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Abstract. Mutualistic networks are used to study the structure and processes

inherent to mutualistic relationships. In this paper, we introduce a random

matrix ensemble (RME) representing the adjacency matrices of mutualistic networks

composed by two vertex sets of sizes n and m − n. Our RME depends on three

parameters: the network size n, the size of the smaller set m, and the connectivity

between the two sets α, where α is the ratio of current adjacent pairs over the total

number of possible adjacent pairs between the sets. We focus on the the spectral,

eigenvector and topological properties of the RME by computing, respectively, the ratio

of consecutive eigenvalue spacings r, the Shannon entropy of the eigenvectors S, and

the Randić index R. First, within a random matrix theory approach (i.e. a statistical

approach), we identify a parameter ξ ≡ ξ(n,m,α) that scales the average normalized

measures
〈
X
〉

(with X representing r, S and R). Specifically, we show that (i) ξ ∝ αn
with a weak dependence on m, and (ii) for ξ < 1/10 most vertices in the mutualistic

network are isolated, while for ξ > 10 the network acquires the properties of a complete

network, i.e., the transition from isolated vertices to a complete-like behavior occurs

in the interval 1/10 < ξ < 10. Then, we demonstrate that our statistical approach

predicts reasonably well the properties of real-world mutualistic networks; that is, the

universal curves
〈
X
〉

vs. ξ show good correspondence with the properties of real-world

networks.
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1. Introduction

Many real-world networks can be represented as having two types of nodes grouped

into two disjoint sets, such that nodes within the same set are not adjacent. A

network satisfying this definition is denominated a bipartite network, and examples

of such a structure can be found across a broad range of systems [1]. For instance,

there are several types of social networks that have a natural bipartite representation,

such as the actor-movie network [2, 3], where actors are linked to movies in which

they were cast; coauthorship networks in which the two sets of nodes are authors

and papers, while the edges reveal the authorship of the latter [1, 3]; and networks

linking people to the social events they attended [4]. Other noteworthy examples include

recommendation systems [5], networks of heterosexual contacts [6], among others [1].

Bipartite networks are particularly relevant in ecology [7], for they naturally encode

the structure of mutualistic interactions of plant-pollinator, seed dispersal, and host-

parasite networks [7, 8]. In the theoretical domain, bipartite networks are useful

to encapsulate the structure of networks formed by distributions of subgraphs [9],

where one group is formed by nodes, and the other group by subgraphs to which the

nodes are attached. Bipartite networks can also offer an alternative representation of

hypergraphs by mapping nodes and hyperedges into disjoint groups, where an original

hyperedge is connected by an edge to the nodes it encompasses in the original hypergraph

representation [1, 10].

In all the above examples, the disjoint sets aggregate nodes that have the same type,

and the edges only run from one set to the other. However, from a bipartite network

it is also possible to unfold relationships pertaining to nodes that belong to the same

group. For example, from the actor-movie network we are able to construct another

network revealing who acted with whom: if two actors are connected to at least one

common movie in the original bipartite network, a link is then created in a new network

informing that they have collaborated at least once. The new generated network is

oftentimes referred to as the one-mode projection of the bipartite structure [1], owing

to the fact that all nodes have the same type in the new mapping. The same procedure

can be applied in order to obtain the one-mode projection of the movie set, thereby

connecting any two movies that have at least one actor in common. For any bipartite

network, there are thus two one-mode projections, one associated with each type of

node.

One-mode projections are useful, since they allow the investigation of aspects that

might be hidden or simply not apparent in the original bipartite network. In certain

applications, however, neither the bipartite network nor its two one-mode projections

alone are sufficient to accurately model the dynamics of the system that they represent.

For example, the population dynamics of plant-pollinator networks depend crucially on

both mutualistic interactions and intra-group competitions [7]. Mutualistic connections

in such an ecological community can be empirically mapped by field observations; that

is, the information that a given plant is pollinated by a given animal species can be
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stored in a bipartite network where the two types of nodes are plants and pollinators [7].

Intra-group connections, which quantify how strongly plants and pollinators compete

among themselves for resources, are, on the other hand, not readily accessed and need

to be inferred via one-mode projections onto the pollinator and plant groups [7]. There

is not a single way to project the bipartite networks in order to obtain the intra-

group connections in this context. Traditional dynamical models adopt a mean-field

description by treating the intra-groups to be fully connected, creating then a scenario

in which all plants and pollinators compete equally for resources [11]. This has been

argued to be a very strong assumption since it neglects completely the rich structure

of the bipartite mutualistic interactions observed in real ecological communities [12].

To overcome this limitation, heterogeneous competition schemes have been recently

introduced [12] and consist of projecting the bipartite connections as described above

for the actor-movie network: if two given pollinators (plants) share at least one common

plant (pollinator), an edge is created between them representing their competitive

interaction. In both competition scenarios, homogeneous and heterogeneous, the

network underlying the interactions of the dynamical model is not the original bipartite

structure, but rather the union of the latter with its one-mode projections.

While the structure and the dynamics of pure bipartite networks have been

scrutinized over the past years (see, e.g., [1, 7]), little is known about the statistics

of spectral properties of the networks that are created by the union of the bipartite

connections with their one-mode projections. For this reason, and given the fact the

network spectra is intrinsically related with the stability of dynamical processes, in

this paper we put forward a thorough characterization of the spectra of such networks,

bearing in mind possible implications to the dynamics of real plant-pollinator networks.

More specifically, here we characterize the statistics of the eigenvalues of matrices

generated by grouping the adjacency matrix of random bipartite networks with the

matrices obtained from their respective two one-mode projections (see Fig. 1 for an

illustration). Our interest in this network representation stems from the fact that

it mimics the structure of Jacobian matrices of dynamical models describing plant-

pollinator communities more closely than traditional random matrix ensembles [11, 12].

We employ three measurements to assess the statistical regimes of mutualistic-

competitive random networks as a function of size and connectivity, namely, the

ratio between consecutive eigenvalue spacings, the Shannon entropy related to the

eigenvectors of the adjacency matrix, and the Randić index. Very recently, these

quantities have been successfully applied to the characterization of other network

ensembles (see, e.g., Refs. [13, 14] and references therein). Our scaling analysis reveals

that the three measurements exhibit a universal behavior as a function of the average

degree. The obtained universal behavior highlights three markedly different statistical

regimes: at sufficiently low and high connectivity, the spectral and eigenvector statistics

of the networks coincides with those of the Poisson Ensemble (PE) and the Gaussian

Orthogonal Ensemble (GOE) of Random Matrix Theory (RMT) [15], respectively;

for intermediate connectivity, the networks undergo a delocalization-to-localization
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Figure 1. Example of (a) bipartite network representing the mutualistic interactions

between two groups for n = 9, m = 4 and α = 0.35, and (b) the same mutualistic

network with its competition edges projected onto each group.

transition that mediates the latter regimes. We further show, unexpectedly, that

real–world ecological networks follow with a reasonably good agreement the universal

behavior reported for the random networks – a result that, as we argue, indicates that

such ecological communities might operate in a regime of maximal complexity.

The remainder of this paper is organized as follows: In Section 2 we introduce

the random network ensemble we study and the measurements used to characterize

the network properties. Subsequently, in Section 3 we discuss the scaling and the

universality properties of the random networks with projected edges. We then apply

the scaling approach to a set of real plant-pollinator networks in Section 4. Section 5 is

dedicated to our conclusion and perspectives for future works.

2. Network model and measures

2.1. Random mutualistic-competitive networks

We start with a bipartite network composed by two disjoint sets with m and n − m

vertices each such that there are no adjacent vertices within the same set, being n the

total number of vertices in the bipartite network. The connectivity between both sets is

quantified by the parameter α which is the ratio of current adjacent pairs over the total

number of possible adjacent pairs; that is, vertices are isolated when α = 0, whereas the

bipartite graph is complete for α = 1. Vertices are connected randomly. An example

of a bipartite network with n = 9, m = 4 and α = 0.35 is shown in Fig. 1(a). Then,

the mutualistic-competitive network is constructed by establishing connections between

elements of the same set when they are connected to a common vertex of the other set.

The mutualistic-competitive network corresponding to the bipartite network of Fig. 1(a)

is presented in Fig. 1(b).

Here we follow a recently introduced approach under which the adjacency matrices

of random graphs and networks are represented by RMT ensembles; see the application

of this approach on Erdös-Rényi graphs [16], random rectangular graphs [17], β-
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Figure 2. Nonzero adjacency matrix elements of bipartite random networks for some

combinations of m/n and α: (a) m/n = 1/2 and α = 0.05, (b) m/n = 1/4 and

α = 0.75, (c) m/n = 1/5 and α = 0.1, (d) m/n = 1/10 and α = 0.3. In all cases

n = 100.
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Figure 3. Nonzero adjacency matrix elements of the mutualistic-competitive random

networks corresponding to the bipartite networks of Fig. 2.

skeleton graphs [18], multiplex and multilayer networks [19], and bipartite networks [20].

Accordingly, we define the elements of the n × n adjacency matrix A of a mutualistic

network as

Aij =


√

2εii for i = j,

εij if there is an edge between vertices i and j,

0 otherwise.

(1)

We choose εij as statistically-independent random variables drawn from a normal

distribution with zero mean and unity variance. Also, εij = εji, since the network

is assumed as undirected. Indeed, according to definition (1), diagonal random matrices

are obtained for α = 0 (known as PE in RMT [15]), whereas the GOE (i.e., full real

and symmetric random matrices [15]) is recovered when α = 1. Therefore, a transition

from the PE to the GOE should be observed by increasing α from zero to one, for any

given pair (n,m).

In Fig. 2, we show examples of adjacency matrices of random bipartite networks

with n = 100 vertices and some combinations of m and α; while in Fig. 3 we present the

adjacency matrices of the corresponding mutualistic-competitive networks. Note that

when labeling the vertices according to the set they belong to, the adjacency matrices

of both bipartite and mutualistic-competitive networks have a 2 × 2 block structure.

Notice also that, in contrast to bipartite networks, since connections between vertices

of the same set are allowed in mutualistic-competitive networks, the diagonal blocks of

the corresponding adjacency matrices are not null matrices.



Statistical properties of mutualistic-competitive random networks 6

Below we define m (resp. n−m) as the number of vertices of the smaller (bigger)

set. In this respect, the case m = n/2 is a limiting case where both sets have the same

number of vertices, m = n −m. Moreover, the case m = 1 is another limiting case in

which the smaller set consists of a single vertex. Thus, in what follows we will consider

random mutualistic-competitive networks characterized by the parameter set (n,m, α)

with 1 ≤ m ≤ n/2 and 0 ≤ α ≤ 1. Notice that the case m > n/2 is redundant because

it is equivalent to the interchange of the sets.

2.2. Spectral and topological measures

We characterize the spectral and eigenvector properties of the randomly-weighted

adjacency matrices of mutualistic-competitive networks by the use of two well-known

RMT measures: the ratio between consecutive eigenvalue spacings r [21] and the

information or Shannon entropies S [22], whereas to probe topological properties we

use the Randić index R [23], one of the best studied topological indices in mathematical

chemistry.

On the one hand, given the ordered spectra {λi} (i = 1, . . . , n) and the

corresponding normalized eigenvectors Ψi, i.e.,
∑n

j=1 |Ψi
j|2 = 1, the ratio ri and the

entropy Si are given by [21, 22]

ri =
min(λi+1 − λi, λi − λi−1)
max(λi+1 − λi, λi − λi−1)

(2)

and

Si = −
n∑
j=1

∣∣Ψi
j

∣∣2 ln
∣∣Ψi

j

∣∣2 , (3)

respectively.

It is pertinent to mention that S, which quantifies the extension of eigenvectors

in a given basis, has been widely used to study the localization characteristics of the

eigenvectors of random graphs and network models. Among the vast amount of studies

available in the literature, we can mention (as relevant examples to the present study)

that S was used to find the universal parameters able to scale the eigenvector properties

of multiplex and multilayer networks [19] and bipartite graphs [20]. In contrast, r has

been scarcely used in studies of networks; for a recent exception see Ref. [24], were

P (r) served to characterize the percolation transition in weighted Erdös-Rényi graphs.

We believe that the lack of use of r in network studies is mainly due to the fact that

the introduction of r is relatively recent. In fact, most studies of spectral properties

of random graphs and networks, from a RMT point of view, are based on the nearest-

neighbor energy level spacing distribution P (s), see e.g. [16] and the references therein.

However, here we prefer to use 〈r〉, instead of P (s), because the calculation of the

ratios ri ≡ min(si, si+1)/max(si, si+1) (with si = (λi+1 − λi)/∆, ∆ being the mean

eigenvalue spacing) do not require the spectrum unfolding [15], a task that may become

cumbersome mainly for the spectra of real-world systems. Moreover, the spectrum

unfolding fixes 〈s〉 = 1 and forbids the use of 〈s〉 as a complexity indicator; a restriction
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not applicable to 〈r〉. See e.g. Ref. [13] where 〈r〉 has been recently used as a complexity

indicator for directed random netwroks.

On the other hand, given a simple connected network with edge set E(G), the

Randić connectivity index is defined as [23]

R =
∑

uv∈E(G)

1√
dudv

, (4)

where uv denotes the edge connecting the vertices u and v, and di is the degree of the

vertex i. We want to note that the statistical study of R we perform here is justified

by the RMT approach to mutualistic-competitive networks. This statistical approach,

well known in RMT studies, is not widespread in studies of topological indices, mainly

because topological indices are not commonly applied to random graphs and networks;

for recent exceptions see [14, 25] where average topological indices have been used as

complexity indicators equivalent to traditional RMT measures. We also notice that the

random weights we impose to the adjacency matrix A, as defined in Eq. (1), do not

play any role in the computation of vertex-degree-based indices.

From definitions (2-4), when α = 0 (i.e., when all vertices of the mutualistic-

competitive network are isolated) we have 〈r〉
PE
≈ 0.3863 [21], 〈S〉

PE
= 0 and 〈R〉

PE
= 0.

While when α = 1 (i.e. when the mutualistic-competitive network is complete),

〈r〉
GOE
≈ 0.5359 [21], 〈S〉

GOE
≈ ln(n/2.07) [22] and 〈R〉

GOE
= n/2. Here and below

〈·〉 denotes the average over all eigenvalues/eigenvectors/matrices of an ensemble of

mutualistic-competitive networks. We just want to add that the values of 〈r〉 reported

above for the PE and the GOE limits are valid in the large–network–size limit only, see

Appendix A for a small–network–size analysis of 〈r〉 at α = 0 and 1.

3. Scaling and universality

We now apply a scaling approach that has been successfully used to find universal

properties of random graphs and network models, see e.g. [16, 17, 18, 19, 20]. We

can summarize this approach in the following steps: (i) plot the average spectral or

topological measure 〈X〉 as a function of the parameter x, which drives the network

model from the PE to the GOE regimes, so that both limits can be well identified; (ii)

normalize the average measure 〈X〉 such that
〈
X
〉
PE

= 0 and
〈
X
〉
GOE

= 1; (iii) define

the PE–to–GOE transition point x∗ as the value of x such that
〈
X
〉
≈ C with C ∈ (0, 1);

(iv) define the scaling parameter ξ as the ratio x/x∗. Thus, the curves
〈
X
〉

vs. ξ should

fall one on top of the other; that is,
〈
X
〉

vs. ξ is a universal curve characterized by the

scaling parameter ξ, where ξ can be explicitly written in terms of the network model

parameters. Therefore, once the universal curve is found, it is possible to identify the

network parameters setting the network properties on the PE and GOE regimes.

Following the steps listed above, in Fig. 4 we present the average ratio 〈r〉 (upper

panels), the average Shannon entropy 〈S〉 (middle panels) and the average Randić index

〈R〉 (lower panels) as a function of the connectivity α for mutualistic-competitive random
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Figure 4. (a-d) Average ratio between consecutive eigenvalue spacings 〈r〉, (e-h)

average Shannon entropy 〈S〉 and (i-l) average Randić index 〈R〉 as a function of the

connectivity α for random mutualistic-competitive networks of size n. Four values of

the ratio m/n are considered: (a,e,i) 1/2, (b,f,j) 1/4, (c,g,k) 1/5 and (d,h,l) 1/10. The

(blue) red horizontal dashed lines correspond to the RMT predictions for the (PE)

GOE with n = 1600. Each symbol was computed by averaging over 106/n random

networks.

networks characterized by different values of m/n. Each panel reports five network sizes

ranging from n = 100 to 1600. From this figure, it is clear that all curves 〈X〉 vs. α

show the transition from the PE to the GOE (here and below X represents the three

measures reported in this work: r, S and R).

Then, in Fig. 5, we plot again the curves of Fig. 4 but normalizing 〈X〉 such that〈
X
〉
PE

= 0 and
〈
X
〉
GOE

= 1. That is, 〈r〉 ≡ [〈r〉 − 〈r〉
PE

]/[〈r〉
GOE
− 〈r〉

PE
],
〈
S
〉
≡

〈S〉 / 〈S〉
GOE

and
〈
R
〉
≡ 〈R〉 / 〈R〉

GOE
. We note that while we use 〈S〉

GOE
≈ ln(n/2.07)

and 〈R〉
GOE

= n/2, due to small–network–size effects, the values of 〈r〉
PE

and 〈r〉
GOE

are

computed numerically; see Appendix A. Figure 5 shows that the net effect of increasing

the network size n is the displacement of the curves
〈
X
〉

to the left on the α-axis.

Moreover, the fact that the curves are displaced the same amount (in log scale) when

doubling n is a signature of the scaling of
〈
X
〉

with n. Thus, in order to look for the

corresponding scaling parameter we characterize the position of the curves
〈
X
〉

vs. α

by extracting the localization–to–delocalization transition point α∗ that we define as
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Figure 5. Normalized measures (a-d) 〈r〉, (e-h)
〈
S
〉

and (i-l)
〈
R
〉

as a function of the

connectivity α for random mutualistic-competitive networks of size n. Same curves as

in Fig. 4. Horizontal dashed lines in left panels indicate
〈
X
〉

= 0.5.
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Figure 6. Localization–to–delocalization transition point α∗ as a function of n for

several values of the ratio m/n. α∗ was extracted from curves (a) 〈r〉 vs. α, (b)
〈
S
〉

vs. α and (c)
〈
R
〉

vs. α. The dashed lines are fittings to the data with Eq. (5); the

values of δ and λ obtained from these fittings are reported in Table 1 and Fig. 9,

respectively. Dot-dashed lines, shown to guide the eye, are proportional to n−1.

the value of α for which
〈
X
〉
≈ 0.5; i.e., the value of α such that

〈
X
〉

is at half of

the transition between the PE and the GOE. In Fig. 6, we report the localization–to–

delocalization transition point α∗ as a function of n for several values of the ratio m/n.
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Indeed, the linear trend of the data (in log-log scale) in Fig. 6 implies a power-law

relation of the form

α∗ = λnδ . (5)

As can be observed in Fig. 6 (see the dashed lines), Eq. (5) provides very good fittings

to the data. The values of the power δ obtained from the fittings in Fig. 6 (which are

reported in Table 1) allowed us to conclude that δ ≈ 1 for all the combinations of (n,m)

considered here. So, we write

ξ =
α

α∗
∝ αn . (6)

Therefore, by plotting again the curves
〈
X
〉

now as a function of ξ we observe that

curves for different mutualistic network sizes n collapse on top of a single curve, see

Fig. 7. That is, for a given ratio m/n, ξ fixes the spectral and topological properties of

our randomly-weighted mutualistic-competitive networks.

measure

m/n 〈r〉
〈
S
〉 〈

R
〉

1/2 0.979 1.006 0.998

1/3 1.001 1.009 1.001

1/4 1.011 1.012 0.994

1/5 1.011 1.014 0.996

1/6 1.007 1.015 0.998

1/7 1.009 1.019 0.998

1/8 1.015 1.025 1.003

1/9 1.017 1.022 0.997

1/10 1.022 1.018 0.987

1/20 1.018 1.003 0.976

Table 1. Values of the power δ obtained from the fittings, with Eq. (5), of the curves

α∗(X) vs. n of Fig. 6.

It is important to add that even though we were able to scale the average ratio

between consecutive eigenvalue spacings, the average Shannon entropy and the average

Randić index of random mutualistic-competitive networks, as shown in Fig. 7, there is

still a dependence (weak, though) of the curves
〈
X
〉

vs. ξ on the ratio m/n. Indeed,

a similar dependence was reported for random bipartite networks in Ref. [20]. To

illustrate this weak dependence, in Fig. 8 we report curves
〈
X
〉

vs. ξ for several values

of m/n. Here, we can observe that the larger the ratio m/n, the sharper the PE–to–

GOE transition. However, it is relevant to add that our interest is focused on large

values of m/n since we have observed that most real–world mutualistic networks are

characterized by ratios in the interval (1/3, 1/2); see the next Section.

From Fig. 7 we can conclude that the average properties of the random mutualistic-

competitive network model studied here coincide with those of the PE and the GOE

when ξ < 1/10 and ξ > 10, respectively; while a PE–to–GOE transition regime

approximately appears for 1/10 < ξ < 10.
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Figure 7. Normalized measures (a-d) 〈r〉, (e-h)
〈
S
〉

and (i-l)
〈
R
〉

as a function of

the scaling parameter ξ for random mutualistic-competitive networks of size n. Same

curves of Fig. 5.

4. Real–world mutualistic-competitive networks

We now validate the scaling approach to mutualistic-competitive random networks,

developed in the previous section, by contrasting the obtained universal curves for 〈r〉,〈
S
〉

and
〈
R
〉

with the spectral and topological properties of real–world networks.

To this end we chose a number of pollination networks, host-parasite networks, seed

dispersal networks and food webs from the Web of Life ecological networks database

(http://www.web-of-life.es/) with sizes ranging from n ∼ 10 to n ∼ 1000; see the

adjacency matrices of some of these mutualistic networks in Appendix B. For each of

these networks we computed 〈r〉,
〈
S
〉

and R. We note that we imposed random weights

to the adjacency matrix elements of the real–world mutualistic-competitive networks,

such that the obtained adjacency matrices are similar to those of our RMT model.

Then, we computed the value of ξ that characterizes each of the real–world networks.

However, since the real–world networks are highly nonhomogeneous, we compute an

average sparsity 〈α〉 to be used in ξ = 〈α〉n/λ, see Eqs. (5,6). Moreover, notice

that λ ≡ λ(m/n), thus for a given ratio m/n we obtain λ from λr = 2.34(m/n)−0.68,

λS = 1.97(m/n)−0.65 and λR = 0.31(m/n)−1.13. Here, the functions λr,S,R are power-law

http://www.web-of-life.es/
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Figure 8. Normalized measures (a) 〈r〉, (b)
〈
S
〉

and (c)
〈
R
〉

as a function of the

scaling parameter ξ for random mutualistic-competitive networks of size n = 1000 and

several ratios m/n. The vertical dashed lines at ξ = 1/10 and ξ = 10 mark the onset

of eigenvector delocalization and the onset of the GOE regime, respectively. Crosses

indicate the values of (a) 〈r〉, (b)
〈
S
〉

and (c) R of 68 pollination networks (black), 49

host-parasite networks (red), 34 seed dispersal networks (blue) and 9 food webs (green)

from the Web of Life ecological networks database (http://www.web-of-life.es/).

fittings to the data, λ vs. m/n, reported in Fig. 9. Specifically, 50% of the 160 chosen

real-world networks have a m/n ratio in the interval (1/3, 1/2); while the smallest m/n

ratio of our set of real-world networks is about 1/12.
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Figure 9. Parameter λ as function of the ratio m/n. λ (symbols) was extracted

from the fittings, with Eq. (5), of the curves of Fig. 5: (a) 〈r〉 vs. α, (b)
〈
S
〉

vs. α

and (c)
〈
R
〉

vs. α. The dashed lines are the best power-law fittings to the data:

λr = 2.34(m/n)−0.68, λS = 1.97(m/n)−0.65 and λR = 0.31(m/n)−1.13.

Finally, in Fig. 8 we report the values of 〈r〉,
〈
S
〉

and R of real–world networks on

top of the universal curves obtained from our RMT approach. Remarkably, we observe

a reasonably good correspondence between the spectral and topological properties of

real–world mutualistic-competitive networks (symbols) and the corresponding statistical

predictions (full lines).

http://www.web-of-life.es/
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5. Conclusions

In this paper, we have applied a statistical approach, based on random matrix theory

(RMT) techniques, to mutualistic random networks with projected edges that emulate

intra-group competitive interactions. Specifically, we have proposed a random matrix

ensemble that represents the adjacency matrices of mutualistic-competitive networks

composed by two vertex sets of sizes m and n−m. Thus, the parameters of the RMT

model are: the network size n, the size of the smaller set m (with 1 ≤ m ≤ n/2) and

the connectivity between the two sets α ∈ [0, 1] forming the mutualistic system. We

focused on the spectral, eigenvector and topological properties of the random network

model by computing, respectively, the ratio of consecutive eigenvalue spacings r, the

Shannon entropy of the eigenvectors S and the Randić index R.

First, based on a scaling study, we defined a scaling parameter ξ ∝ αn, see

Eq. (6), that fixes the average spectral, eigenvector and topological properties of the

random network model. Specifically, we reported universal curves
〈
X
〉

vs. ξ (where X

represents r, S and R) that show a weak dependence on the parameter m; see Figs. 7

and 8. Thus, our study provides a way to predict the average properties of random

mutualistic-competitive networks once ξ is known. On the one hand, concerning the

adjacency matrix eigenvectors: For ξ < 1/10 the eigenvectors are localized, 〈S〉 ≈ 0,

when ξ > 10 the eigenvectors are extended, 〈S〉 ≈ ln(n/2.07), whereas the localization–

to–delocalization transition occurs in the interval 1/10 < ξ < 10. Equivalently, ξ ≈ 1/10

marks the onset of eigenvector delocalization (where the adjacency matrix eigenvectors

cover more than just one vertex in the network), while ξ ≈ 10 marks the onset of

the GOE regime (where the adjacency matrix eigenvectors are extended over all the

vertices forming the network). In this respect, the PE–to–GOE transition reported in

Sec. 3 corresponds to a localization–to–delocalization transition. On the other hand,

concerning the topological properties of the network (that we characterize by the use of

the Randić index): For ξ < 1/10 most vertices in the mutualistic-competitive network

are isolated, 〈R〉 ≈ 0, while for ξ > 10 the network acquires the properties of a complete

network, 〈R〉 ≈ n/2; that is, the transition from isolated vertices to a complete–like

behaviour occurs in the interval 1/10 < ξ < 10.

Second, we verified our statistical predictions by contrasting them with the

properties of real–world networks. Indeed, we found a reasonably good correspondence

between the properties of real–world mutualistic-competitive networks and the

corresponding
〈
X
〉

vs. ξ universal curves, as can be clearly seen in Fig. 8. Of further

interest, we observed that the real–world networks, even though characterized by values

of ξ below the onset of the GOE regime, displayed spectral, eigenvector and topological

properties very close to those of the GOE. This may be understood as a signature of

maximal complexity (i.e. maximal chaos in RMT terms) in the real–world mutualistic-

competitive networks we analyzed here.
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Figure A1. (a) Average ratio between consecutive eigenvalue spacings 〈r〉, (b) average

Shannon entropy 〈S〉 and (c) average Randić index 〈R〉 as a function of the connectivity

α for random mutualistic-competitive networks of sizes n ≤ 100. Here, m/n = 1/2

has been considered. Each symbol was computed by averaging over 106/n random

networks. The (blue) red dashed lines in (a) correspond to the RMT predictions for

the (PE) GOE.
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Appendix A. Small–network–size effects

In Fig. 4 we reported 〈r〉, 〈S〉 and 〈R〉 as a function of the connectivity α for mutualistic-

competitive random networks of sizes n ≥ 100 characterized by different ratios m/n.

There, small–network–size effects are evident for 〈r〉; that is the curves 〈r〉 vs. α do not

approach 〈r〉
PE
≈ 0.3863 and 〈r〉

GOE
≈ 0.5359 when α→ 0 and α→ 1, respectively. As

expected, small–network–size effects are even more pronounced for 〈r〉 when n < 100,

as can be clearly seen in Fig. A1(a). For completeness in Figs. A1(b) and A1(c) we also

present 〈S〉 and 〈R〉, respectively, as a function of the connectivity α for mutualistic

random networks of sizes n ≤ 100. However, for 〈S〉 and 〈R〉 we do not observe

important small–network–size effects. In Fig. A1 we used m/n = 1/2, but other ratios

m/n produce similar curves.

In particular, as part of the scaling approach to mutualistic-competitive random

networks developed in Sec. 3, we normalized the spectral and topological measures

studied in this paper. Specifically, we defined 〈r〉 ≡ [〈r〉 − 〈r〉
PE

]/[〈r〉
GOE
− 〈r〉

PE
],〈

S
〉
≡ 〈S〉 / 〈S〉

GOE
and

〈
R
〉
≡ 〈R〉 / 〈R〉

GOE
. Therefore, in Fig. A2 we present 〈r〉, 〈S〉

and 〈R〉 at α = 0 and α = 1 as a function of n and compare them with the corresponding

PE and GOE predictions, respectively. Indeed, since we observe good correspondence

between 〈S〉 and 〈R〉 at α = 1 with the corresponding GOE predictions, see Figs. A2(b)

and A2(c), we used 〈S〉
GOE
≈ ln(n/2.07) and 〈R〉

GOE
= n/2 to compute

〈
S
〉

and
〈
R
〉
,
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Figure A2. (a) 〈r〉, (b) 〈S〉 and (c) 〈R〉 at α = 0 (circles) and α = 1 (squares) as a

function of the graph size n. Here, m/n = 1/2 has been considered. The blue [red]

dashed lines correspond to the RMT predictions for the PE [GOE]: 〈r〉
PE
≈ 0.3863,

〈S〉PE = 0 and 〈R〉PE = 0 [〈r〉GOE ≈ 0.5359, 〈S〉GOE ≈ ln(n/2.07) and 〈R〉GOE = n/2].

respectively. In contrast, the RMT predictions for 〈r〉 in the PE and GOE regimes are

only approached when n > 1000; see Fig. A1(a). Thus, the values of 〈r〉
PE

and 〈r〉
GOE

used to compute 〈r〉 in Sec. 3 were calculated numerically for the given network sizes

used.

Appendix B. Adjacency matrices of real–world networks

In Sec. 4 we validated the scaling approach to mutualistic-competitive random networks

developed in Sec. 3 by contrasting the obtained universal curves for 〈r〉,
〈
S
〉

and
〈
R
〉

with the spectral and topological properties of real–world networks. Here, in Figs. B1,

B2 and B3 we present the actual adjacency matrices of some of the real–world networks

from the Web of Life ecological networks database (http://www.web-of-life.es/). In

Figs. B1, B2 and B3 we report some examples of small–size (n ∼ 10), medium–size

(n ∼ 100) and large–size (n ∼ 500) networks, respectively. For completeness, in each

figure we show bipartite adjacency matrices (upper panels) as well as the corresponding

mutualistic-competitive adjacency matrices (lower panels).
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Commun. Math. Comput. Chem. 85, 395 (2021).


	1 Introduction
	2 Network model and measures
	2.1 Random mutualistic-competitive networks
	2.2 Spectral and topological measures

	3 Scaling and universality
	4 Real–world mutualistic-competitive networks
	5 Conclusions
	Appendix A Small–network–size effects
	Appendix B Adjacency matrices of real–world networks

