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ABSTRACT  

Mesocrystals are nanostructured materials consisting of individual nanocrystals having a preferred 

crystallographic orientation. On mesoscopic length scales, the properties of mesocrystals are 

strongly affected by structural heterogeneity. Here, we report the detailed structural 

characterization of a faceted mesocrystal grain self-assembled from 60 nm sized gold nanocubes. 

Using coherent X-ray diffraction imaging, we determined the structure of the mesocrystal with the 

resolution sufficient to resolve each gold nanoparticle. The reconstructed electron density of the 

gold mesocrystal reveals its intrinsic structural heterogeneity, including local deviations of lattice 

parameters, and the presence of internal defects. The strain distribution shows that the average 

superlattice obtained by angular X-ray cross-correlation analysis and the real, “multidomain” 

structure of a mesocrystal are very close to each other, with a deviation less than 10%. These 

results will provide an important impact to understanding of the fundamental principles of 

structuring and self-assembly including ensuing properties of mesocrystals. 

 

 

KEYWORDS: nanoparticle self-assembly, gold mesocrystal grain, defects, coherent X-ray 

diffraction imaging. 
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Assembling of individual nanocrystals (NCs) in an organized superstructure offers the 

possibility of combining the physical properties of the individual NCs, like surface plasmon 

resonances or superparamagnetism, with other physical properties provided by the superstructure, 

such as mechanical stiffness or geometric coordination.1,2 NCs can be self-assembled into a 

superstructure, which is also known as a mesocrystal, where the separate NCs share a common 

crystallographic orientation.3-5 Among suitable building blocks for mesocrystals, gold 

nanoparticles have attracted special attention due to the prospect of utilizing their surface plasmon 

resonance properties. For example, a cancer-selective amplification of chemoradiation with 

plasmonic nanobubbles has been reported for clusters of gold nanoparticles.6,7 Similarly, gold 

mesocrystals show high potential in the detection of traces of chemical species using surface‐

enhanced Raman scattering (SERS).8-13  

In these applications, both the shape and size of the NCs as well as their mutual arrangement are 

highly influential on the plasmonic properties.14 In particular, the crystallographic structure of the 

assemblies (mesocrystals) determines the coupling strength and coherent superposition of the NCs 

plasmon polariton modes, which leads to the measured enhancement of the electromagnetic 

field13,15 and the emergence of hybridized plasmon bands.16 Moreover, when anisotropic NCs are 

arranged in a mesocrystalline structure, coupling and amplification of directional physical 

properties can be expected.4 

While the plasmonic properties of individual nanoparticles or two-dimensional (2D) assemblies 

can be easily characterized and related to the particle shape and size, the evaluation of optical 

responses from three-dimensional (3D) superstructures is not straight forward and requires exact 

knowledge not only of the internal symmetry, translational, and orientational order of the building 

blocks within the superlattice, but also structural heterogeneity (e.g. presence of defects). This 
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knowledge is also important for the fundamental understanding of the phase behavior of nanocubes 

during the self-assembly process as well as the stability of superstructures.17-19 

Previously, we presented a detailed structural characterization of PbS and iron oxide 

mesocrystalline superstructures using the combination of different transmission electron 

microscopy (TEM) techniques (including imaging, electron diffraction, high resolution TEM, 

electron tomography and electron holography).20-25 TEM is capable to resolve very small 

structures, but quickly reaches an application limit for multilayered superstructures and larger 

mesocrystals, in particular if composed of more than 20 nm sized gold particles due to their strong 

electron scattering and absorption. In the few micrometers thick 2D layers of mesocrystals, the 

structural relationship between the atomic lattice and superlattice of nanocrystals can be studied 

by X-ray nanodiffraction and angular X-ray cross-correlation analysis (AXCCA) techniques.26-30 

However, to fully understand the mesocrystal formation process and to get insight into the 

fundamental principles of structure - property relationship of such complex material, detailed 

structural characterization in 3D is crucial. To study the structure of these materials in a non-

destructive way and resolve potential defects, we use here coherent X-ray diffraction imaging 

(CXDI).31,32 

The CXDI is a lens-less imaging technique that makes use of the coherence properties of the X-

ray beam. When a finite object is illuminated by a coherent X-ray beam, interferences between the 

incoming wavefront and the scattered beams generate a diffraction pattern, which can be recorded 

in the far-field by a 2D detector with proper sampling.33 By stepwise rotating the sample and 

recording 2D diffraction patterns, one can measure a full 3D diffraction pattern and then use 

iterative algorithms to determine the 3D electron density of a sample.34,35 A complex amplitude 

object is reconstructed, whose modulus is directly related to the object’s electron density in the 
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forward scattering geometry.33 This technique has already been applied successfully to a colloidal 

grain of silica nanospheres (diameter 230 nm), where the accuracy of the determined positions of 

each colloidal sphere in the lattice was ~9 nm.36 Here, we push forward this approach to solve the 

structure of a gold mesocrystal grain self-assembled from 60 nm sized gold nanocubes.  

 

Results and Discussion 

The gold NCs stabilized by cetyltrimethylammonium chloride (CTAC) were synthesized in a 

three-step seed-mediated method,21 purified by centrifugation and assembled to faceted 

mesocrystals (slightly distorted tetragonal prisms, see Figure 1) using depletion forces (see 

Methods for details). To perform a detailed structural characterization of the superstructure by 

CXDI, a rectangular cuboid with dimensions about 1.25 μm × 1.25 μm × 1.5 μm was cut from the 

central part of one of the grown mesocrystals using a focused ion beam (FIB) and was mounted 

on a tungsten micromanipulator tip (see Figure 2).  

The CXDI measurements were performed at the Coherence Applications Beamline P10, at the 

PETRA III (DESY, Germany) storage ring. A sketch of the experimental setup is shown in 

Figure 2 (see Methods for details). The stack of 2D diffraction patterns measured in our experiment 

was interpolated into an orthonormal frame, resulting in a 3D reciprocal space map of our grain. 

An isosurface of this 3D diffraction pattern is shown in Figure 3a. One can distinguish streaks with 

interference fringes at low scattering angles in Figure 3b, which is due to interference of coherent 

X-rays on the opposite facets of the mesocrystal. In addition, several orders of superlattice 

reflections at larger wave vector transfers values can be observed. Between the Bragg peaks, we 

measured a complex speckle pattern, which encodes the local information about the relative 

positions of scatterers in the mesocrystal. The direct beam was masked, corresponding to the white 
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area in the center of diffraction pattern as shown in Figure 3b. In Figure 3c, an angular average of 

the diffraction intensities is shown. Although we are dealing with a single-domain mesocrystal, 

Bragg peaks are broadened due to the highly defective structure of the ensemble. Near 

qz~ ±0.1 nm-1, in Figure 3b, Bragg peaks are split, which suggests the presence of defects in the 

superlattice.37 The first evaluation of the angular averaged X-ray diffraction profile shown in 

Figure 3c suggests a simple cubic symmetry (space group 𝑃𝑃𝑃𝑃3�𝑚𝑚) of the superlattice with a lattice 

parameter a ~ 62 nm.  

We further analyzed the 3D reciprocal space data by means of the AXCCA technique, 26-30 which 

can provide more information about the superlattice structure. This method was specifically 

modified to perform analysis in 3D reciprocal space. We calculated the cross-correlation functions 

(CCFs) C(q1,q2,Δ) between the most prominent peaks in the reciprocal space radial profile of 

Figure 3c, at momentum transfer values q1 = 0.104 nm-1, q2 = 0.144 nm-1, q3 = 0.172 nm-1, and 

q4 = 0.208 nm-1. The most representative CCFs are shown in Figure 4a-c. The CCFs reflect angular 

correlations between the Bragg peaks from the mesocrystalline lattice. The observed peaks in the 

CCFs do not perfectly fit the initially expected simple cubic lattice model of the mesocrystalline 

structure. Simulating peak positions for a triclinic lattice (space group 𝑃𝑃1) shown in Figure 4d, we 

found the optimal angles between the lattice basis vectors. Combining these data with the intensity 

profiles along the main crystallographic directions ([100], [010] and [001]) we obtain the following 

unit cell parameters in real space: a = b = 63.2 ± 0.1 nm, c = 62.2 ± 0.1 nm, α = β = 75 ± 1°, 

γ = 90 ± 1°. 

The anisotropy of the form-factor of the cubic NCs provides an additional information about the 

angular orientation of the NCs inside the superlattice. The form-factor maxima are located along 

the normal to the facets of the NCs. Thus, one can study the angular position of the NCs form-
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factor maxima with respect to the Bragg peaks and further determine the NC orientation with 

respect to the superlattice crystallographic axes in real space. The angular position of 

corresponding maxima was obtained by correlating the simulated form-factor for a cubic NC of 

the size of 59 ± 1 nm with the experimental intensities at q = 0.477 nm-1. This q value is the most 

suitable one to calculate correlations, since it corresponds to one of the maxima of the form-factor, 

and does not contain any structure factor features. As a result, we obtained an averaged real space 

model of the entire unit cell including the oriented NCs that is shown in Figure 4d. The facets of 

the NCs are aligned neither with the (001) plane, which is parallel to the substrate surface, nor with 

the [001] axis, but are tilted by an angle δ ≈ 7° with respect to this axis. We would like to note here 

that reciprocal space analysis provides information about the average structure over the whole 

mesocrystalline grain only. Local structural features are resolved only by employing phase 

retrieval to reconstruct the electron density of the whole grain. 

The 3D diffraction pattern was inverted to a real space 3D electron density map using iterative 

phase retrieval reconstruction algorithms,31,32 providing a full overview of the internal structure of 

the mesocrystal (see for details Methods). An isosurface of the reconstructed mesocrystal together 

with 2D slices parallel to (100), (010) and (001) planes of the superlattice is shown in Figure 5. 

The first striking observation is that CXDI can fully resolve individual nanocubes. The voxel size 

of the reconstruction is 9.4 nm × 9.4 nm × 9.4 nm, while the resolution estimated by the phase-

retrieval transfer function38 (PRTF) is ~21 nm, which is smaller than the 60 nm size of the 

individual NCs. The reconstructed structure is tilted in the vertical direction, in agreement with the 

unit cell parameters of the superlattice obtained by the AXCCA.  

The 2D slices of the electron density of the mesocrystalline grain (see Figure 5b-d) show the 

presence of several type of defects including point defects, lattice bending, crack, and voids. One 
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could argue that the structure was damaged during sample preparation by the FIB. Indeed, it has 

been shown that FIB milling can induce a dislocation network in the outer layers of gold NCs.39 

However, this effect is expected to be limited to the first few tens of nanometers at the surface of 

the object, which does not explain the high inhomogeneity of the mesocrystal structure. 

Consequently, the defects likely formed during the crystal growth or the post-growth deformation 

processes (including the crystal contraction during the drying processes and solvent evaporation). 

Defects of both origins are important since application of mesocrystals often requires the material 

in a dry state.  

It is also evident from the reconstructed electron density (see Figure 5), that the packing order of 

nanoparticles within (001) planes increases substantially in the first three layers from the substrate. 

We would like to note, that these (001) planes are parallel to the substrate and basal plane of 

mesocrystals and are perpendicular to the growth direction. In general, the ordering within (001) 

planes is also much higher than within (100) and (010) planes (see Figure 5). These findings are 

consistent with the layer growth mechanism of mesocrystals, proceeding by particle-by-particle 

attachment to the facet grown parallel to the substrate. In addition, during the drying process (e.g. 

solvent evaporation) the nonhomogeneous contraction of the mesocrystal occurs mainly 

perpendicular to the basal plane and additional shear stress induces the formation of additional 

cracks and voids, which mainly propagate perpendicular to substrate (see Figure 5). The most 

prominent here is a large crack through the entire mesocrystal, visible on the right side of 

Figure 5b,c, following the (010) plane, where its zigzag nature suggests a post-growth deformation 

during the drying process as origin of the crack formation.  

To perform a more detailed analysis of the crystal’s intrinsic heterogeneity, the 3D reconstructed 

electron density map was analyzed with a blob detection algorithm to extract the position of the 
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individual NCs within the superlattice. The assigned position of individual NCs was further used 

to determine the local variations of packing order with respect to the average superlattice 

determined by the AXCCA. To do so, we aligned the averaged superlattice positions with the 

particle positions detected by the algorithm at the middle of the mesocrystal grain. The obtained 

displacement map clearly visualizes the lattice distortion across the entire 3D volume of the 

mesocrystal (Figure 6a). The shift of nanoparticle positions from their averaged value within the 

superlattice is most significant close to the structural defects (see Figure 5, for comparison). For 

example, the crack is again clearly visible at the right side of mesocrystal grain. Furthermore, one 

can see that for the first three layers from the substrate, the whole lattice plane is still significantly 

displaced in comparison to the average lattice. The upper left part of the crystal appears to be 

sheared approximately half a unit cell in a diagonal direction.  

In Figure 6b, examples of extracted local primitive unit cells together with corresponding 

Voronoi–Dirichlet polyhedron (VDP), also known as the Wigner-Seitz cell for a 3D periodic 

lattice, at different positions within the mesocrystal are shown. The parameters and geometry of 

VDP constructed around the “central particle” of each selected cell illustrate the changes of the 

local symmetry in the arrangement of nearest neighbors (e.g. coordination shell) and coordination 

number (CN) equal to the number of facets.40,41 The magnitude of the dimensionless second 

moment of inertia of the VDP, normalized to its volume (so-called G3-factor) can be used to 

estimate the degree of distortion of the coordination shell (e.g. for cubes G3 is equal to 1 12⁄ ≈

0.0833 , for cuboctahedra 19 �192(2)1 3⁄ �⁄ ≈ 0.0785 , and for spheres (1 5⁄ )(3 4𝜋𝜋⁄ )2 3⁄ ≈

0.0770).40,42 In comparison to cubic VDP of the simple cubic cell (CN is 6; number of vertices is 

8, see Figure 6c), the more complex VDP of the averaged unit cell determined by AXCCA has 12 

facets (CN = 12) and 18 vertices with G3 = 0.0810 (Figure 6c). Interestingly, although the VDPs 
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constructed for the several selected primitive cells (Figure 6b) have 14 facets (CN = 14), the G3 

parameter varies only from 0.0812 to 0.0831 (just between the values of a simple cubic and triclinic 

cells determined by the AXCCA).  

 It is worth to note, that the averaged AXCCA lattice can be seen as a distorted primitive cubic 

arrangement of the particles where each particle has 6 nearest neighbours and additionally 6 next-

nearest neighbours, as evidenced by the faces of the VDP. The distortion can be understood as 

follows: the square layers of simple cubic lattice with the parameters a = b = 62.2 nm, γ = 90° are 

sheared against each other. The distortions can be attributed both to the smoothed polyhedral shape 

of the particles that drives the whole arrangement in the direction of a close packing, and to the 

defects of the structure. Thus, it is not surprising, that the G3 values calculated from experimental 

data are very close to the G3 of the VDP in the simple cubic cell, showing that although the real 

symmetry of the superlattice cell is lower, its topology deviates only slightly from the simple cubic 

arrangement. This deviation might be also a result of the tilting of our slightly truncated gold NCs 

within the superlattice as indicated by the AXCCA (Figure 4d). This allows to achieve a more 

efficient space-filling arrangement in accordance with the so-called “bump-to-hollow” packing 

principle known for molecular crystals43 and also reported for other mesocrystalline self-

assembled structures.18,22 In addition, we found, that this average primitive cell can actually be 

identified to have a higher symmetry and corresponds to a primitive cell of a centred monoclinic 

lattice that has the following parameters in the conventional setting I2/m: a = 62.2 nm, 

b = 89.38 nm, c = 88.25 nm, β = 109.52°. For convenience, however, we prefer to use the original 

primitive setting (see Figure 4d) in the whole manuscript. We also calculated the pair distribution 

function (PDF) based on the detected positions of individual nanocrystals within the superlattice 

(see Figure 6d). The PDF confirmed that the short-range order of the nanoparticles is close to an 
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arrangement with the average cell, while the long-range order (at higher distances r) is significantly 

disturbed due to the presence of defects and lattice deformations in the real structure of the 

mesocrystal. The first peak of the PDF curve was fitted by a Gaussian function (see Figure 6d 

inset), revealing that the average distance to the neighboring particles of the first coordination shell 

is around 62.7 nm and that the precision of the detected particle positions (given by the standard 

deviation) is better than 5.9 nm, since the spread includes also the particle displacements due to 

lattice deformations. 

Although the displacement map already gives a good understanding of the large lattice 

deformation across the whole mesocrystal volume, we additionally extracted a complete 

superlattice strain map. As a tool to describe the deformation of the superlattice, we defined the 

superlattice strain tensor as the deviation of the actually observed structure of a mesocrystal 

compared to the defect free lattice model (determined by the AXCCA) in analogy to the linear 

elasticity theory for atomic lattices44. This linear model, which neglects higher order derivatives, 

is of course only valid for small deformations. Although formally analogous to the strain as defined 

in linear elasticity theory (Hooke’s law), herein it is merely used as a tool to describe the deviation 

of the observed experimental structure from the average model. Here, we are not aiming to 

distinguish an elastic and plastic deformation, nor can we say anything about the stress of the 

system. In addition, the superlattice dilatation (that is a sum of diagonal elements of the strain 

tensor) can easily be retrieved, giving a direct visualization of local lattice contractions and 

expansions (see Figure 7). Figure 7a,b illustrates the highly mosaic structure of the mesocrystal. 

Even though there are many local fluctuations in the crystal structure, there certainly seems to be 

a tendency of positive dilatation (lattice expansion) in the vicinity of the huge crack.  
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The individual strain εij and rotation ωij components can be found in Figure 7b. The most obvious 

feature is the “bipolar” structure, for example, in εxy and ωyz, which is consistent with the lattice 

bending, and can be observed in the slices in Figure 5. The calculated strain tensor and rotation 

components are quantitatively summarized in the histograms (Figure 7c). The measured strain in 

all components is in a reasonable range of ±10%. The sharpest distribution is shown by the εyy 

tensor component, which is closest to the a3 growth direction of the mesocrystal. In order to verify 

the fidelity of our calculated superlattice strain, we reapplied the strain to an ideal crystal lattice 

(i.e. averaged superlattice determined by the AXCCA) and were able to reproduce most structural 

features of the experimentally measured mesocrystal. 

 

 

CONCLUSION 

In conclusion, we have used a combination of the angular X-ray cross-correlation analysis and 

coherent X-ray diffractive imaging, to study the 3D structure of a gold mesocrystal. The achieved 

resolution of 21 nm allowed imaging of individual nanocubes in the mesocrystal grain. Importantly, 

the precision of the detected particle positions was better than 6 nm. The results reveal a strongly 

defective structure of the mesocrystal with overall monoclinic symmetry. This technique shows a 

strong potential in systems that cannot be studied by classical optical or electron microscopy 

methods and contributes to a better understanding of structural features of self-assembled 

mesocrystals and especially intrinsic structural heterogeneity (including deviation of crystal 

symmetry, variation of lattice parameter, distribution of defects and strains). Importantly, the real 

mesocrystal structure was analyzed with unprecedented detail, calculating a displacement map and 

the entire strain tensor of the whole specimen.  
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The unexplored deformation behavior and related changes in structure and functional properties 

of nanoparticles superlattices limit their promising implementation into devices.45 Therefore, the 

precise determination of their crystal structure and especially intrinsic structural heterogeneity is 

crucial for understanding this complex behavior. The proposed methodological approach could be 

used not only to perform such non-destructive structural characterization of nanostructured 

materials, but also to build more adequate structural models which in turn could serve as a basis 

for the precise prediction of the physical properties of nanoparticles self-assemblies using the 

computational methods. 

 

 

 

METHODS 

Synthesis of Gold Nanocubes 

The synthesis of Gold Nanocubes was performed by a three-step seed-mediated growth method 

based on a previously described procedure.21 First, small gold seeds are synthesized which are 

grown to spheres in a second step. These spheres are then processed for the synthesis of cubic 

particles. An aqueous solution of HAuCl4 (1.00 mL, 0.01 M) and an aqueous solution of 

hexadecylpyridinium chloride (CPC) (50.00 mL, 0.10 M) were mixed in a glass vial (100 mL) and 

tempered to 27°C. An aqueous solution of ascorbic acid (0.75 mL, 0.10 M) was added, followed 

by a rapid injection of 400 µL of washed spheres. The solution turned pinkish red and was kept at 

27°C for 3 h. The Gold Nanocubes are collected by centrifugation at 9 000 rpm for 5 min and 

redispersed in 0.02 M CPC solution. The cubes were characterized by TEM and UV/Vis, the single 

crystalline nature of the particles was proven using electron diffraction. 
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Preparation of Gold Mesocrystals.  

An aqueous solution having approximately 1011 particles/mL and a CPC concentration of 

0.02 M was prepared. 400 µL of this solution were filled in a 1 mL shell vial with a silicon wafer 

(7 × 5 mm2). The solution was carefully overlayered with 400 µL of 25 wt.% 

cetyltrimethylammonium chloride (CTAC) in H2O. After 12 h, the solution was carefully 

removed, and the silicon wafer was washed with acetone to yield mesocrystals. 

X-ray experiment 

Monochromatic X-rays of 8.7 keV were focused down to ~2.4 (H) × 2.0 (V) μm2 at the sample 

position completely covering the mesocrystal grain. An electron microscopy image of the sample 

mounted on the tip is shown in Figure 2. The polymer tip was fixed on a rotation stage around the 

vertical axis z. At each angular position, the 2D far-field diffraction pattern was recorded by the 

Eiger4M detector positioned 4.95 m downstream from the sample. The sample was rotated by 

steps of 0.5° over a range of 180° and, by that, the full 3D diffraction pattern was measured. At 

each angular position, a series of 10 frames of 0.2 s exposure each were measured, corresponding 

to 2 s accumulated exposure to the non-attenuated X-ray beam, giving in total 18 min of 

measurements per sample. The sample was cooled using a liquid nitrogen cryostat, in order to 

avoid radiation damage of the organic ligand stabilizing NCs which could induce the NCs 

coalescence and destroy the superlattice ordering. 

Iterative phasing and resolution estimate  

Phase retrieval was carried out on the interpolated diffracted intensity data using PyNX 

package,46 imposing at each iteration that the calculated Fourier intensity of the current object 

agrees with the measured data. The metric used to estimate the goodness of the fit during phasing 

was the free log-likelihood,47 available in PyNX. Defective pixels for experimental data and gaps 
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in the detector were not used for imposing the reciprocal space constraint mentioned above and 

thus were evolving freely during phasing.  

The initial support was estimated from the autocorrelation function of the 3D diffraction 

intensity that included only the first superlattice Bragg peaks. For larger reciprocal space this 

support was correspondingly rescaled. While the iterative phase retrieval this support was evolved 

by application of the ''shrink-wrap algorithm''.48 A series of 3600 Relaxed Averaged Alternating 

Reflections49 plus 200 Error-Reduction34 (ER) steps, including ''shrink-wrap'' algorithm48 every 20 

iterations were used. The phasing process included implementation of the Lucy-Richardson 

deconvolution that takes into account partial coherence effects.50 The resulting point spread 

function is shown in Figure 8a-c of Supporting Information. To ensure the best reconstruction 

possible, we kept only the best 10 reconstructions from 1000 with random phase start and 

performed the mode decomposition.47 The weight of the most prominent mode which was 

considered as a final result was 69%. 

The resolution of the reconstruction was estimated using the normalized Phase-Retrieval 

Transfer Function3 (PRTF) at a cutoff value of 1/e (see Figure 8d). The PRTF is a measure of how 

well the retrieved Fourier amplitudes match the square root of the measured diffraction intensity. 

After calculating the ratio of the reconstructed and measured amplitudes, the obtained 3D PRTF 

was azimuthally averaged over shells of constant q and normalized to obtain the result shown in 

Figure 8d. Measured voxels of zero intensity were excluded from the PRTF calculation. 
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Figure 1. Synthesis and the preparation of gold mesocrystals. (a) TEM image of gold nanocubes 

stabilized by CTAC and synthesized using a seed-mediated approach. Electron diffraction pattern 

(bottom left) shows the perfect orientational alignment of the nanocubes along the [100] 

crystallographic direction within the assembly. (b) SEM image of the self-assembled gold 

mesocrystal prior to FIB preparation for the CXDI measurements.  
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Figure 2. Schematic layout of the experiment. A monochromatic X-ray beam of 8.7 keV from the 

undulator source is focused by the Compound Refractive Lenses (CRL) to a spot larger than the 

mesocrystal grain. The sample was cooled using a liquid nitrogen cryostat. The far field diffraction 

patterns were measured by a photon counting Eiger4M detector positioned downstream the 

sample. The 3D diffraction map is obtained by rotating the sample around the vertical axis. In the 

inset, an SEM image of the mesocrystal grain is shown. The laboratory frame convention for the 

coordinate frame is shown in the figure.  
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Figure 3. (a) Isosurface view (from 54% to 72% level) of the 3D diffraction pattern from the 

mesocrystalline grain shown in SEM image in the inset of Figure 2. The data has been gridded 

onto the orthonormal laboratory frame. The length of coordinate arrows corresponds to 0.1 nm-1. 

(b) Slice at the center of the interpolated diffraction pattern in the qyqz plane, showing the low-

angle scattering region up to the first superlattice Bragg peaks. An enlarged view of the area 

outlined by a red box is shown in panel (a). (c) Intensity distribution as a function of momentum 

transfer value q obtained by angular averaging of the 3D diffraction pattern (red line). The blue 

dashed line corresponds to the median value at momentum transfer q determined from the angular 

averaged values. The AXCCA was performed on the data obtained by subtracting these median 

values from the 3D diffraction pattern shown in (a). The vertical dotted lines correspond to the 

momentum transfer values used in the AXCCA: q1 = 0.104 nm-1, q2 = 0.144 nm-1, q3 = 0.172 nm-

1, and q4 = 0.208 nm-1.  
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Figure 4. Cross-correlation functions (CCFs) C(q1, q2, Δ) calculated at the following momentum 

transfer values (a) q1 = 0.104 nm-1 and q3 = 0.172 nm-1, (b) q3 = 0.172 nm-1, and (c) 

q4 = 0.208 nm-1. The corresponding peak positions for the optimized triclinic unit cell are shown 

with red dashed lines. The peak positions for a simple cubic unit cell are shown with black lines. 

(d) A real space model of the average superlattice triclinic unit cell, with a = b = 63.2 ± 0.1 nm, 

c = 62.2 ± 0.1 nm, α = β = 75 ± 1°, γ = 90 ± 1°. The orientation of the nanocubes within the 

superlattice is revealed by analysis of the anisotropic form-factor. 
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Figure 5. (a) Volume rendering of the reconstructed 3D electron density with the position of 2D 

slices used further to analyze the structure. (b-d) 2D slices parallel to (010) (b), (001) (c) and (100) 

(d) crystallographic planes through the center of the reconstructed mesocrystal with highlighted 

superlattice defects. 
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Figure 6. (a) Displacement map (red arrows) of the 3D superlattice, obtained based on positions 

of detected nanoparticles (green dots) with respect to an average superlattice (black dots) with unit 

cell parameters determined by the AXCCA. The two lattices were aligned at the center of the grain 

(b) Selected Voronoi–Dirichlet polyhedrons illustrating the change of local symmetry of the 

arrangement and the number of coordinating particles (G3 from left to right: 0.0831, 0.0820, 

0.0813). (c) Constructed Voronoi–Dirichlet polyhedrons of simple cubic lattice (G3 = 0.0833) and 

the average superlattice unit cell determined by the AXCCA (G3 = 0.0811). (d) Pair-distribution 

functions (PDF) obtained for two datasets. First, based on the positions of the detected 

nanoparticles shown in panel (a) by green dots (green line) and, second, based on an average 

superlattice unit cell determined by the AXCCA shown by black dots in panel (a) (black line). In 

the inset an enlarged part of the first two peaks of the PDF-function is shown. The first peak of the 

experimental curve was fitted by a Gaussian function (red line) which has its maximum position 

at 62.7 nm and standard deviation 5.9 nm. 
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Figure 7. (a) Volume rendering of a 3D dilatation map of the superlattice. (b) Volume rendering 

of 3D maps of the strain tensor components (εxx – εzz) and rotations (ωxy – ωyz). The magnitude of 

strain is illustrated by the color scale. (c) Histograms of the strain tensor components and rotations. 
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Fig. 8. (a-c) Slices through the point spread function obtained from application of the Lucy-

Richardson algorithm, (d) Azimuthally averaged and normalized PRTF. The resolution is 

determined as the cross-over between the PRTF and the 1/e line. 

 

 

 


