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Abstract

Atomistic modeling of complex multi-principal-elements random alloys often requires defining a
fixed-size cell, which can introduce non-random periodicity. This is commonly overcome using the
method of special quasi-random structures (SQSs). SQSs generation approaches utilizes techniques
such as cluster expansions (CEs) in combination with Monte Carlo (MC) algorithms which become
extremely computationally demanding, as the number of configurations increases considerably with
the number of equimolar components and system size. As a result, it becomes virtually impossible to
construct cells with more than a few hundred atoms. Herein, we propose a method of neural evolution
structures (NESs) combining artificial neural networks (ANNs) and evolutionary algorithms (EAs)
to generate High Entropy Alloys (HEAs) structures. Our inverse design approach is based on pair
distribution functions and atomic properties to train the model on small clusters and then generate
larger cell. NESs dramatically reduces computational costs and time, making possible the generation
of very large structures (over 40,000 atoms) in few hours. Unlike the SQSs, the generation time
(including training) increases slowly with the size of the system, and the same model can be used to
generate multiple structures.
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We propose a method of neural evolution structures (NESs) combining artificial neural networks (ANNs)
and evolutionary algorithms (EAs) to generate High Entropy Alloys (HEAs) structures. Our inverse design
approach is based on pair distribution functions and atomic properties and allows one to train a model on
smaller unit cells and then generate a larger cell. With a speed-up factor of approximately 1000 with respect
to the SQSs, the NESs dramatically reduces computational costs and time, making possible the generation
of very large structures (over 40,000 atoms) in few hours. Additionally, unlike the SQSs, the same model can
be used to generate multiple structures with same fractional composition.

I. INTRODUCTION

Multicomponent alloy systems such as High Entropy
Alloys (HEAs), and Bulk Metallic Glasses (BMGs) have
been in the physical metallurgy research spotlight over
the past decade1,2. HEAs are particularly interest-
ing because of their superior structural and functional
properties2–6. In contrast to the conventional notion of
alloying with a principal element (solvent) and alloying
elements (solute), HEAs have four or more principal ele-
ments in near-equiatomic compositions7–10.

Computational modeling is necessary for targeted and
rapid HEAs discovery and application11–16. Construct-
ing an appropriate atomic structure is the first step to-
wards reliable predictions of materials properties. This
includes predicting thermodynamic, kinetic, electronic,
vibrational, and magnetic properties17–23, with first-
principles methods based simulation methodologies like
Density Functional Theory (DFT). Indeed, DFT model-
ing of complex, random alloys requires defining a fixed-
size cell24–27, which can introduce non-random period-
icity. The inherent local disorder of HEAs makes this
a non-trivial task28–30. Special quasi-random structures
(SQSs) designed to approximate the radial distribution
function of a random31,32 system is a quintessential con-
cept to generate realistic random structures when mod-
eling disordered alloys with atomic resolution. Mod-
ern SQS generation approaches utilize techniques such
as cluster expansions (CEs) in combination with Monte
Carlo (MC) algorithms. Several codes are available in
the literature including ICET33, ATAT MCSQS34, Su-
percell35 which can generate SQS structures for multi-
component systems. Although very powerful, these ap-
proaches have significant computational overhead. A de-
tailed analysis of computing time with ICET with the

a)Electronic mail: ConrardGiresse.TetsassiFeugmo@nrc-cnrc.gc.ca
b)Electronic mail: isaac.tamblyn@nrc.ca

number of atoms is presented in the subsequent sections.
Along with the computational complexity, present SQS
generating techniques require the optimization of mul-
tiple parameters, including, but not limited to: clus-
ter space cutoffs, number of optimization steps, and
simulated annealing temperatures for each system33,34.
These create a serious bottleneck in exploring multi-
component alloy systems using first-principles simula-
tions and molecular dynamics.

An alternative is to use machine learning models to
achieve desired property36–39. Recent works have used
surrogate models40,41, evolutionary algorithms42–44, and
generative adversarial networks37,45 to predict crystal
structures. The inverse design framework that combine
artificial networks and evolutionary algorithms have also
had success46,47 in generating structures that optimize
some objective function. The generated structures can
be used to collect descriptors such as structural stability,
lattice vibrational property, electronic structure, elastic-
ity, and stacking fault energy.

In this work, we build on previous work and present a
neural evolution structures (NESs) generation algorithm
that combines artificial neural networks (ANNs) and evo-
lutionary algorithms (EAs) to enable the search of HEAs
that optimizes configurational entropy. In Section II, we
outline our methodology including the general workflow
of the algorithm, the crystal representation, and the fit-
ness (or objective) functions. In Section III, we present
our results. This includes a comparison of our algorithm
with SQS with respect to performance and timing, and
analysis of the optimization parameters. In Section IV,
we summarize and propose future work based on our find-
ings.
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II. METHODS

A. General workflow

In this work, we search for HEA structures that maxi-
mize the physical disorder, or the maximum-entropy con-
figuration. To do so, we consider configurations of HEAs
that contain M different atomic species over N lattice
sites. The workflow is summarized in Figure Fig. 1, which
combines ANNs and EA. This methodology was used
to optimize the doping of graphene-based three-terminal
devices for valleytronic applications47. This workflow
can be divided into two processes: the training process
(Fig. 1-a) and the generation process (Fig. 1-b). After
defining the crystal structure (FCC, BCC, HCP, etc.),
the fractional composition (AαBβCγDζEη), and the size
of the supercell, the algorithm is as follows:

1. Place atoms randomly on the lattice following the
fractional composition for N structure copies.

2. Initialize M ANN policies for each structure copy.
One could have 1 ANN policy per structure or av-
erage over many ANN policies.

3. Generate input arrays (one input array per lattice
site) based on the local environment of the lattice
sites and feed the vectors into the ANN policies.

4. Based on the outputs of the ANN policies, reassign
atoms to sites in the crystal for each structure copy.

5. Calculate the fitness function across each structure
copy, sort from least to greatest, and order the as-
sociated structures.

6. Select the top 25% best-performing structures, and
randomly select and mutate the weights of the ANN
policy to generate the remaining 75% of the popu-
lation.

7. Go to step 2.

The training process is repeated until convergence is
reached. The input vector is based on the environment
of a lattice. The first element is a vector describing the
properties of the atom (i.e. the atomic number, valence
electrons, etc.) for the selected lattice site. The remain-
der of the input vector comes from the concatenation of
the atomic properties of the neighboring and next-nearest
neighboring lattice sites. The input vector, therefore,
changes based on the lattice structure. The final input
vector is flattened such that it can be passed into the
ANN policy. We used the Softmax activation function to
convert the ANN output vector into a vector of probabil-
ities of assigning a certain chemical element to a certain
lattice site. The index with the highest probability is ex-
tracted and matched to the list of elements (‘A’, ‘B’, ‘C’,
‘D’, ‘E’, . . .) and the corresponding element is assigned
to the considered site of the training structure (step 6).

Steps 3 to 6 are iterated over the remaining lattice sites
until the new configuration is generated (Fig. 1-b). For
each structure, M different policies are created, then for
each ANN policy N configurations are generated and the
corresponding fitness functions are computed (step 7).
Finally, the average fitness of each policy is evaluated
and the averages are sorted from least to greatest.

The top performing 25% ANN policies are kept, and
the rest of the population are eliminated. To reproduce
the next generation, the ANN policies from the top per-
formers are randomly selected the weights are cloned
and randomly mutated to generate the remaining 75%
(Fig. 1-c). The new atomic configurations are generated
and the process is repeated. The random mutations con-
sist of adding a random matrix to the parents’ weight
(Eq. (1)).
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where µ = 0.1 is a small parameter (similar to a learn-
ing rate), ui ∈ [−1, 1] is a random number, and l is the
number of weights. In this work, the number of weights
is equal to the number of elements in an input array. All
calculations in this report were run using 1 CPU and 8Gb
RAM on an HP Z4 G4 Workstation (Intel Xeon).

B. Representation of crystal structures

We now describe the generation of the input vectors
for each lattice site. The central idea of our approach
is to use the pair distribution function (PDF) to char-
acterize a crystal structure. Indeed, for crystals, the
number of nearest neighbours, and their positions de-
pend on the crystal structure, and the lattice parame-
ters, respectively. In the FCC structure, each atom has
12 nearest neighbours (coordination number) at a dis-

tance d = a
√

2/2, 6 at d = a, and 24 at d = a
√

3/
√

2. In
the BCC structure, each atom has 8 nearest neighbours
at a distance d = a

√
3/2, 6 at d = a, and 12 at d = a

√
2.

The number of a-type atoms around an b-type atom is
given by

Nab(rmin, rmax) = 4πcbρ0

∫ rmax

rmin

r2gab(r)dr (2)

where rmin and rmax are two the radii values between
which the coordination number is to be calculated, and
cb is the fractional composition of b. The partial PDF
gab(r) between types of particles a and b reads

gab(r) =
N

ρ0NaNb

Na∑

i=1

Nb∑

j=1

〈δ(|ri − rj | − r)〉 (3)
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FIG. 1: Sketch of the algorithms required for the NESs generation. a) Key steps of the NES training process. b)
Road-map of the NESs generation process. From left to right: an input structure (a template mesh with N sites), a
representation of the N input arrays, the ANNs, a representation of the N output vectors, atom-type associated to
each output vector, and the generated configuration. c) Sketch of the mutation step. Wi is a weights matrix and

25% represent the percentage of the matrix elements mutated

where δ is a Dirac δ-function, and ρ0 = N/V is the aver-
age density.

Each crystal site is represented by an array in which
the elements are the atomic properties of the chemi-
cal element occupying the site and those of its nearest
neighbors (Fig. 2). The number of rows corresponds
to the number of nearest neighbors (NN) plus one (NN
+1) and the number of columns is equal to the num-
ber of atomic properties describing each chemical ele-
ment (P1, P2, · · · , Pn). The number of input-vectors is
equal to the number of site in the crystal structure. The
properties of the chemical element occupying the ith-site
are always stored in the first row of the ith-input-vector.
These atomic properties can be classified into quantita-
tive and qualitative variables. The quantitative variables

x01 x02 x03 · · · x0n

x11 x12 x13 · · · x1n

...
...

...
. . .

...

xNN1

... xNN3 · · · xNNn







P1 P2 P3 · · · Pn

site i

NN of the site i

FIG. 2: Sketch of the NES input-vector for a single
crystal site.The Pi column corresponds to the

i-property and NN is the number of nearest neighbours

include the atomic number, the number of valence elec-
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trons, the electronegativity, oxidation state, and atomic
radius. The qualitative variables include the row and the
group (metal, transition metal, alkali, alkali, and met-
alloid) in the periodic table. They are represented by
integer and boolean numbers, respectively.

C. Fitness functions

The fitness function describes the quality of a configu-
ration (high entropy≡ physical disorder), and determines
the best solution. Our objective is to reduce the segrega-
tion of chemical elements or to maximize the entropy of
the configuration. Examples of 2- and 4- equiatomic high
entropy configurations are presented in Fig. 3 (top row)
along with 2- equiatomic random configuration (bottom
row). Characteristic of 4-components high entropy have
been studied using a 4× 4× 4 supercell (64 atoms), and
four functions characterizing the disorder in the crystal
structures have been derived. For a site occupied by an
A-type atom:

• The first fitness function minimizes the number of
A-type occupying the nearest neighbours site in the
first coordination shell Naa. Knowing that the tar-
get is 0, the fitness defined as the root-mean-square
deviation from 0

F 1
AA =

∑

a

√∑Na

i=1

(
N i
aa − 0

)2

Na
(4)

• The second fitness function minimizes the number
of A-type occupying the nearest neighbours site in
the second coordination shell Naa. If NN2 is the
number of nearest neighbours in the second coor-
dination shell then the fitness function reads

F 2
AA =

∑

a

√∑Na

i=1

(
N i
aa −NN2

)2

Na
(5)

• The third fitness function equalizes the number of
other types of atoms occupying the nearest neigh-
bour site in the first coordination shell Nab, and
reads

FAB =
∑

a 6=b

√∑Nb

i=1

[
N i
ab − (c ·NN1)

]2

Nb
, (6)

where c = ca+[cb/(s− 1)]. ca and cb are the target
fractional compositions of a and b, respectively, and
s is the number of atom-types. NN1 is the number
of nearest neighbours in the first coordination shell

• The last fitness function checks how the maximum
number of each types of atoms (Na, Nb,....) deviate

from the target composition. These numbers are
proportional to the fractional composition

FN =

√∑
a [Na − (ca ·N)]

2

s
(7)

The minimum of the total fitness [Eq. (8)] depends
on both the fractional composition and the number of
components, and it is not necessarily equal to 0. As an
example, for a 2-components system, the minimum will
never be equal to 0.

F = F 1
AA + F 2

AA + FAB + FN (8)

FIG. 3: Example of configurations for an equiatomic 2-
and 4-components systems. Top: High entropy
configurations. Bottom: Random configurations

III. RESULTS AND DISCUSSION

A. NESs computation time

All calculations were carried out on equiatomic
CuαNiβCoγCrζ FCC alloy structures. Important aspects
of the algorithm are the optimization and generation
times which depends on three parameters: i) the num-
ber of policies optimized simultaneously ii) the size of the
input-structures and ii) the number of ANN included in
each policy. The three parameters have been investigated
and the results are presented in Fig. 4.

First, the average training time per generation as a
function of the size of the input-structure is shown in
Fig. 4-a. This figure shows that the training time in-
creases slowly with the size of the input-structure (ratio
of 1.4).

Second, Fig. 4-b shows the average training time per
generation as a function of the number of policies opti-
mized. One observes a linear increase (r = 0.99). In ad-
dition, the slope also increases with the number of ANNs
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reaching 0.04, 0.05, and 0.06 for 1, 5, and 10 ANNs, re-
spectively.

Finally, the average time per generation as a function
of the size of the input-structure is shown in Fig. 4-c.
It increases slowly with the size of the structures, going
from few a tenths of a second (up to 256 atoms) to few
a hundred seconds around 8000 atoms ( ratio of 0.3)

Moreover, by comparing Fig. 4-a to Fig. 4-d, we ob-
serve that the SQSs scale up linearly [Eq. (9)] with time,
whereas the NESs follow a x2 polynomial behaviour ( but
with a very low value of a and b) [Eq. (10)]. Knowing
that the number of steps towards convergence increases
with the increase in the number of atoms, and taking
into account that the NE is trained on small clusters, it
will always require fewer steps. Additionally, NESs can
be sped-up with multiprocessing. Taking into account all
the previous remarks, we can derive a speed-up factor of
approximately 1000 by comparing the x2 coefficients in
Eqs. (9) and (10).

SQSs: y = 1.1 · 10−2x2 + 1.2 · 101x+ 3.0 · 102 (9)

NESs: y = 5.5 · 10−5x2 + 6.5 · 10−4x+ 2.1 · 10−2 (10)

B. Convergence of NESs

In addition to the computation time, we now analyze
the convergence of our algorithm. We show results of
optimizations with different parameters in Fig. 5. These
parameters include µ (Fig. 5-a), the number of policies
trained (Fig. 5-b), and number of ANNs considered in
each policy (Fig. 5-c). Firstly, we investigated three val-
ues of µ have (0.01, 0.1, and 1) and find that the best
convergence is reached with 0.1. Second, the increase in
the number of policies considered accelerates the conver-
gence. Finally, in Fig. 5-c, we see that increasing the
number of ANNs per policy does not improve the con-
vergence rate but improves the quality of the solution.

However, it is worth noting that the minimum never
reaches 0 for all three figures. For an equiatomic 4-
components system, the total fitness of the maximum-
entropy configuration is equal to 0. The NESs train-
ing process does not always converge to this maximum-
entropy configuration, thus introducing imperfections
that can be characterized by evaluating the deviation
from the target composition. One hundred equiatomic
CuαNiβCoγCrζ structures with 256 atoms were gener-
ated using the same NES model and the root-mean-
square deviation (RMSD) from target fractional compo-
sition was computed as

RMSD =

√∑
a [c′a − ca]

2

s
, (11)

where ca and c′a are target the fractional composition of
the a-type atom, and the fractional composition of the

a)

b)

c)

d)

FIG. 4: NES computing time. a) Average training time
vs the size of input-structure. Calculations were carried

out using 1 policy made with 1 ANN b) Average
training time per generation vs the numbers of policies.

Calculations were carried out using a structure of 64
atoms. c) Average NESs generation time as a function

of the size of the system. d) ICET-SQSs generation
time as a function of the size of the system

a-type in the NESs, and s is the number of atom-types.
The result is plot in Fig. 6. The RMSD values varies from
0.03 to 0.18, and fractional composition associated with
the minimum value is Cu0.234 Ni0.258 Co0.258 Cr0.250. The
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true value in this example is Cu0.25 Ni0.25 Co0.25 Cr0.25.
To this end, multiple structures should be optimized in
parallel and one should select the structure with the high-
est score (low fitness function).

a)

b)

c)

FIG. 5: NES training curves. a) Optimization of the
scaling factor µ. b)Optimization of the of number

policies trained simultaneously. c) Optimization of the
the number of ANNs considered in each policy.

Calculations were carried out on input-structure of 64
atoms, and for an equiatomic CuαNiβCoγCrζ

C. FCC Multicomponent alloys

NESs generation was applied to build equiatomic
CuαNiβCoγCrζ FCC alloy structures, and the perfor-
mance was then evaluated by generating a structure with
40,000 atoms (Fig. 7). The model was trained with a
2×2×2 cell (8 atoms) and the generation was completed
in 328 minutes. In addition, a number of 64-atoms struc-
tures were generated and selected properties were com-
pared to ICET-SQS33 (Fig. 8). Figure 8-a shows selected
structures used for the comparison.

FIG. 6: Histogram of the root-mean-square deviations
(RMSD) from target fractional composition. The
RMSD were computed with Eq. (11) derived from

Eq. (7)

The partial PDFs of the structures are compared in
Fig. 8-b. Each bar corresponds to the average of the area
under the first peak of the gab(r) (coordination numbers).
The standard deviations are plotted in red. The purple
bars represent NES and the blue bars represent SQS. The
analysis of the chart shows that NES is almost equivalent
to SQS. Indeed, for each pair, the values of gab(r) for NES
are almost always within one standard deviation of the
SQS values.

Second, the Elastic constants, Bulk modulus, and
the Poisson’s ratio were also investigated using classi-
cal Molecular Dynamics. These simulations were carried
out using the LAMMPS molecular dynamics simulator48

and an Embedded Atom Method (EAM) potential was
used to define the inter-atomic interactions49. ICET-SQS
and NES of equiatomic CuαNiβCoγCrζ was systemati-
cally deformed and the change in virial stress tensor was
used to calculate the elastic constants. Each deformed
structure was energetically minimized using the conju-
gate gradient algorithm50 before performing the stress
calculations. All simulations were performed at 0 K. The
bar chart of these properties is plotted in Fig. 8-b. All
of the calculated values from the NES structure is within
one standard deviation of the SQS method.

FIG. 7: Example of Cu0.234 Ni0.320 Co0.226 Cr0.220 NES
structure (40,000 atoms). The model was trained on a

8-atoms input-structure and the generation was
completed in 328 minutes.

.
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a)

b)

c)

FIG. 8: NES vs SQS. a) Selected 64-atoms equiatomic
CuαNiβCoγCrζ NES structures. b) Comparison of
partial PDF [Eq. (2)]. Each bar corresponds to the

average over ten structures of the area under the first
peak of gab(r). b) Selected computed properties. C11

and C12 are the Elastic constant (GPa), B is the Bulk
modulus (GPa), and v is the Poisson ratio (×100).

Properties were computed using the classical molecular
dynamics

IV. CONCLUSIONS

We introduce and utilize a neural evolution structures
(NESs) generation methodology combining artificial neu-
ral networks (ANNs) and evolutionary algorithms (EAs)
to generate High Entropy Alloys (HEAs). Our inverse
design approach based on pair distribution functions and
atomic properties dramatically reduces computational
cost, allowing for the generation of very large structures
with over 40,000 atoms in few hours. The computing
time is speed-up factor of about 1000 with respect to the
SQSs. Unlike the SQSs, the same model can be used to
generate multiple structures with same fractional com-
position. A number of NE structures have been using to
compute selected properties such as the elastic constants,
the bulk modulus, and the Poisson ratio, and the results
are similar to those of structures generated with SQS.
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