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Abstract

Salient object detection (SOD) is viewed as a pixel-wise
saliency modeling task by traditional deep learning-based
methods. A limitation of current SOD models is insufficient
utilization of inter-pixel information, which usually results
in imperfect segmentation near edge regions and low spa-
tial coherence. As we demonstrate, using a saliency mask
as the only label is suboptimal. To address this limitation,
we propose a connectivity-based approach called bilateral
connectivity network (BiconNet), which uses connectivity
masks together with saliency masks as labels for effective
modeling of inter-pixel relationships and object saliency.
Moreover, we propose a bilateral voting module to enhance
the output connectivity map, and a novel edge feature en-
hancement method that efficiently utilizes edge-specific fea-
tures. Through comprehensive experiments on five bench-
mark datasets, we demonstrate that our proposed method
can be plugged into any existing state-of-the-art saliency-
based SOD framework to improve its performance with neg-
ligible parameter increase.

1. Introduction

As a fundamental task in computer vision, salient ob-
ject detection (SOD) plays an essential role in image scene
understanding [3] and has been applied to different tasks,
such as weakly supervised semantic segmentation [28, 19],
visual tracking [37], scene analysis [12, 27], video process-
ing [8] and medical image analysis [2]. Convolutional neu-
ral networks (CNNs) have greatly promoted the develop-
ment of SOD due to their capacity to extract multi-level se-
mantic information. Most current CNN-based SOD models
[11, 25] view the problem as a pixel-level saliency classifi-
cation task; i.e., their only goal is to assign a saliency score
to individual pixels. Despite promising results, these mod-
els are limited by insufficient utilization of edge informa-

tion, and insufficient attention to inter-pixel relationships.
These problems together can result in blurred edges or low
spatial coherence (i.e., have inconsistent saliency predic-
tions for neighboring pixels that share similar spatial fea-
tures), as Fig. 1.

Figure 1. An example of insufficient modeling of pixel-wise re-
lationship and structural information. MINet [22] results in both
blurred edges (green box) and spatial inconsistency problems (red
box). However, our model (MiNet + BiconNet) results in sharper
edges and uniformly highlighted predictions near the boundaries.

The edge problem has been alleviated somewhat by
adding edge information into networks using extra supervi-
sion flows [39, 34, 41], but there is still room for impactful
improvement. First, edge features represent only a small
fraction of the image; using an extra path for edge supervi-
sion is still likely to provide insufficient information while
generating redundant non-structural features [22]. Second,
the extra flows result in extra computational cost, making
these methods less efficient.

The problem of low spatial coherence due to insufficient
attention to inter-pixel relationships has been addressed by
using post-processing methods such as conditional random
fields (CRF) to refine the output prediction [11, 18, 15].
However, these methods usually result in low processing
speed. Some studies [39, 20] proposed that spatial coher-
ence can be enhanced by adding complementary edge in-
formation. Other studies [22, 31] have suggested that the
incoherence is caused by scale variation of multi-level fea-
tures, and have proposed using multi-scale fusion to allevi-
ate the problem.

Another approach to solve these problems is to remodel
SOD with new informative labels. Traditional salient masks
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Figure 2. The overview of BiconNet, which contains a backbone, an 8-channel connectivity fully connected layer, a BV module, and
an RCA module. Note that we can directly get edge information from the ground truth connectivity map and use it for highlighting the
edge-specific features in the RCA module.

used as training labels treat all pixels inside a salient object
equally and independently; as a result, they lack informa-
tion about inter-pixel relationships and fundamentally make
edges hard to detect. Therefore, using saliency masks as
the only training label is a suboptimal choice. In the la-
bel decoupling framework (LDF) for SOD [32], traditional
salient masks were decoupled into a location-aware detailed
map and body map, which were used as auxiliary labels for
training. However, these new labels required specifically
designed extra supervision flows and were not proved to
be compatible with other existing models. Another group
[13] introduced the connectivity mask—a multi-channel
mask exhibiting connectivity of each pixel with its neigh-
boring pixels—as the CNN label. Although the connectiv-
ity mask is an inter-pixel relation-aware label, this method
completely replaces saliency prediction with pixel connec-
tivity modeling, and therefore does not effectively utilize
the original saliency information. In addition, the method
ignores the inherent properties of this new label, making
the results less promising. We propose that the design and
effective utilization of an informative label which is com-
patible with any existing method can efficiently improve the
performance of existing models.

Inspired by this concept, we developed a novel
connectivity-based SOD framework called the Bilateral
Connectivity Network (BiconNet) as shown in Fig. 2. Bi-
conNet consists of four parts: a connectivity-based SOD
backbone, a bilateral voting (BV) module, a region-guided
channel aggregation (RCA) module, and a bilateral connec-
tivity (Bicon) loss function. To model inter-pixel relation-
ships, we first replace the backbone’s label with a connec-
tivity mask. Then, to enhance the spatial coherence between
neighboring pixels, we use a BV module to obtain a more
representative connectivity map called the Bicon map. Af-
ter this step, we generate two single-channel saliency maps,

with edge information emphasized, via an RCA module. Fi-
nally, we propose the Bicon loss function to further empha-
size edge features and spatial consistency for final salient
object detection.

BiconNet exhibits three advantages: First, by chang-
ing the CNN’s intermediate goal to predicting pixel-wise
connectivity, inter-pixel relation modeling has become one
of the network’s tasks. Thus, BiconNet can focus more at-
tention on inter-pixel relationships. Second, based on the in-
herent property of connectivity masks, edge regions can be
located directly from ground truth, which are then empha-
sized in the final output for network training via the RCA
module. Compared to other edge-based methods [39, 17],
this is a more efficient way to aggregate edge features.
Third and most importantly, since BiconNet changes only
the output layer of the backbones and all other modules
(BV and RCA) are trained after it, BiconNet can be built
on any saliency-based SOD framework without changing
the framework’s original design (e.g., internal structure and
loss functions), and will improve its performance.

In summary, there are three main contributions of this
work:

• We propose a connectivity-based SOD framework
called BiconNet to explicitly model pixel connectiv-
ity, enhance edge modeling, and preserve spatial co-
herence of salient regions. BiconNet can be easily
plugged into any existing SOD model with neglectable
parameter increases.

• We propose an efficient, connectivity-based edge fea-
ture extraction method that can directly emphasize the
edge-specific information from the network output.
We also introduce a new loss function, Bicon loss, to
further enhance the utilization of the edge features and
preserve the spatial consistency of the output.
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• We build BiconNets with backbones of seven state-
of-the-art SOD models. By comparing these Bicon-
Nets with the corresponding baselines, we show that
our model outperforms the latter models on five widely
used benchmarks using different evaluation metrics.

2. Related Work
Earlier SOD methods [5, 21, 10] mostly utilized hand-

crafted features to detect salient regions. These methods
cannot effectively capture high-level semantic information
from data, and are ineffective when dealing with complex
scenes in images. CNN-based models have recently be-
come the main choice for SOD due to their multi-level fea-
ture extraction ability. However, in earlier CNN-based SOD
models [11, 29], erroneous predictions were usually made
near the salient edges, and low spatial coherence occurred
in the middle of the salient region or near the edges. There
are three ways to solve these problems: multi-scale feature
aggregation models, edge-enhanced models, and problem
remodeling methods.

2.1. Multi-scale Feature Aggregation Models

One reason for the problems described above is that de-
tailed features can be diluted as the CNN becomes deeper.
To utilize saliency features more efficiently, one solution
is to aggregate multi-scale information. Hou et al. [11]
demonstrated that using short connections between differ-
ent layers helped aggregate multi-scale features. Chen et al.
[4] proposed a model that can aggregate low-level detailed
features, high-level semantic features, and global context
features to learn the relationship between different salient
regions. Qin et al. [25] proposed a nested network that uses
Residual U-blocks to extracted multi-scale features. Li et al.
[14] extracted saliency features from three different scales
of the images and aggregated them for final detection. Pang
et al. [22] extracted effective multi-scale features from two
interaction modules and preserved the spatial consistency of
intra-class units. Although effective, these methods usually
require extra computational power for the frequent feature
aggregations between different layers.

2.2. Edge-enhanced Models

To preserve edge information, edge-enhanced models in-
tentionally generate extra edge features for training. Zhao et
al. [39] built another supervision flow for the edge features,
which were fused with the salient features at the final stages
of their network. Liu et al. [17] extracted the edge fea-
tures from another edge detection dataset and used these for
joint training with saliency detection. Qin et al. [26] added
a refinement module after their encoder-decoder structure
to refine the boundary details. Zhang et al. [38] proposed
a boundary localization module to extract structural infor-
mation. Wu et al. [34] exploited the logical interrelation

Figure 3. Different edge-based models: (a) edge cue models
[39, 17]; (b) interactive edge models [34, 41]; (c) BiconNet. Both
(a) and (b) need to include at least one extra flow branch for the
edge features. In contrast, BiconNet can directly receive the edge
location from the connectivity ground truth and then emphasize the
edge-specific information in the output via a simple RCA module.
between the edge map and saliency map and proposed a
bidirectional framework to refine both tasks. Zhou et al.
[41] proposed an approach that interactively fuse edge fea-
tures and saliency features. These models show the effec-
tiveness of adding edge features for saliency detection, but
they usually generate redundant features and are computa-
tionally expensive since they add extra supervision flows for
the edge path. In our work, the edge information is used in
a more efficient way, as shown in Fig. 3.

2.3. Problem Remodeling Methods

Compared to the above models which focus on the in-
ternal structure of the network, an efficient way to solve
the SOD problem is to rethink the task and remodel it us-
ing more informative labels. Wei et al. [32] decoupled the
ground truth label into a body map and a detail map ac-
cording to the location of object edges and used three su-
pervision flows for training. However, the authors did not
demonstrate a general way to utilize these labels in an ex-
isting framework. In addition, although these labels worked
well in detecting the salient edges, they were not inter-
pixel relation-aware. Kampffmeyer et al. [13] replaced the
saliency labels with connectivity masks and illustrated im-
provements achieved by this change. This approach, called
ConnNet, remodeled the problem of SOD by converting the
saliency prediction task into several sub-tasks of foreground
connectivity prediction. However, this method did not fully
utilize the information of the connectivity mask. In addi-
tion, the method is incompatible with many saliency evalu-
ation metrics as it does not predict a single-channel saliency
probability map. We propose a method to overcome these
problems, described in the next sections.

3. Proposed Method
3.1. Framework Overview

Our framework, BiconNet, consists of four parts: a
connectivity-based SOD backbone, a BV module, an RCA
module, and a Bicon loss function. For the backbone, we
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can use any existing saliency-based SOD framework. An
overview of our method is shown in Fig. 2.

3.2. Connectivity Vector/Mask

Given an existing SOD backbone, our first step is to
replace its single-channel saliency map output with an 8-
channel connectivity map by changing its fully connected
layers and to replace its label with the connectivity mask.
In the next step, we will introduce connectivity vectors and
masks/maps.

A connectivity [9] vector of a pixel is a multi-entry bi-
nary vector used to indicate whether the pixel is connected
to its neighboring pixels. In the 8-neighbor system, given a
pixel at coordinates (x, y), we use an 8-entry connectivity
vector to represent the unidirectional connectivity with its
neighbors in the square area of [x±1, y±1] with every entry
representing one specific direction. Given a binary saliency
mask GS with size H × W , by deriving the connectivity
vector for every pixel in GS , we obtain an 8-channel mask
GC with size H×W ×8 called the connectivity mask (Fig.
4). The ith channel of GC (GCi) represents if the original
pixels on GS are connected with their neighboring pixels at
the ith directions (e.g., upper left if i = 1 using row-major
order). In this work, as in [13], We define connectedness
only for the adjacent salient pixels. For better understand-
ing, we call the discrete ground truths as connectivity masks
GC and the network’s continuous outputs C as connectivity
maps.

Figure 4. Visualization of converting a saliency mask to a connec-
tivity mask. The dashed box on GS shows the 8-neighbor region of
the selected pixel. GS will be boundary-mirrored if needed. Every
channel of GC represents pixel connectivity at a certain direction.

We show that learning a connectivity mask GC provides
three main advantages over a binary segmentation mask
GS . First, compared to GS where every entry only indicates
the saliency of the current pixel, GC focuses more on the
mutual relationship between its pixels. Second, GC itself
contains more structural information (such as edges) than
GS . Specifically, in GC , the elements of the connectivity
vector for an edge pixel are always a mixture of zeros and
ones, whereas internal foreground pixels have all-ones con-
nectivity vectors and background pixels have all-zeros con-

nectivity vectors (Fig. 5). We call this property the turbid-
ity of the edge connectivity vectors. Thus, given a ground
truth connectivity vector of a pixel, we can always deter-
mine whether it is an edge pixel simply by checking the
zero and one distribution of the vector. As shown in future
sections, this property is important as it provides an efficient
way to utilize edge information. Third, besides showing the
connectivity of saliency pixels, every entry of GC also re-
flects the connection direction. Thus, GC is a structure- and
inter-pixel relationship-aware label.

Figure 5. The turbidity property for edge pixels. M, N, and E
represent pixels in the background (M), inside the salient region
(N), and at the edge (E). Only pixel E has a mixture of zeros and
ones in its connectivity vector, whereas M and N have all-zeros
and all-ones connectivity vectors, respectively.

3.3. Bilateral Voting Module

For every two neighboring pixels in GS , there is a unique
element pair in GC representing the unidirectional connec-
tivity between them. We call such a pair in GC a connec-
tivity pair. To be specific, consider a pair of neighboring
pixels on GS : M at location (x, y) and N at (x + a, y + b)
a, b ∈ {0,±1}. We can obtain the unidirectional connectiv-
ity from M to N from the value of GCj(x, y), where GCj
is the channel that represents the relative direction from
N to M. For example, if N is located lower-right of M,
then j = 8 (row-major order). Similarly, the connectiv-
ity from N to M can be found at GC(9−j)(x + a, y + b) =
GC1(x + 1, y + 1). We call the two elements GCj(x, y)
and GC(9−j)(x+ a, y + b) a connectivity pair of M and N.
The same concept is also defined for the output connectiv-
ity map C, where every two neighboring pixels in the salient
map have a unique connectivity pair in C representing the
probability of the unidirectional connection. Fig. 6 shows
an example of this case when a = b = 1.

The concepts of saliency and connectedness are closely
related and mutually convertible: If two pixels are con-
nected, they are salient. Two pixels of GS are considered as
connected (salient) if and only if both elements of its con-
nectivity pair agree with this connection, i.e., if and only if
GCj(x, y) = GC(9−j)(x + a, y + b) = 1. We call this the
discrete bilateral connectivity agreement, which reveals the
bidirectional property of pixel connections and shows the
importance of mutual impacts between neighboring pixels.

From this agreement, we know theoretically that the two
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elements from a connectivity pair should have the same con-
nection probability to each other. However, in practice, con-
nectivity pairs of the network’s continuous outputs (i.e., the
connectivity maps C) rarely satisfy this agreement. These
disagreements result in spatial inconsistencies. To model
the neighboring dependency and preserve the spatial consis-
tency, we propose a novel connectivity-enhancement mod-
ule called bilateral voting (BV) module.

Figure 6. Illustration of how connectivity pair is defined and how
a Bicon map is generated via bilateral voting (BV) when a = 1
and b = 1. In the predicted Conn map (middle) the two en-
tries C1(2, 2) and C8(1, 1) represent two predicted unidirectional
connectivity probabilities of the highlighted neighboring pixels at
(1, 1) and (2, 2) in the saliency map (left). After the BV module,
the generated Bicon map is the bidirectional representation of the
connectivity for pixels in the saliency map.

Given a connectivity map output C, the goal of the BV
module is to generate another connectivity map that satis-
fies the bilateral connectivity agreement. To do so, we first
extract all of the connectivity pairs. Then, we multiply the
two elements in every connectivity pair and assign the re-
sulting value to both elements, yielding a new connectivity
map C̃. This process is shown in Fig. 6 and is formulated
as:

C̃j(x, y) = C̃9−j(x+ a, y + b)

= Cj(x, y)× C9−j(x+ a, y + b),
(1)

where the subscript j means the jth channel, a, b ∈ {0,±1}.
The logic behind the formula is that we can get the bidirec-
tional pixel connection probability by multiplying every two
elements of a connectivity pair, as each represents a unidi-
rectional connectivity probability relative to the other. Since
this continuous process is similar to making the discrete bi-
lateral agreement, we call it bilateral voting. We name the
new map C̃ the bilateral connectivity map (Bicon map), and
the original output C the Conn map. In the later sections,
we will show that the BV module is important both at the
training and inference phases.

3.4. Region-guided Channel Aggregation

After BV module, we obtain an enhanced 8-channel map
C̃ with every channel representing the bidirectional prob-
ability of pixel connection at a specific direction. In the
previous sections, we pointed out that pixel connectivity
is the sufficient and necessary condition of pixel saliency

for neighboring pixels. Therefore, the overall probabil-
ity of a pixel being connected with its neighbors reflects
its saliency. To obtain a single-channel map representing
saliency, we propose a region-guided channel aggregation
(RCA) module to summarize the directional connectivity
information in the eight channels of C̃ into a single-channel
output S̃ using a function f . The generic form is written as:

S̃(x, y) = f{C̃i(x, y)}8i=1 , (2)

where f is an adaptive aggregating operation that varies
with location (x, y), S̃ represents the aggregated overall
probability of current pixel being salient. This process can
also be interpreted as applying a function f over every pre-
dicted connectivity vector in C̃ to obtain an overall connec-
tion probability for the corresponding pixel. Here we define
two types of f :

Global aggregation. A simple way to aggregate the val-
ues from different directions into a single value is to aver-
age them. By doing this, we will obtain a single-channel
map with every pixel representing the average connection
probability to its neighbors. In this case, f is the averaging
operation for all locations. We call the resultant map the
global map, denoted as S̃global:

S̃global(x, y) = Mean{C̃i(x, y)}8i=1 . (3)

Edge-guided aggregation. As mentioned, the edge pix-
els are the only pixels that have zero-one ground truth con-
nectivity vectors. This property yields two advantages.
First, we can generate ground truth edge masks by simply
searching the location of zero-one vectors in connectivity
masks. Based on these ground truth edge masks, we can
locate and decouple the edge regions and non-edge regions
from the output. Second, we can encourage the network to
learn this special data representation based on prior knowl-
edge about the turbidity of edge vectors. Due to the imbal-
ance between edge pixels and non-edge pixels, the network
intends to make uniform predictions among all directions;
i.e., predicting connectivity vectors as all ones or all zeros.
An edge pixel, since it is part of the salient region, is more
likely to be predicted as an internal foreground pixel with
an all-ones connectivity vector. This is the main reason for
blurring edges: it is difficult for networks to learn to dis-
criminate edge pixels from other salient pixels. To empha-
size the difference between these two types of pixels, we
want the networks to pay extra attention to the likely mis-
classified direction of a predicted edge connectivity vector;
i.e., directions that are in fact not connected to the current
edge pixel. As for non-edge pixels, since they have all-ones
or all-zeros ground truth connectivity vectors, we want the
network to uniformly focus on all directions. To this end,
we designed a region-adaptive aggregation method for these
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two regions:

S̃decouple(x, y) =

{
1−min{C̃i(x, y)}8i=1 (x, y) ∈ Pedge,

Mean{C̃i(x, y)}8i=1 (x, y) /∈ Pedge,
(4)

where S̃decouple is called the edge-decoupled map and
Pedge is the set of edge pixels. For the edge part, we empha-
sized the most likely disconnected directions by finding the
minimum values of the predicted connectivity vectors. This
design is highly correlated with the loss function, which is
discussed in the next section.

So far, we have generated two single-channel maps: the
global map S̃global and the edge-decoupled map S̃decouple
as shown in Fig. 2. S̃decouple is used for learning the edge-
specific information; S̃global is a more robust representation
of salient objects and will be used as the final saliency pre-
diction during inference.

3.5. Bicon Loss

Our loss function is defined as:

Lbicon = Ldecouple + Lcon const + Lopt . (5)

We call this hybrid loss the Bicon loss Lbicon, where
Ldecouple is the edge-decoupled loss, Lcon const is the con-
nectivity consistency loss, and Lopt is the optional loss. We
define the loss terms in the following sections.

Edge-decoupled loss. Binary cross entropy (BCE) [6] is
one of the most widely used losses function, defined as:

Lbce(S,G) = −
∑
(x,y)

[G(x, y) ∗ log(S(x, y)) + (1−G(x, y)) ∗ log(1− S(x, y))],

(6)
where G(x, y) ∈ {0, 1} is the ground truth label of pixel
(x, y) and S(x, y) is the prediction. BCE loss is a pixel-
wise loss function that considers each pixel equally, thus it
does not consider inter-pixel relationships when the tradi-
tional saliency maps are used as the loss input [22, 40, 26].
We propose that this problem can be alleviated with use of
a more informative and spatial relation-aware input. To this
end, we used S̃decouple as the input of BCE. Although BCE
is still calculating the loss independently for every unit,
single units carry information about their intrinsic saliency
scores and the region-based connectivity. Based on Eq. 4,
this loss is formulated as:

Ldecouple = Lbce(S̃decouple, GS)

=

{
Lbce(1−min{C̃i(x, y)}8i=1, GS(x, y)) (x, y) ∈ Pedge,

Lbce(mean{C̃i(x, y)}8i=1, GS(x, y)) (x, y) /∈ Pedge,

(7)

where GS(x, y) ∈ {0, 1} is the saliency ground truth
label of pixel (x, y), indicating whether the pixel is salient.
Specifically, we can derive the edge part as:

Lbce(1−min{C̃i(x, y)}8i=1, GS(x, y))

= Lbce(1−min{C̃i(x, y)}8i=1, 1)
= Lbce(min{C̃i(x, y)}8i=1, 0) .

(8)

For the edge pixels, our goal is to make the network learn
the sparse representation of the turbid edge vectors. As pre-
viously discussed, the edge pixels are most likely to be pre-
dicted as internal salient pixels that have all ones in their
connectivity vectors. Thus, a feasible way to learn the tur-
bidity is to force the minimum value of the edge connec-
tivity vector to be zero; i.e., we want the network to only
focus on the disconnected direction for edge pixels. For
the non-edge pixels, since they all have all-zeros or all-ones
connectivity vectors, our goal is to make the average value
across channels to be close to their labels. Namely, we want
the network to put uniform weights among all directions.

Connectivity consistency loss. The connectivity con-
sistency loss is the weighted sum of BCE losses applied to
both the original Conn map (C) and the Bicon map (C̃). It
is defined as:

Lcon const = ω1 ∗ Lconmap + ω2 ∗ Lbimap
= ω1 ∗ Lbce(C, GC) + ω2 ∗ Lbce(C̃, GC),

(9)

where GC is the corresponding ground truth 8-channel con-
nectivity map with every element GCi(x, y) ∈ {0, 1}, spec-
ifying whether a pixel at location (x, y) is connected to its
specific neighboring pixel. ω1 and ω2 are weighting fac-
tors. The first term, Lconmap, is designed for preserving
spatial consistency. For the second term, since the bidirec-
tional connection probability in C̃ is exponentially corre-
lated with the original unidirectional probability, it usually
generates larger loss on the hard pixels [31], such as edge
pixels, while generating a smaller one on the easy pixels.
Thus, it puts more weights on the object edges and helps
maintain structural consistency as in [31]. Furthermore, we
consider C̃ as the set of the equalized connectivity pairs so
that intuitively Lbimap is a ‘pair-wise’ loss which computes
the loss of every pair in C̃ twice. Thus, it should have a
lower weight. For all of our experiments, we set ω1 = 0.8,
ω2 = 0.2 unless otherwise noted.

Optional loss. As mentioned above, the BV and RCA
modules together with the Bicon loss can be inserted into
any existing saliency-based backbone to form the Bicon-
Net architecture. Some existing studies [26, 22] have pro-
posed specific loss functions with their network architec-
tures. To maintain the integrity of these backbones, we ap-
ply the same loss function in these papers as our third term:

Lopt = Lorig(S̃global, GS), (10)

where Lorig(·) is the loss function defined in the original
backbone’s paper, S̃global is the global map. Note that Lopt
is an optional loss term and will be applied according to the
selection of backbones.

3.6. Inference

To obtain the single-channel saliency probability map in
the inference stage of BiconNet, we first pass the output
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Conn map C through the BV module to get the Bicon map
C̃. Then, we aggregate the channels with the averaging op-
eration to get the global map S̃global. Finally, we use S̃global
as the predicted saliency map, as shown in Fig. 2.

4. Experiments
4.1. Datasets and Evaluation Metrics

We evaluated our model on five frequently used SOD
benchmark datasets: HKU-IS [14] with 4,447 images,
DUTS [30] with 10,553 images for training (DUTS-TR)
and 5,019 for testing (DUTS-TE), ECSSD [35] with 1,000
images, PASCAL-S [16] with 850 images, and DUT-
OMRON [36] with 5,168 images. For the evaluation met-
rics, we adopted the mean absolute error (MAE) [24], F-
measure (Fβ) [1], and E-measure (Em) [7]. For the F-
measure, we used the mean F-measure, Fave, which is gen-
erated by thresholding the prediction map using an adaptive
value equal to twice the mean of the prediction and is cor-
related with spatial consistency of the prediction [33].

4.2. Experiment Setup and Implementation Details

Model Setup. We adopted seven state-of-the-art mod-
els as both baselines and backbones to form the BiconNets:
PoolNet [17], CPD-R [33], EGNet [39], F3Net [31] ,GC-
PANet [4], ITSD [41], MINet [22]. We replaced all of their
saliency prediction layers with 8-channel fully-connected
layers, followed by our BV and RCA modules. We used
Bicon Loss as the loss function for all models. For the mod-
els with deep supervision mechanisms such as [39, 4], we
replaced all of the fully-connected layers with our connec-
tivity layer followed by BV and RCA. For the extra edge
supervision flows in [39, 41], we only replaced their edge
labels with our connectivity-based edge labels generated by
zero-one vector searching as discussed in Section 3.4 for
consistency.

Implementation Details. We used the released official
codes of the backbones for training both the baselines and
the BiconNets. For baselines, we trained all of them from
scratch, strictly following the instructions on their websites
and the hyperparameter setting in their original papers. For
the BiconNets, we used the same data pre-processing tricks
as the corresponding baselines. For the hyperparameters,
we only changed the starting learning rate (about 40% of
the baselines’) and the batch size for our BiconNets, as in
Table 1. The rest of hyperparameters were the same as the
baselines’. We implemented all our experiments in Pytorch
1.4.0 [23] using an NVIDIA RTX 2080Ti GPU. The code is
available at: https://github.com/Zyun-Y/BiconNets.

4.3. Comparison with State-of-the-art Methods

Quantitative Comparison. To compare our method
and the baselines, we list all experiments and their results

in Table 2. As the results show, the absolute majority of
our results (98/105) show better or the same performance
compared to the corresponding baselines. Our method also
achieved most of the best overall results (14/15) (marked
with †). The results also indicate that our model can make a
uniform prediction on the salient regions and preserve spa-
tial consistency of the input more effectively than the base-
line.

Qualitative Evaluation. Representative examples of
our qualitative analyses are shown in Fig. 7. Compared
to baselines, our model can predict sharper boundaries and
uniformly highlight salient regions in various challenging
scenarios, including small objects (rows 4 and 7), complex
background (rows 1, 3, 9 and 10) and foreground (rows 2
and 11), multiple objects (rows 5, 8 and 10), and interfering
objects in the background (row 13).

4.4. Ablation Study

In this section, we study the effectiveness of different
components of our model. The experiments in this section
were trained on the DUT-TR dataset and tested on DUT-
OMRON and HKU-IS. For a fair comparison, all experi-
ments use GCPANet [4] as backbone. The overall ablation
study results are listed in Table 3.

Connectivity modeling. We explore the role of the con-
nectivity prediction strategy using two experiments. First,
we used the original GCPANet as our baseline, denoted as
Base (Exp. 1). Then, we replaced its output layers with
8-channel connectivity prediction layers and used connec-
tivity masks instead of the saliency masks as our ground
truth. We denote this connectivity version of the baseline
as Conn. For the loss function, we used the multi-channel
BCE loss Lconmap for the output Conn map C. This second
experiment, denoted as Exp. 2 in Table 3, is very similar
with ConnNet proposed in [13]. We used channel averag-
ing at testing to get the single-channel saliency maps for
evaluation. As seen in Table 3, the results did not improve
compared to Exp. 1, which follows our key hypothesis that
completely replacing saliency modeling with connectivity
modeling is not sufficient for modeling the saliency region.

Bilateral voting mechanism. Next, we studied the pro-
posed BV module, which is important both at training and
testing phases. The BV module helps the training in two
ways: first, it provides an enhanced connectivity map C̃
for the RCA module; second, in the connectivity consis-
tency loss term, it generates the input for Lbimap, which is
a position-aware loss. To simplify the experiment and avoid
interference, we tested only the first part in this subsection.
Based on Conn, we first conducted the bilateral voting on
the output Conn map C and got the Bicon map C̃. Then,
we computed the global map S̃global by averaging among
channels of C̃. For the loss term, we calculated the BCE
loss on both the global map (Lglobal bce) and the Conn map
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Table 1. The starting learning rate and batch size of BiconNet with different backbones.
Backbone PoolNet CPD-R EGNet F3Net GCPANet ITSD MINet

Start Lr 2e−4 3.5e−5 2e−5 0.0018 0.01 0.005 0.0018

Batch Size 10 10 10 16 16 8 32

Table 2. Quantitative evaluation. seven methods were tested among five benchmark datasets. The mean F-measure (Fave), mean absolute
error (MAE), and E-measure (Em) were used to evaluate the results. ↑ indicates that higher is better. We highlight the better result between
every baseline and its BiconNet in red. We denote the best result of a column with a † superscript, the second best one with a ∗ superscript.

Model
HKU-IS DUT-TE DUT-OMRON PASCAL-S ECSSD

Fave ↑MAE↓ Em ↑ Fave ↑MAE↓ Em ↑ Fave ↑MAE↓ Em ↑ Fave ↑MAE↓ Em ↑ Fave ↑MAE ↓ Em ↑
PoolNet19 [17] 0.885 0.038 0.941 0.787 0.047 0.876 0.728 0.061 0.851 0.787 0.085 0.833 0.904 0.045 0.919

PoolNet + Bicon 0.909 0.034 0.950 0.826 0.042 0.902 0.759 0.057 0.866 0.812 0.072 0.853 0.916 0.040 0.925
CPD-R19 [33] 0.888 0.034 0.946 0.788 0.044 0.886 0.737 0.056 0.863 0.783 0.071 0.848 0.892 0.038 0.925

CPD-R + Bicon 0.905 0.034 0.952 0.806 0.044 0.895 0.750 0.056 0.867 0.794 0.069 0.857 0.898 0.039 0.925
EGNet19 [39] 0.900 0.031 0.952 0.804 0.038 0.894 0.750 0.053 0.867 0.794 0.073 0.847 0.905 0.037 0.927

EGNet + Bicon 0.917 0.031 0.954 0.842∗ 0.037∗ 0.912∗ 0.770 0.050† 0.868 0.821 0.067 0.863∗ 0.922 0.037 0.930†

F3Net20 [31] 0.914 0.031 0.953 0.828 0.039 0.896 0.749 0.055 0.853 0.830 0.062 0.857 0.924 0.037 0.926
F3Net + Bicon 0.915 0.029 0.954 0.835 0.038 0.899 0.765 0.051∗ 0.863 0.830 0.062∗ 0.855 0.927 0.034† 0.929∗

GCPANet20 [4] 0.896 0.032 0.950 0.812 0.038 0.892 0.743 0.056 0.856 0.812 0.063∗ 0.845 0.913 0.035 0.924
GCPANet + Bicon0.918∗ 0.032 0.954 0.834 0.040 0.901 0.762 0.055 0.863 0.838∗ 0.061† 0.858 0.929∗ 0.036 0.929∗

ITSD20 [41] 0.900 0.030 0.952 0.806 0.041 0.891 0.752 0.058 0.862 0.800 0.067 0.850 0.903 0.034† 0.925
ITSD + Bicon 0.908 0.029 0.952 0.838 0.038 0.905 0.774∗ 0.053 0.874∗ 0.831 0.064 0.857 0.920 0.035∗ 0.926
MINet20 [22] 0.916 0.026† 0.956∗ 0.838 0.035† 0.903 0.762 0.053 0.870 0.830 0.064 0.858 0.926 0.035∗ 0.924

MINet + Bicon 0.923† 0.028∗ 0.957† 0.856† 0.035† 0.915† 0.778† 0.051∗ 0.875† 0.846† 0.061† 0.868† 0.933† 0.036 0.929∗

(Lconmap). This process is shown as Exp. 3 of Table 3.
As seen, inclusion of the BV module improved the Fave,
indicating that the BV module can enhance the spatial con-
sistency of the output predictions.

To test the effectiveness of the BV module at the testing
phase, based on Exp. 3, we tested the output both with and
without the BV module. As seen in Table 4 and in Fig. 8,
all three metrics have been improved after we applied the
BV module to the testing phase.

The edge decoupling mechanism. In this subsection,
we study the proposed edge decoupling mechanism, which
is the key innovation of the RCA module. Based on Exp. 3,
we computed the edge-decoupled map S̃decouple from Bi-
con map C̃ via the RCA module and replaced the loss with
Ldecouple and Lconmap, respectively. This experiment is
denoted as Exp. 4 in Table 3. As seen, the Fave and Em
values increased. This result shows that the RCA module
effectively utilized the extracted edge features.

The connectivity consistency loss. To test the effec-
tiveness of the connectivity consistency loss, we replaced
Lconmap with 0.8 × Lconmap + 0.2 × Lbimap; i.e., the
Lcon const in Exp. 4. Thus, the total loss function for this
experiment is Lcon const+Ldecouple. For this complete Bi-
conNet model with backbone GCPANet (Exp. 5 in Table 3),

all three metrics improved, which demonstrates the ability
of the connectivity consistency loss to improve the results.

Additionally, to illustrate the different effects of Lconmap
and Lbimap in Lcon const, we conducted another set of ex-
periments based on Exp. 5, using different weights for these
two terms. The results are shown in Fig. 9, where 10 experi-
ments are plotted with ω2 as the x-axis (ω1 = 1−ω2). When
we introduced Lbimap and gradually increased its weight
ω2 (from left to right), we observed that Fave and Em in-
creased while MAE decreased at the beginning (ω2 ≤ 0.2).
Then, when Lbimap had a larger weight, the overall perfor-
mance decreased. The best performance was achieved at
ω1 = 0.8, ω2 = 0.2. This result is consistent with our as-
sumption that there is a tradeoff between edge enhancement
and background dilution when using Lbimap. We also visu-
alized the two loss terms Lbimap and Lconmap in Fig. 10 to
further demonstrate this idea.

4.5. Model Size and Testing Speed

We list the model size and testing speed of our method
in Table 5. To make fair comparisons, we reported the
frame per second (FPS) processing speed with images of
size 320 × 320 pixels for all listed models. Since we only
changed the output fully-connected (FC) layers of the back-
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Figure 7. Visual comparisons of different models.

Table 3. Ablation study on HKU-IS and DUT-OMRON datasets.

Exp
Model HKU-IS DUT-OMRON

Base Conn Lconmap BV Lglobal bce
Ldecouple
(RCA)

Lcon const Fave ↑ MAE↓ Em ↑ Fave ↑ MAE↓ Em ↑

1
√

0.896 0.032 0.950 0.743 0.056 0.856
2

√ √
0.899 0.033 0.949 0.738 0.058 0.854

3
√ √ √ √

0.911 0.031 0.951 0.750 0.057 0.853
4

√ √ √ √
0.916 0.033 0.951 0.760 0.057 0.860

5
√ √ √ √

0.918 0.032 0.954 0.762 0.055 0.863

bones, the increase in the parameters and testing time is di-
rectly related to the number of FC layers in the backbones.
Thus, for those models with deep supervision mechanisms
(multiple FC layers, such as GCPANet and EGNet), the in-

crease is more than those using shallow supervisions. How-
ever, even for the deep supervised models, the increase of
model size is still insignificant and the computational cost
of our BiconNet is nearly identical to those of the baselines.
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Table 4. Different testing methods based on Exp. 3.

Test Method
HKU-IS DUT-OMRON

Fave ↑ MAE↓ Em ↑ Fave ↑ MAE↓ Em ↑
Without BV 0.889 0.033 0.945 0.732 0.061 0.849

With BV 0.911 0.031 0.951 0.750 0.057 0.853

Figure 8. Visualization of outputs at different stages of BiconNet.
As representative examples, for the Conn map C and Bicon map
C̃, we show only the first channel. The predicted Bicon map has
much higher spatial coherence than the Conn map.

Figure 9. Training the network with different ω1 and ω2 on the (a)
HKU-IS and (b) DUT-OMRON datasets. The x-axis represents the
value for ω2 (ω1 = 1− ω2). The best performance was achieved
at ω2 = 0.2 (dashed red line).

Figure 10. Comparison between Lbimap and Lconmap. Lbimap

can generate much larger loss on hard pixels such as the edges
of different objects while generating smaller loss on background
pixels.

Therefore, our method is efficient and can improve exist-
ing frameworks with neglectable increase in computational
cost.

4.6. Compatibility Analysis

In section 4.3, we showed that BiconNet is compatible
with existing SOD frameworks in their entirety. Here, we
investigate the compatibility of BiconNet with individual
modules that have a similar function (i.e., enhancement of
spatial coherence and edge modeling), such as inter-pixel

consistency/edge-aware loss functions and CRF.

4.6.1 With Pixel Relationship/Edge-Aware Loss Func-
tions

As illustrative examples to show the compatibility of Bicon-
Net with the state-of-the-art loss functions, we considered
two loss functions here: the Consistency enhanced Loss
(CEL) [22] (which can enhance the inter-pixel relationship)
and Adaptive ConTour (ACT) [41] (which can improve the
edge modeling). In each case, we compared the baselines
and BiconNets with and without the loss functions (Table
6). Again, the networks that included the BiconNet outper-
formed the baselines. We also note that the performance of
ITSD didn’t significantly improve when added with ACT,
while the combination of ACT and BiconNet had a more
pronounced positive impact on performance.

4.6.2 With CRF

CRF is a widely used post-processing method that can en-
hance the inter-pixel relationship of the prediction and has
been applied in SOD [18, 11, 15]. Using GCPANet as
our baseline, we added a fully connected CRF at the end
of both GCPANet and GCPANet + Bicon for testing (Ta-
ble 7). The results of GCPANet + CRF show that Fave
and MAE both improved while Em decreased compared
to GCPANet.Similar results were observed in GCPANet +
Bicon + CRF. Nonetheless, GCPANet + Bicon + CRF out-
performed GCPANet + CRF, suggesting that BiconNet is
compatible with CRF.

When added to any model, CRF usually significantly in-
creases the computational cost. However, the results show
that our model (GCPANet + Bicon) can achieve compara-
ble results with GCPANet + CRF (the 2nd and 3rd rows in
Table 7) without significantly compromising speed.

5. Conclusion
In this study, we examined the spatial inconsistency

and blurred edge issues of general salient object detec-
tion methods. To overcome these problems, we proposed
a connectivity-based approach called BiconNet. We first
showed that the connectivity mask is a more structure-
and inter-pixel relation-aware label than a single-channel
saliency mask. To utilize this informative label, we pro-
posed a BV module to enhance the spatial consistency of
the output and an RCA module to extract the edge fea-
tures. Then, we trained the model with a novel Bicon loss.
Extensive experiments demonstrated the advantages of our
method over state-of-the-art algorithms. Finally, we demon-
strated the efficiency of our model as it can improve existing
SOD frameworks with a neglectable increase in computa-
tional cost.
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Table 5. Comparison of model size and testing speed between BiconNet and the corresponding baselines.

PoolNet CPD-R GCPANet F3Net EGNet ITSD MINet

Base Bicon Base Bicon Base Bicon Base Bicon Base Bicon Base Bicon Base Bicon
Number of

Parameters(M) 68.26 68.24 47.85 47.85 111.69 111.85 25.54 25.56 67.06 67.12 26.47 26.47 115.69 115.69

Testing Speed
(FPS) 49 49 55 53 38 34 64 63 60 53 47 44 45 43

Table 6. Compatibility analysis with different loss functions.

Model
DUT-TE DUT-OMRON

Fave ↑ MAE↓ Em ↑ Fave ↑ MAE↓ Em ↑
ITSD w/o ACT 0.805 0.041 0.898 0.750 0.059 0.862

+Bicon 0.830 0.041 0.902 0.763 0.059 0.865
ITSD w/ ACT 0.806 0.041 0.891 0.752 0.058 0.862

+Bicon 0.838 0.038 0.905 0.774 0.053 0.874

MINet w/o CEL 0.801 0.036 0.901 0.749 0.053 0.868
+Bicon 0.846 0.037 0.910 0.766 0.053 0.870

MINet w/ CEL 0.838 0.035 0.903 0.762 0.053 0.870
+Bicon 0.856 0.035 0.915 0.778 0.051 0.875

Table 7. Compatibility and testing speed analysis with CRF.

Model
DUT-TE DUT-OMRON

Fave ↑MAE↓Em ↑Fave ↑MAE↓Em ↑
GCPANet 0.896 0.032 0.950 0.743 0.056 0.856

GCPANet + Bicon 0.918 0.032 0.954 0.762 0.055 0.863

GCPANet + CRF 0.920 0.029 0.947 0.763 0.053 0.840
GCPANet + CRF + Bicon 0.928 0.029 0.950 0.775 0.051 0.856

Although this work demonstrated significant advances
in the field of SOD, there are still properties of the con-
nectivity mask worth exploiting in future work. For exam-
ple, a weakness of our approach is that we only considered
the inter-class connectivity for the single-class segmenta-
tion problem. When dealing with the multi-class segmen-
tation task, our method is expected to further benefit from
modeling the intra-class relationship between connectivity
masks. We envision that our connectivity-based approach to
the image segmentation problem can be adopted by us and
others in a wide range of applications, including semantic
segmentation, instance segmentation, and segmentation of
medical images.
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Rainer Stiefelhagen. Multimodal saliency-based attention
for object-based scene analysis. In Proceedings of IEEE/RSJ
International Conference on Intell. Robots and Systems,
pages 1173–1179. IEEE, 2011. 1

[28] Wataru Shimoda and Keiji Yanai. Distinct class-specific
saliency maps for weakly supervised semantic segmentation.
In Proceedings of European Conference on Computer Vision,
pages 218–234. Springer, 2016. 1

[29] Lijun Wang, Huchuan Lu, Xiang Ruan, and Ming-Hsuan
Yang. Deep networks for saliency detection via local estima-
tion and global search. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pages 3183–
3192. IEEE, 2015. 3

[30] Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng,
Dong Wang, Baocai Yin, and Xiang Ruan. Learning to detect
salient objects with image-level supervision. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 136–145. IEEE, 2017. 7

[31] Jun Wei, Shuhui Wang, and Qingming Huang. F³net: Fusion,
feedback and focus for salient object detection. In Proceed-
ings of Association for the Advancement of Artificial Intelli-
gence, volume 34, pages 12321–12328, Apr. 2020. 1, 6, 7,
8

[32] Jun Wei, Shuhui Wang, Zhe Wu, Chi Su, Qingming Huang,
and Qi Tian. Label decoupling framework for salient object
detection. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pages 13025–13034. IEEE,
2020. 2, 3

[33] Zhe Wu, Li Su, and Qingming Huang. Cascaded partial de-
coder for fast and accurate salient object detection. In Pro-
ceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 3907–3916. IEEE, 2019. 7, 8

[34] Zhe Wu, Li Su, and Qingming Huang. Stacked cross re-
finement network for edge-aware salient object detection. In
Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 7264–7273. IEEE, 2019. 1, 3

[35] Qiong Yan, Li Xu, Jianping Shi, and Jiaya Jia. Hierarchi-
cal saliency detection. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pages 1155–
1162. IEEE, 2013. 7

[36] Chuan Yang, Lihe Zhang, Huchuan Lu, Xiang Ruan, and
Ming-Hsuan Yang. Saliency detection via graph-based man-
ifold ranking. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3166–3173.
IEEE, 2013. 7

[37] Pingping Zhang, Wei Liu, Dong Wang, Yinjie Lei, Hongyu
Wang, and Huchuan Lu. Non-rigid object tracking via deep
multi-scale spatial-temporal discriminative saliency maps.
Pattern Recognit., 100:107130, 2020. 1

[38] Qing Zhang, Yanjiao Shi, and Xueqin Zhang. Attention and
boundary guided salient object detection. Pattern Recognit.,
107:107484, 2020. 3

[39] Jia-Xing Zhao, Jiang-Jiang Liu, Deng-Ping Fan, Yang Cao,
Jufeng Yang, and Ming-Ming Cheng. Egnet: Edge guidance

12



network for salient object detection. In Proceedings of the
IEEE International Conference on Computer Vision, pages
8779–8788. IEEE, 2019. 1, 2, 3, 7, 8

[40] Kai Zhao, Shanghua Gao, Wenguan Wang, and Ming-Ming
Cheng. Optimizing the f-measure for threshold-free salient
object detection. In Proceedings of the IEEE International
Conference on Computer Vision, pages 8849–8857. IEEE,
2019. 6

[41] Huajun Zhou, Xiaohua Xie, Jian-Huang Lai, Zixuan Chen,
and Lingxiao Yang. Interactive two-stream decoder for accu-
rate and fast saliency detection. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
9141–9150. IEEE, 2020. 1, 3, 7, 8, 10

13


