanical effects, the LRA
has constituted a critical theoretical framework in the overall
developments of plasmonics [2, 6, 7]. More recently, the impor-
tance of quantum phenomena has been pursued via both clas-
sical accounts, including smooth equilibrium electron-density
profiles [8–10], and semiclassical hydrodynamic models [11–
13], as well as through ab initio studies [14, 15]. The former
approaches can be criticized for only dealing with some quan-
tum aspects semiclassically, while the latter are typically by
their complexity and by its practical applicability to small
plasmonic systems [16–20]. In this context, surface-response
functions aim to capture the dominant quantum phenomena
and microscopic aspects of the surface, while still allowing
for a (semi)classical treatment of the light–matter interactions
in the bulk of the metal. As such, there has recently been
a renewed interest in electrodynamic surface-response func-
tions [21–23] in the context of plasmon-enhanced light–matter
interactions [24–27] and quantum plasmonics [28–30], includ-
ing, in particular, their importance for understanding plasmon–
emitter interactions in nanoscale environments [26, 27], and

plasmon-enhanced interactions with two-dimensional (2D) ma-
terials [26, 31], as well as for the understanding of detailed
spectral properties of plasmon resonances themselves [18, 32–
36].

Traditionally, surface-response functions have been obtained
through first-principle calculations of the electrodynamics of
metal surfaces subjected by time-varying electric fields [37],
e.g., by employing time-dependent density-functional theory
(TDDFT) [14], while they can in some cases also be analyti-
cally evaluated from semiclassical models, such as the hydro-
dynamic model [34, 38, 39]. In all cases, the common strategy
has been to first evaluate the non-equilibrium response to obtain
the induced charge density, ρind(ω; rn̂), and, from it, extract the
surface-response function, e.g., the Feibelman d⊥-parameter
(corresponding to the centroid of induced charge density [21]).
Here, we explicitly show that even when considering equi-
librium properties alone and a local-response approach, there
is a finite contribution to the metallic surface-response func-
tions provided that the (equilibrium) electron density varies
smoothly from its bulk value deep inside the metal to zero near
the metal’s surface [40–42] (as opposed to terminate abruptly
at it). Such an approach, despite its simplicity and inherent lim-
itation, could nevertheless facilitate new physical insights into
the electrodynamic fingerprints associated with quantum spill-
out/spill-in, without resorting to computationally demanding
ab initio methods.

RESULTS

We consider a metallic nanostructure where n0(r) is the
equilibrium electron density (see Fig. 1a), which is spatially in-
homogeneous in the vicinity of the metal’s surface, possibly in-
cluding, e.g., quantum spill-out and/or Friedel oscillations [43]
due to a finite work function [44]. In the presence of time-
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Figure 1. a Metal–vacuum interface, indicating the surface re-
gion where the electron density varies from its asymptotic, bulk
values εm ≡ εlra(−∞) and εd ≡ εlra(∞) = 1. b Top: Schematic
of the (normalized) equilibrium electron-density profile n̄0(z) char-
acterized by a smearing length a in the vicinity of the surface
(here defined by the z = 0 plane). Bottom: Real part of the
system’s dielectric function Re εlra(z) [Eq. (9)] associated with
n̄0(z) = [1 − tanh(z/a)]/2, along with the ensuing Re Ez(z) and
Re ρind(z). All quantities are in arbitrary units. Parameters:
ω = ωp/

√
3, and a Drude-type bulk damping of γ/ωp = 0.3

harmonic electromagnetic fields, the electrodynamics of the
system is governed by the integro-differential wave equation

∇ × ∇ × E(r) =
ω2

c2

∫
dr′ ε(r, r′)E(r′), (1)

where ω is the angular frequency, c is the speed of light in
vacuum, and ε(r, r′) is the nonlocal linear-response function,
i.e., the (nonlocal) dielectric function of the quantum electron
gas (here assumed to be isotropic, for the sake of simplicity).
The microscopic and analytical understanding of ε(r, r′) is in
general limited to bulk considerations within the random-phase
approximation (RPA) or the hydrodynamic model (HDM) [4,
5, 26, 40, 45, 46].

Local-response approximation (LRA). In order to proceed

with the nonlocal, integro-differential wave equation (1), it is
common to invoke further approximations—in the context of
plasmonics, the prevailing one being the naı̈ve LRA, epito-
mized by

ε(r, r′) ≈ εlra(r)δ(r − r′). (2a)

Here, the inherent finite-range nonlocal response of the elec-
tron gas is neglected in favor of a zero-range, local response
(mathematically represented by the Dirac delta function in
the previous expression). Physically, this is equivalent to ne-
glecting spatial dispersion represented by a finite wave vector
dependence of the dielectric function [4, 5, 26], and thus ig-
noring, for instance, the finite dynamic compressibility of the
electron gas [4, 5]. In spite of this—and as we show in what
follows—some quantum aspects associated with an inhomo-
geneous electron gas (Fig. 1a), like electronic spill-out, can
still be incorporated to some extent in the LRA. In particu-
lar, the LRA enables the simplification of the nonlocal wave
equation (1) to the local-response one:

∇ × ∇ × E(r) =
ω2

c2 εlra(r)E(r), (2b)

which is conceptually simpler and computationally more
tractable [47].

Piecewise-constant approximation (PCA). Inspired by long-
established traditions in the electrodynamics of composite di-
electric problems [48], it is common in plasmonics [2] to in-
voke yet another approximation: the step-like, abrupt surface
termination of the metal, thereby neglecting any microscopic
inhomogeneities in the vicinity of the surface (herein defined
by z = 0, without loss of generality, with the metal and the
dielectric each occupying the z < 0 and z > 0 half-spaces, re-
spectively). Under this approximation, εlra(z)→ εpca(z), with

εpca(z) ≡ εlra(−∞)Θ(−z) + εlra(∞)Θ(z) (3)

≡ εmΘ(−z) + εdΘ(z), (4)

where the system’s dielectric function is constructed out of
two interfacing piecewise-constant (bulk) local-response func-
tions, εm ≡ εm(ω) and εd ≡ εd(ω) (and Eq. (2b) is then solved
by invoking the classical pillbox arguments at these inter-
face [1]). Here, εm is the Drude-like dielectric function of
the free-electron gas [2, 11]

εm = ε+ −
ω2

p

ω2 + iωγ
, (5)

with ε+ ≡ ε+(ω) allowing for the incorporation of the polar-
ization due to the positive ionic background or for a heuristic
account of interband transitions. It should be emphasized
that the PCA has been tremendously successful in advanc-
ing the field of plasmonics, being sufficient to interpret the
majority of experimentally observed phenomena [2]. What
makes the PCA legitimate in most cases is the fact that the
electron density is only non-uniform across an extremely small
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region in the vicinity of the metal surface, typically spanning
only a few ångströms [i.e., on the order to the metal’s Fermi
wavelength (in the bulk), λF]. In spite of this, such a “clas-
sical”, piecewise-constant approximation, is currently being
challenged by the recent developments in nanoscale plasmonics
and plasmon-empowered light–matter interactions at nanomet-
ric scales [15, 25–27, 31, 35, 49].

Surface-response functions. In the PCA, the induced
charge is strictly a (singular) surface charge, i.e., ρind(z) ∝
δ(z) [1, 21, 26], while in reality, however, it assumes a nonsin-
gular induced charge density ρind(z) of a finite, surface-peaked
nature (Fig. 1b). In this context, the Feibelman d-parameters,
d⊥ ≡ d⊥(ω) and d‖ ≡ d‖(ω), are dynamical surface-response
functions that correspond to the first-moment (i.e., the cen-
troid) of the induced charge density and of the normal deriva-
tive of the tangential current density, given, respectively, by
(ω-dependence implicit) [21]

d⊥ =

∫ ∞
−∞

dz z ρind(z)∫ ∞
−∞

dz ρind(z)
, d‖ =

∫ ∞
−∞

dz z ∂
∂z Jind

x (z)∫ ∞
−∞

dz ∂
∂z Jind

x (z)
, (6)

which are complex-valued surface-response function, i.e.,
dα(ω) = d′α(ω) + id′′α (ω) with α ∈ {⊥, ‖}. The general appeal of
the d-parameters is that, once they are obtained, the system’s
optical response can be calculated by solving a d-parameter-
modified classical electrodynamic problem, namely, the LRA
wave equation (2b) together with the “classical” PCA [recall
Eq. (3)] but now subjected to the d-parameter-corrected, meso-
scopic boundary conditions [26, 27, 33–35]. Computationally,
this is clearly more attractive than having to solve the more
complex integro-differential problem typified by Eq. (1), while
at the same time such reformulation into a quantum-informed
“classical-equivalent” electrodynamic problem also paves the
way for further analytical work [26, 27, 34]. Naturally, differ-
ent mechanism can be incorporated (together or separately)
via the d-parameters, e.g., nonlocality, quantum spill-out/spill-
in, Landau damping, etc [21, 50]. In the following, we limit
our consideration to the LRA contribution to the d-parameters
emerging solely from a spatially varying dielectric function,
i.e., εlra(z).

Alternatively to Eqs. (6), the d-parameters can also be writ-
ten in terms of surface integrals associate with the difference be-
tween the actual, microscopic fields and the classical, “Fresnel”
fields stemming from the PCA [21, 22, 51–53], specifically
(see Supplementary Material):

d⊥ = −
εd

εm − εd

∫ ∞

−∞

dz
Ez(z) − Epca

z (z)
Epca

z (0−)
, (7a)

d‖ =
1

εm − εd

∫ ∞

−∞

dz
Dx(z) − Dpca

x (z)
ε0Epca

x (0−)
, (7b)

where Epca
x,z , Dpca

x are fields obtained within the classi-
cal, piecewise-constant approach. In the long-wavelength
regime and to leading-order in q|z2 − z1|, the Feibelman d-
parameters (7) associated with a local, but smoothly varying

dielectric function εlra(z) can be written as [52, 54–57] (see
Supplementary Material)

d⊥ =
1

ε−1
m − ε

−1
d

∫ ∞

−∞

dz
[
ε−1
lra(z) − ε−1

pca(z)
]

, (8a)

d‖ =
1

εm − εd

∫ ∞

−∞

dz [εlra(z) − εpca(z)] . (8b)

Equations (8) unambiguously illustrate how εlra(x) , εpca(x)
contributes to a finite d⊥ and d‖. Naturally, in general, there
will also be further contributions to the d-parameters stemming
from the nonlocal response of the electron gas [e.g. treated
within the nonlocal random-phase approximation (RPA) or the
hydrodynamic model (HDM)]; nevertheless, it is important to
emphasize that there is a nonzero contribution to the surface-
response already within the LRA once the PCA is relaxed.
In the following, we shall illustrate this in more detail with
an elementary model that elucidates the physics—within the
constraints associated with the LRA—of both spill-out and
spill-in of the metal’s electron density. Despite its inherent
simplicity, the strength of the simple model adopted below lies
also in its ability to render analytical results in closed-form.

Metal surface with a smoothly varying electron density. As
mentioned previously, a more realistic representation of a metal
surface is to abandon the assumption of an infinitely sharp
dielectric–metal interface and instead allow the metal’s electron
density to vary smoothly from its value deep inside the metal,
nbulk

0 ≡ n0(z → −∞), to zero well inside the vacuum (Fig. 1).
This can be modeled through a simple generalization [21, 38,
40–42, 58] of Eq. (5), that is

εlra(z) = ε∞(z) −
ω2

p

ω2 + iωγ
n̄0(z), where n̄0(z) =

n0(z)
nbulk

0

.

(9)
where n0(r) ≡ n0(z) is the spatial profile of the equilibrium
electron density and nbulk

0 ≡ n0(z → −∞) refers to its value
deep inside the metal. Here, ε∞(z) takes into account the
variation from the background polarization, subjected to the
requirement that deep inside the metal (dielectric) it converges
to the polarization due to the jellium background of posi-
tive ions, ε∞(z → −∞) = ε+ (to the dielectric’s permittivity
ε∞(z → +∞) = εd). As a complementary perspective, this
can also be interpreted as the common local response of the
Drude kind, but with a spatially varying plasma frequency,
ωp(z) ≡ ωp

√
n̄0(z). In passing, we note that Eq. (9) has been

used widely over the years, including Refs. 8, 9, 59–64. Finally,
we note how the PCA mathematically emerges upon replacing
n̄0(z) by a Heaviside function, i.e., n̄0(z)→ Θ(−z), correspond-
ing to the classical, step-like termination of the equilibrium
electron density.

Transition from spill-in to spill-out. To illustrate the transi-
tion from spill-in to spill-out, we consider a model electron-
density profile of the form [57]

n̄0(z) = tanh2
( z − z0

a

)
Θ(z0 − z), (10)
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a

b

Figure 2. Feibelman d-parameters in the LRA for a jellium–vacuum
interface (ε+ = εd = 1) characterized by a smooth electron-density
profile. a Real, Re d⊥ (black, light-red, red), and imaginary part,
Im d⊥ (green) [Eq. (12a)], for the electron-density profile described
in Eq. (10) with varying z0/a; we assume a Drude bulk damping
of Γ = γ/ωp = 0.1. b Effective surface-response function deff ≡
d⊥ − d‖ [from Eq. (12)]. The dashed curves depict the result in
the lossless case [Eq. (12b) and (13)]. The grey-shaded region
indicates the frequency window supporting semiclassical localized
plasmon resonances in metallic nanoparticles.

which is smooth and has the desired properties limz→−∞ n̄0(z) =

1 and limz→+∞ n̄0(z) = 0 [in fact, the latter can be made more
stringent, e.g., limz→z0 n̄0(z) = 0]. The value z0 indicates the
position where the metal’s electron density vanishes whereas
the quantity a characterizes the steepness of the spatial pro-
file of the (normalized) equilibrium electron density [with
lima→0 n̄0(z) = Θ(z0 − z)]. The quantity z0, in particular, gov-

erns whether the induced electron density spills inwards or
outwards. For bulk electron-densities of typical plasmonic met-
als, both a and z0 amount to a few ångströms, and the model
qualitatively captures the main results of self-consistent jellium
considerations [44], while more refined models are needed to
also represent finer details, e.g., Friedel oscillations [43, 65].

Further, we assume that transition from the jellium back-
ground (i.e., the metal’s positively charged ions) to the dielec-
tric remains infinitely sharp because these only contain tightly
bound electrons and thus are essentially immobile[66] when
compared with the conductive (free-)electrons; hence, in the
following we take

ε∞(z) = ε+Θ(−z) + εdΘ(z), (11)

where we have assumed, without loss of generality, that the
edge of jellium background is located at zb = 0.

Simple jellium next to vacuum. For the of clarity, we first
leave out background polarization effects or interband tran-
sitions and consider a simple jellium–vacuum interface, so
that ε+ = εd = 1. In this case, the integrals in Eqs. (8) can be
evaluated analytically, yielding

d⊥(Ω) = z0 − a Ω̃ arctanh
(
Ω̃−1

)
, (12a)

d‖(Ω) = z0 − a. (12b)

where Ω = ω/ωp and Ω̃ =
√

Ω(Ω + iΓ), with Γ = γ/ωp. As we
shall see, the frequency-independent result for d‖ is a particular
consequence of having assumed ε+ = εd. In the absence of
bulk damping (Γ→ 0+), Eq. (12a) can be written as [57]

d⊥(Ω) = z0 + a
Ω

2

[
ln

∣∣∣∣∣Ω − 1
Ω + 1

∣∣∣∣∣ + iπΘ(1 −Ω)
]

, (13)

with the low-frequency behavior of d⊥ given by

Re d⊥(Ω � 1) ' z0, (14a)

Im d⊥(Ω � 1) ' a
π

2
Ω. (14b)

Notice that, even in the absence of bulk damping, there is
a nonzero contribution of surface-assisted damping embod-
ied through Im d⊥ , 0 [see Eq. (13)]. More fundamentally,
this is a consequence of Kramers–Kronig relations (wherein a
dispersive Re d⊥ renders Im d⊥ , 0) [67]. Moreover, we em-
phasize that the asymptotic limits (14) are in agreement with
results emerging from sum-rule considerations [68, 69]. Inter-
estingly, in the above result, z0 coincides with the so-called
static image-plane position that emerges from a self-consistent
solution of the jellium perturbed by a static field [68–70], being
a quantity of interest in surface science at large (a particular
example being that of the surface-assisted van der Waals inter-
action of an atom near a metallic surface [51, 68]). Recently,
acoustic graphene plasmons have been proposed as a means to
probe the quantum surface-response of metals [31] by placing
a graphene sheet separated from a metal surface by a nano-
metric gap [71, 72]. In particular, the static surface-response,
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Figure 3. Density plot of Re
(
d⊥ − d‖

)
/a in the (ε+,z0)-parameter

space, computed at the classical quasistatic dipole LSP resonance
frequency, ω = ωp/

√
ε+ + 2, of a spherical particle of radius R.

The black dashed line indicates Re
(
d⊥ − d‖

)
= 0, thus separating

regimes with nonclassical 1/R size-dependent spectral redshifts
[reddish regions; Re

(
d⊥ − d‖

)
> 0] from blueshifts [bluish regions;

Re
(
d⊥ − d‖

)
< 0]. We have assumed: εd = 1 and γ/ωp = 0.1.

d⊥(0) [which, within our simple treatment here, amounts to z0;
see Eq. (14a)], dependence could be experimentally probed in
this way [31].

The results [Eqs. (12)–(13)] for the a simple jellium surface
next to vacuum are shown Fig. 2, showing how Re d⊥ is al-
ways negative for z0 = 0 (Fig. 2a; black curve). Increasing
z0/a brings the low-frequency part of Re d⊥ to positive values
(Fig. 2a; light-red and red curves), potentially extending into
the frequency regime ωp/

√
3 ≤ ω < ωp supporting semiclassi-

cal (specifically, within the HDM) localized surface plasmon
(LSP) resonances in metal nanoparticles [73]. Consistent with

causality and Kramers–Kronig relations, the dispersiveness of
Re d⊥ is accompanied by a finite Im d⊥ (green, Fig. 2a; orange,
Fig. 2b) [67–69].

Dipolar resonance of a metallic nanosphere. To illustrate
how the surface-response functions d⊥ and d‖ jointly influence
the optical response of a metallic nanostructure (Fig. 2b), we
consider the prototypical case of a spherical nanoparticle of
radius R; for simplicity, we take ε+ = 1 and assume that the
nanosphere is in vacuum (εd = 1). Within the classical qua-
sistatic LRA-description the spectrum of LSP resonances is
dominated by a size-independent dipole resonance at the fre-
quency ω = ωp/

√
3 [2, 73, 74]. Accounting for nonclassical

surface effects in a generalized Clausius–Mossotti relation, the
pole associated with the dipolar LSP resonance is, to leading-
order in d⊥,‖/R, given by [26, 27, 34]

0 = εm + 2 − (εm − 1)
2
(
d⊥ − d‖

)
R

, (15)

which illustrates how the smearing of the jellium near the sur-
face of the particle causes nonclassical a/R size-dependent
redshifts of the classical dipole resonance frequency (Fig. 2b).
Crucially, in this case, i.e., with ε+ = εd = 1, the “effective”
surface-response function deff ≡ d⊥ − d‖ [22, 26, 34] has a “uni-
versal” behavior, namely, it is (i) independent of z0, and (ii)
proportional to the smearing of the spatially varying electron-
density profile, characterized by the length a. Thus, interest-
ingly, this indicates that, independently of z0, the smearing
itself contributes to a net nonclassical redshift (Re deff > 0;
spill-out) of the dipolar LSP resonance position of a jellium
nanosphere in vacuum.

In the following, we simultaneously relax the assumptions of
εd = 1 and of ε+ = 1. Allowing the latter to be larger than unity
is commonly used to heuristically incorporate semiclassical
accounts of background polarization effects or contributions
arising from interband transitions in noble metals [2, 11].

Background and dielectric screening contributions. Turning
to the general case of arbitrary ε+ and εd, the effort required to
perform the integrals (8) are somewhat more elaborate, but can
nevertheless still be evaluated analytically, reading (assuming
z0 ≥ 0)

d⊥
a

= C⊥

{
1 − Ω̃2ε+

1 − Ω̃2εd

z0

a
−

εd
√
ε+

Ω̃

[
arctanh

(
Ω̃−1

√
ε+

)
− arctanh

(
Ω̃−1

√
ε+

tanh
( z0

a

))]
−

εm
√
εd

εm + (εd − ε+)
Ω̃ arctanh

(
Ω̃−1

√
εd

tanh
( z0

a

))}
,

(16a)

d‖
a

= C‖
z0 − a

a
, (16b)

where C⊥ ≡
[
1 + (εd − ε+)Ω̃2]−1 and C‖ ≡ (εm − ε+)(εm − εd), both being resonantly enhanced in the vicinity of ω =
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ωp/
√
ε+ − εd; this Bennett-type resonance [75, 76] should not

be confused with the common surface plasmon resonance oc-
curring at ω = ωp/

√
ε+ + εd. Moreover, contrasting with the

previous case (where ε+ = εd = 1), now both d⊥ and d‖ are
dispersive (i.e., exhibit frequency dependence).

Finally, we note that these factors reduce to C⊥ = C‖ = 1
in the ε+ = εd case. Additionally, in this particular case, d⊥
and d‖ are given by Eqs. (12) upon replacing Ω̃−1 → Ω̃−1/

√
ε,

where ε ≡ ε+ = εd.
Returning to our discussion associated with Eq. (15), we

note that, in addition to the nonclassical a/R-dependent redshift
of the resonance frequency, the ∝ (d⊥ − d‖)/R term emerging
in the pole of the polarizability [27, 34] [the generalized ver-
sion of Eq. (15) for arbitrary ε+ and εd] now acquires a finite
contribution also from z0, which may lead to a net blueshift
of the dipole LSP resonance. This is also in-line with recent
experimental observations of the dependence of quantum size-
effects on the local dielectric environment of the interface [77].
As illustrated in Fig. 3, the combined effects of a non-unity
interband permittivity, ε+, and of a finite z0 may render the
redshift of the classical dipole LSP resonance frequency into
a net blueshift, depending on both ε+ and z0/a (and also on
the particular value of the bulk-damping parameter, γ, which
“softens” the sharp feature at ω = ωp; see Fig. 2b). In this
way, the model conceptually explains how different metals
may exhibit contrasting 1/R size-dependencies of their sur-
face plasmon resonances [22, 50, 78], towards the blue for
deff < 0 (spill-in) and toward the red for deff > 0 (spill-out). An
example of the former is silver (characterized by significant in-
terband and valence band screening contributions to the optical
response) [22, 36, 79], while an example of the latter is sodium
(whose optical response is well described by a simple jellium
treatment) [22]. The imaginary part Im

(
d⊥ − d‖

)
is a source of

nonclassical 1/R size-dependent broadening [27, 34]. For the
experimental visibility of nonclassical size-dependent shifts,
it is naturally preferable that |Re

(
d⊥ − d‖

)
| � Im

(
d⊥ − d‖

)
, so

that the nonclassical spectral shift is not rendered unobservable
due to nonclassical damping.

DISCUSSION AND CONCLUSIONS

In this Article, we have revisited the concept of surface-
response functions, highlighting that a finite contribution to
the Feibelman d-parameters emerges even in a LRA-treatment
with a spatially varying equilibrium electron-density profile—
see Eq. (8). While this insight has appeared in some form in
the early literature [54–57], it has seemingly remained unno-
ticed in the more recent revival of surface-response functions
and the widespread use of ab initio accounts for quantum
plasmonics. In working out this equilibrium contribution to
the dynamic surface-response functions, we have deliberately
omitted nonlocal corrections. In this context, the bulk nonlocal
hydrodynamic response associated with the quantum compress-
ibility of the electron gas (deliberately left out of our consid-
erations) would contribute with a negative Re d⊥ (well below

the plasma frequency, and for a jellium–vacuum interface),
namely d⊥ = −β/

(
ω2

p − ω
2)1/2 and d‖ = 0 [21, 27, 34, 39],

with β ∝ vF [5, 26, 80] being a characteristic velocity of longi-
tudinal plasmons. Qualitatively, this could enhance regimes in
Fig. 3 with a net blueshif, while consequently also reducing the
spectral shift in regimes with a net redshift. This possible inter-
play of quantum compressibility and quantum spill-out is mani-
fested in self-consistent hydrodynamic treatments [13, 81, 82].

In conclusion, our analytical solution of the electrodynam-
ics at metal surfaces transparently and unambiguously illus-
trates how the microscopic surface-response functions have a
finite contribution originating entirely from equilibrium and
local-response considerations. We believe that this is im-
portant insight for the understanding and further advance-
ment of first-principle methods for the computation of ac-
curate surface-response functions, as well as for the exper-
imental exploration of mesoscopic optical phenomena at metal
surfaces [35, 77, 79, 83, 84]. The latter is now becoming
even more tangible with the advent of ultraconfined acoustic
graphene plasmons [26, 31, 71, 85–87]. Beyond the funda-
mental interest in surface-response functions, we note that the
underlying quantum nonlocal response of the metals should
also pose fundamental limitations for many light–matter in-
teraction phenomena, ranging from surface-enhanced Raman
spectroscopy [88] to the perfect lens [89].
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[14] A. Varas, P. Garcı́a-González, J. Feist, F. J. Garcı́a-Vidal, and
A. Rubio, Nanophotonics 5, 409 (2016).

[15] W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlan-
der, H. J. Lezec, J. Aizpurua, and K. B. Crozier, Nat. Commun.
7, 11495 (2016).

[16] J. Zuloaga, E. Prodan, and P. Nordlander, Nano Lett. 9, 887
(2009).

[17] J. Zuloaga, E. Prodan, and P. Nordlander, ACS Nano 4, 5269
(2010).

[18] T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov,
Phys. Rev. Lett. 110, 263901 (2013).

[19] K. Andersen, K. L. Jensen, N. A. Mortensen, and K. S. Thyge-
sen, Phys. Rev. B 87, 235433 (2013).

[20] R. Sinha-Roy, P. Garcı́a-González, H.-C. Weissker, F. Rabilloud,
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