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Abstract 

The localization of electrons in the field of isolated nonmagnetic impurity atoms on the 

surface of a nanotube in a magnetic field is considered. A model of a Gaussian separable 

impurity potential capable of localizing an electron at any intensity is used. The positions 

of the local level are found in the regime of strong and weak localizations. The positions 

of the resonances are found, their widths are estimated. They experience Aharonov-Bohm 

oscillations when the magnetic flux in the tube changes. It is shown that the positions of 

the resonances experience oscillations similar to the de Haas-van Alphen oscillations, 

which are not associated with a magnetic field. 
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1. Introduction 

The development of modern nanoelectronics is impossible without the creation of 

theoretical methods for calculating the electronic properties of nanostructures [1, 2]. The 

presence of a stable atomic structure and unique physical properties causes considerable 

interest of researchers in single-walled carbon and semiconducting nanotubes. The 

unusual electrical properties of nanotubes make them one of the main materials in 

nanoelectronics [1, 2]. On the basis of nanotubes, electronic devices of nanometer 

(molecular) size are created. It is expected that in the foreseeable future nanotubes will 

replace elements of a similar purpose in electronic circuits of various devices, including 

modern computers. However, despite the fact that carbon and semiconductor nanotubes 

are known for the perfection of their structure, they may contain atomic-scale defects: 

impurities, vacancies, topological defects [2]. The presence of defects in nanotubes can 

be beneficial in achieving the desired functionality. It is well known that even one single 

structural defect can significantly change the electrical characteristics of such a one-

dimensional conductor [3]. Therefore, information about how and to what extent various 

defects can change the electronic properties of nanotubes is very important. The point is 

that in this way a controlled engineering of the physical properties of nanotubes can be 

realized. In the future, this can lead to the emergence of various classes of devices with 

physical properties that are completely controlled by the creation of various defects. 

Many years ago I.M. Lifshitz [4-10] created a new method in the theory of solids 

with impurity atoms, which is now called the method of local perturbations. This method 

is an integral part of a new direction in solid state theory – the theory of disordered 

systems, created mainly by I.M. Lifshitz and his collaborators. This method was used to 
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calculate the characteristics of local and quasilocal (resonant, virtual) states of 

quasiparticles in the field of isolated impurity atoms in metals, semiconductors, 

dielectrics [11] and magnetics [12]. 

 Impurity states of electrons in metals have been studied in many papers [13-23] 

and monographs [24-28]. The localization of electrons on impurity atoms in massive 

conductors and liquid metals was studied in Refs. [29, 30]. In Ref. [31], the theory of 

electron scattering by the  -potential of impurity atoms on the surface of a nanotube was 

developed. As an application of this theory, static conductivity is considered. 

In the papers [32-34] the method by I.M. Lifshitz was used to study impurity states 

of electrons in three-dimensional conductors in a magnetic field. Currently the method of 

local perturbations is common in the physics of nanosystems. In papers [35-38] this 

method is used to consider impurity states of electrons in a two-dimensional electron gas. 

In papers [39–41], the method of local I.M. Lifshitz perturbations is employed to study 

the impurity states of electrons in quantum dots, quantum wires and on the surface of a 

nanotube. The physical properties of semiconductor nanotube in the metal conduction 

mode were discussed in connection with the problems of persistent currents in Ref. [42]. 

In this paper the persistent current was calculated taking into account the scattering of 

electrons by the  -potential of the impurity atom. The high-frequency properties of 

nanotubes have been discussed in Refs. [43-45]. 

 Resonant states of electrons in metal carbon nanotubes in the field of impurity 

nitrogen atoms were found in Ref. [46]. The theory of these states in metallic and 

semiconductor nanotubes based on isolated impurities in the absence of a magnetic field 

is presented in Ref. [47]. 

 Localization of electrons by the attractive  -potential on the surface of a 

cylindrical nanotube and in other systems in a magnetic field is considered in Ref. [48]. 

The authors of this paper regularized the diverging integral over the electron momentum 

in the dispersion equation for impurity levels of the electron energy by the cutoff method. 

In the process of renormalizing the theory, they expressed the cutoff momentum in terms 

of the “bare” coupling constant of an electron with a scattering center and its binding 

energy in the plane. Within the framework of the  -potential model, the authors of 

Ref. [48] discovered Aharonov-Bohm oscillations of the electron binding energy at an 

impurity center, studied the effect of magnetic flux in nanotube and the curvature of the 

structure on localization, and discovered unusual order-disorder phase transitions in an 

electron gas, induced by the flux [49]. 

In papers [33, 36-41] and in this paper another method of regularization of the 

integral in the dispersion equation for impurity levels was used. The “smeared” short-

range potential of a nonmagnetic impurity atom in the form of a separable potential 

0u u u , proposed by I.M. Lifshitz, is employed. Here 0u  is the coupling constant of an 

electron with an impurity center, r u  is a certain function. It is chosen so, that the 

potential is as close as possible to the real one and is convenient for calculations. In 

papers [33, 36-41] the function r u  is taken in the form of a Gaussian distribution. 

In the Ref. [41] and in this paper, the “jellium” model, which is often applied in the 

solid state theory, is used. Zone effects are not considered. Their influence is manifested 

in replacing the mass of a free electron with an effective mass only. The dispersion law of 
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the electron on the impurity-free nanotube can be taken as quadratic. Therefore, the 

results obtained here relate themselves mainly to semiconductor and carbon nanotubes in 

the metal conduction mode. The Ref. [41] considers an impurity on the surface of a 

nanotube in the form of the alien ring uniaxial to the tube axis. Such an impurity breaks 

the translational symmetry of the field in which the electron moves, while the axial 

symmetry remains unbroken. In Ref. [41] the authors limited themselves to the analysis 

of local states of electrons in the field of a ring attracting electrons and resonance states in 

a repulsive field. Resonant states in an attractive field were not considered in Ref. [41]. 

The Aharonov-Bohm oscillations induced by the magnetic flux, as well as the oscillations 

of the positions of the resonance levels, in case of changed tube parameters, not related to 

the magnetic field, were not discussed. 

In the proposed paper, taking into account the magnetic field parallel to the 

nanotube axis, a short-range impurity potential is used, which is “smeared” not only 

along the nanotube axis, but also in the azimuthal direction. In Section 2, a model of the 

impurity potential is proposed and a dispersion equation for the impurity energy levels of 

electrons on the tube is obtained. In the Section 3 the binding energy of an electron in the 

field of such a potential is calculated. The Aharonov-Bohm oscillations of the electron 

binding energy are considered. Also in this Section, the positions of resonances in the 

attractive field, their damping are calculated, and oscillations not related to the magnetic 

field are found. Section 4 presents the main results of the paper. Section 5 contains the 

interpretation of the results obtained in the paper and their comparison with the already 

known results. In the Conclusion, the results of the paper are briefly summarized. 

 

2. Theoretical Basis 

 

2.1. Model of impurity potential on a tube 

The function mentioned above r u  on a tube surface is chosen as 

     , ,z u z u u z   , 

where 

 

 

1
24

1 24

2

2
exp ,

2 1
exp .

u

z
u z

b b




 



  
     
   

  
        

        (1) 

Here , z  are the cylindrical coordinates,   and b  are the constants introduced to 

regularize the integral over the electron momentum in the dispersion equation. They 

characterize the length of the potential in the azimuthal direction and along the axis of the 

nanotube. In the limit 0, 0b    the functions (1) are transformed into     and  z . 

They are normalized by the conditions        1, 1.u u u z u z     The projections of 

functions (1) onto the basis states of electrons i ie em kz   are 
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 

 
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4

2 21
4
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4
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4

m

k

m
u

k b
u b






 
   

 

 
   

 

,         (2) 

where m  and k  are the projections of the angular momentum and momentum of the 

electron onto the axis of the nanotube. The quantum constant is chosen equal to unity. 

The amplitude of electron scattering by an impurity potential in the separable 

representation contains 

 
2 2 2

2
2 exp exp .

2 2
m k

m k b
u u b


 

   
         

   

       (3) 

 

2.2. Dispersion equation for impurity energy levels 
 

The scattering amplitude of electrons   by an impurity atom is related to the 

electron propagator G  by the relation 0 0 0G G G G   , where 0G  is the propagator of a free 

electron on the tube. The amplitude is calculated using the multiple scattering theory. 

This means taking into account the diagrams for the amplitude with one cross in terms of 

the cross technique [50]. 

In a separable representation, the amplitude has the form 

     
2 0

0 , ,m k

mk

u u u G m k     ,         (4) 

where 

 0 1
, ,

i0mk

G m k



 


 

 

is the Green’s function of free electrons in  ,m k -representation, 1    is the spin 

quantum number, mk  is the energy of an electron [41] with an effective mass m  in the 

state mk  equals 
2 2

0
0 2

mk

k
m B

m
  



 
    

 
,         (5) 

где   is the Bohr magneton, 0 2
1

2m a




  is the rotational quantum, a  is the nanotube 

radius,   is the magnetic induction B  flux in a nanotube, 0
2 c

e
   is the flux quantum 

[51]. Energy (5) does not change during transformation , , ,m m k k B B     . 

In Eq. (4), the amplitude of electron scattering by an isolated impurity atom is taken into 

account exactly. In the realistic case of a many-impurity problem on a tube, as a result of 

averaging the electron propagator over the positions of impurity atoms, only terms linear 

in the concentration of scattering centers are taken into account. 

The poles of the scattering amplitude (4) give the positions and widths of the 

impurity energy levels of electrons. Writing down the denominator in Eq. (4) in the form 

   0
2

1 i
4

u
F g

a
   


    ,        (6) 

where 
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 
 

     

2

2

. . ,

,
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m k mk

m
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g dk u u




 


 

   



 



 




 

 

 

         (7) 

we obtain the I.M. Lifshitz dispersion equation for the local and resonance energy levels 

of electrons on the tube: 

   0
2

1 i 0
4

u
F g

a
   


     . 

The coupling constant 0u  has a dimension erg cm . The density of electron states with 

spectrum (5) is [52] 

 
 

2
m

m m

L
m



 

 
 

  


 



 ,       (8) 

where 
2

0
0

m m B  
 

   
 

, 

  is the Heaviside function, L  is the nanotube length ( L ). It can be seen from 

Eq. (5) and Eq. (8) that the energy spectrum of an electron on a impurity-free tube 

consists of a set of one-dimensional subbands, the boundaries of which m  are not 

equidistant. The density of states reaches a minimum at the “ceiling” of each subzone. 

These are the energies to look for the resonance levels split off downward by the impurity 

attraction from the following subband. The only local level in the potential considered 

here splits off from the lower boundary B   of the continuous spectrum into the 

energy interval   . 

 

3. Calculation 

3.1. Local level of electrons 

 

 In the energy range   , the function g  is equal to zero, the dispersion equation 

for the local level l   has the form 

2 2

2

0 2 2
0

exp
22

1 exp
2m m

k b

m m
dk

a k k









 
           

  ,        (9) 

where  2m mk m    , 0 0u b   is the coupling constant with dimension 2erg cm . The 

integral entering into Eq. (9) is known [53]. As a result, we obtained 
2 22

0 1
1 exp exp erfc

2 2 2

m m

mm

m k b k bm

a k

 



  
    

               
 ,      (10) 

where  erfc x  is the additional integral of probability [53]. Eq. (10) shows that its solution 

exists for 0 0  only, which corresponds to the attraction of an electron to the impurity 

atom. 
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 It is convenient to transform the right side of Eq. (10) using the Poisson formula 

[54]: 

     exp 2 i
m l

f m dx f x lx
 

  

   .       (11) 

Then the dispersion equation (10) becomes as follows: 

 

2 2

2 2

0
2 2 2 2

010 0

e e
1 2 2 cos 2 cos 2

x x

l

m dx l dx lx
x x x x

 

 

   

  





 
  

   
   

  

  ,     (12) 

where 
1
2

0

x 


 



 
  
 

. 

In Eq. (12), without breaking the convergence, the passage to the limit is made 0b , but 

0  . After changing the variable of integration 
2

2
x y   in the first term in square 

brackets, we obtain the tabular integral [55]: 

 
2

0

0

e
e

2

y zdy z
K

y y z

 
 

  
 

 , 

where 0K  is the Macdonald function [56], 
2

02
z





 
  

 
,   l     

is the distance from the local level l  to the boundary of the continuous spectrum. The 

appearance of the quantity 
0

  makes it possible to speak of strong  0  and weak 

 0  localizations of the electron. In the case of strong localization, the second 

integral in square brackets in Eq. (12) is equal to [57] 
2

2 2
2

0

1 1 2
e cos2 exp

2

x
l

dx lx
x x



 

 


 


  

   
 

 . 

Given the formula 

   0 e
2

xK x x
x

    

and the integrals presented here, from Eq. (12) in the case of strong localization we obtain 
2 2 2
0

2
01

2
1 4 cos 2 exp

l

m l
l

a

  









   
             

 .       (13) 

The series included here is expressed in terms of the Jacobi elliptic theta function 3  

[55, 57]: 
2
0

32
0

2
2 , 1

m

a

 




  
     

  
.        (14) 

The quantity (13) undergoes Aharonov-Bohm oscillations with a change of the magnetic 

flux. The oscillation period is 0 . The rapid decrease in the amplitude of the oscillations 
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with an increase in the harmonic number l  suggests us that the magnitude of the splitting 

off (13) is approximately equal to 
2
0

2

m

a

   .         (15) 

 In the weak localization mode the first term in square brackets in Eq. (12) 

dominates: 

0 0
0 0

1 exp
4 4

m K
 

 
 



    
    

   
.        (16) 

Taking into account the relation    0 ln 0K x x x    from Eq. (16) we obtain 

2
0

2 1
exp

mm a   

 
   

 
 

.       (17) 

Up to numerical factors this expression coincides with the expression given in the 

textbook [58], obtained by another method. This indicates the importance of the need to 

smear the impurity potential in the azimuthal direction. 

 

 

3.2. Resonant energy levels of electrons 

3.2.1. Positions of the resonance levels 

 

 In Subsection 3.1, calculating sums and integrals, there were no restrictions on the 

limits of summation and integration, except for the requirement of convergence. In the 

case of resonances, the situation is different. They should be sought below the boundaries 

of the subzones from which they are split off by an impurity atom of attraction. This 

means that the denominator in Eq. (7) is still equal to 

 2 21

2
mk mk k

m
  



    , 

where  2m mk m    , but it is necessary to sum up over those m , for which m  , 

from some minimum value m , at which m  . 

 Using the Poisson formula (11), we represent the equation for the positions of the 

resonance levels in the form 
2 22

2 i0 1
1 exp exp erfc e

2 2 2

x
lxx x

xl x

m b k bkx
dx

a k





 



  


 

    
               

  ,      (18) 

where 
1

2 2

2
0

0

2xk m x x 

  
    

   

,   

1
2

0

x 


 



 
  
 

. 

After shifting the integration variable 
0

x x 


 and performing transformations 

similar to those performed in Subsection 3.1, Eq. (18) has the form: 
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 

2 2

2 2

0
2 2 2 2

01

e e
1 2 2 cos 2 cos 2

x x

lx x

m dx l dx lx
x x x x

 

 

 

   

  





 
  

    
   

  

  .     (19) 

The first integral on the right-hand side of Eq. (19) is [55]: 
2

2
22

4
0

2 2

e 1
e

2 4

x
x

x

x
dx K

x x















  
   

  
 . 

Using this integral, we obtain the positions of the resonance levels (13), (15), (17) 

r m    in the cases of strong and weak localization. The second integral in Eq. (19) 

remains finite at 0  . It is equal to [55]: 

 
 0

2 2

cos 2
Y 2

2
x

lx
dx lx

x x






 




 


 , 

where 0Y  is the Neumann function [56]. Equation (19) takes the form 

   
0 0 0

0 0 0 01

1 exp 2 cos 2 2
4 4 l

m K l Y l
         

    
  







          
                    

 .    (20) 

For 1lx , the asymptotics of the Neumann function is [56] 

 0

2
Y sin

4
x x

x





 
  

 
. 

 

3.2.2. The widths of the resonance levels 

 

 To estimate the widths of the resonance levels by the formula 

 

 
r

r

g

F

 


 


         (21) 

(prime denotes the derivative with respect to the electron energy at the point r  ), it is 

necessary to calculate the function  g   in Eq. (7). 

 The function  g   is related to the density of states (8) and to the function  F  : 

 
 

. .
g

F V P d





 

 








 . 

The summation index m  in this function is constrained by the condition m  . Using 

Poisson’s formula and omitting calculations duplicating this Section, we restrict ourselves 

to the final result: 

  2
0 0

0 0 0 01

4 exp I 2 cos 2 J 2
4 4 l

g m ab l l  


      
    

  







              
                            

 , 

where 0I  and 0J  are the modified and ordinary Bessel functions [56]. 

 Let us estimate the width 1  of the sharpest resonance located near the upper 

boundary of the lower subband. In this case, the function  g   contains one term with 

0m   only, and the summation in the function  F   starts with 1m  . Keeping in 
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function F  one term with a root singularity at the upper boundary of the first subzone 

only, from Eq. (21) we obtain 

1
0

2

 


   ,        (22) 

where   is the distance between the upper boundary of the first subzone and the resonant 

level. From Eq. (22) it is seen that 1  , if 0 . The same technique can be used to 

estimate the resonance widths in the higher subbands. They increase, since the density of 

states increases with the increasing subband number. 

 

4. Results 

 

The positions of the local energy levels of electrons are found in the cases of strong 

and weak localizations in the field of an attractive impurity. The binding energy of an 

electron experiences Aharonov-Bohm oscillations with a change in the magnetic flux. 

The positions of the resonance levels are found. They also experience the 

Aharonov-Bohm oscillations. Oscillations that are not associated with the magnetic field 

are superimposed on them. The resonance width is estimated. 

 

5. Discussion 

 In this paper, an impurity atom is approximated by a potential of a special type that 

allows an analytical solution to the problem. The potential proposed here is characterized 

by three parameters: the intensity and lengths of the potential in the azimuthal direction 

and in the direction along the nanotube axis. Thus, the model considered here is richer 

than the model with two parameters, which was previously used in the paper [41]. 

 As can be seen from Eq. (8), the density of states has root singularities at the 

boundaries of the subbands m . This character of the density of states is analogous to the 

density of states of electrons in a bulk sample in a quantizing magnetic field, which 

makes it similar to the one-dimensional motion of electrons. This means that the 

quasilocal (resonance) energy levels of electrons on the tube will have a minimum width 

if they are split off by an attractive impurity from the boundaries of the subbands down 

the energy axis to the region where the density of states in the subband is minimal. This 

also applies to magnetoimpurity states of electrons in metals and semiconductors under 

conditions when a weak impurity in the absence of a magnetic field cannot localize an 

electron [32–34]. 

It follows from the transcendental dispersion equation (20) that the positions of the 

resonance levels experience Aharonov-Bohm oscillations with a change in the magnetic 

flux. They also experience oscillations that are not associated with a magnetic field. The 

latter are due to the quantization of the energy of the circular motion of electrons and are 

similar to the de Haas-van Alphen oscillations. Resonance levels play the role of Landau 

levels on the tube only. Oscillations of the de Haas-van Alphen type should manifest 

themselves when studying observable quantities, for example, the heat capacity of a 

degenerate electron gas on a tube. They are due to the passage of resonance levels 

through the Fermi boundary with a change in the parameters of the problem. 
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6. Conclusion 

 

The localization of electrons in the field of isolated nonmagnetic impurity atoms on 

the surface of a semiconductor or carbon nanotube with metallic conductivity in a 

magnetic field is considered. Attempts to solve this problem within the framework of the 

model of the  -potential of an impurity atom run into the divergence of the integral in the 

dispersion equation for impurity energy levels. This requires the use of methods of 

regularization of integrals and renormalizations of quantum field theory. This paper uses 

a different method to eliminate divergences. The proposed I.M. Lifshitz model of a 

Gaussian separable impurity potential is employed. This potential is “smeared” along the 

nanotube axis and in the azimuthal direction. Within the framework of this model, the 

positions of the local energy levels of electrons are found in the cases of strong and weak 

localizations in the field of an attractive impurity. The binding energy of an electron 

experiences Aharonov-Bohm oscillations with a change in the magnetic flux. The 

positions of the resonance levels are found. They also experience the Aharonov-Bohm 

oscillations. Oscillations that are not associated with the magnetic field are superimposed 

on them. They are due to the quantization of the energy of the circular motion of 

electrons. Resonance levels should manifest themselves in the study of thermodynamic 

and kinetic quantities when they cross the Fermi boundary with changing magnetic field 

and nanotube parameters. The resonance width is estimated. These effects can be also 

discovered by studying the optical properties of a GaAs/AlGaAs heterojunction bent into 

a cylinder with a two-dimensional electron gas doped with donor impurities. 
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