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In bosonic gases at thermal equilibrium, an external quadratic drive can induce a Bose-Einstein
condensation described by the Ising transition, as a consequence of the explicitly broken U(1) phase
rotation symmetry down to Z2. However, in physical realizations such as exciton-polaritons and
nonlinear photonic lattices, thermal equilibrium is lost and the state is rather determined by a
balance between losses and external drive. A fundamental question is then how nonequilibrium
fluctuations affect this transition. Here, we show that in a two-dimensional driven-dissipative Bose
system the Ising phase is suppressed and replaced by a nonequilibrium phase featuring Kardar-
Parisi-Zhang (KPZ) physics. Its emergence is rooted in a U(1)-symmetry restoration mechanism
enabled by the strong fluctuations in reduced dimensionality. Moreover, we show that the presence
of the quadratic drive term enhances the visibility of the KPZ scaling, compared to two-dimensional
U(1)-symmetric gases, where it has remained so far elusive.

How the absence of thermal equilibrium affects the
properties of matter is one of the fundamental questions
of many-body physics, with far-reaching consequences in
the engineering of novel materials, the development of
quantum technologies, and the understanding of active
and living matter. In nonequilibrium systems, the lack
of detailed balance can radically modify the collective
behaviours typical of equilibrium systems. Accordingly,
novel phases can be expected, such as non-reciprocal (or
chiral) phases in active matter [1, 2], quantum optical
platforms [3, 4] and ultracold atoms [5], or dissipative
time crystals in many-body quantum systems [6–9].

An intriguing aspect concerns the impact of nonequi-
librium fluctuations in low spatial dimensions. At equi-
librium, the Mermin-Wagner theorem forbids the spon-
taneous breaking of a continuous symmetry in spatial
dimensions d ≤ 2 for systems with short-ranged in-
teractions. Out of equilibrium, the theorem does not
hold: two-dimensional flocks [10] or driven quantum spin
chains [11, 12] can feature transitions to phases with long-
range order. On the converse, it was shown that the
Berezinskii–Kosterlitz–Thouless (BKT) phase transition,
expected for equilibrium Bose gases in two spatial dimen-
sions, is erased in their driven-dissipative counterpart and
replaced by a disordered phase featuring a Kardar-Parisi-
Zhang (KPZ) scaling of the phase fluctuations [13]. A
promising candidate to experimentally observe this scal-
ing are exciton-polaritons fluids in microcavities [14, 15],
although the length scales at which its signatures are ex-
pected are dramatically larger than the typical system
sizes [16–19].

The fate of nonequilibrium systems with discrete sym-
metries is less explored. At equilibrium, the absence of
Goldstone modes dismiss them from the scope of the
Mermin-Wagner theorem and, accordingly, they can ex-
hibit order also in two dimensions. This is the case for the
arguably most paradigmatic phase transition, namely the
Ising transition. Among its many incarnations, the Ising
phase transition can be realized in bosonic gases in the
presence of an externally imprinted pair creation term:

in ultracold atoms, this can be induced by coupling to
a molecular condensate [20] (see also Ref. [21] for a wire
of fermionic atoms), by using a parametric down conver-
sion scheme in microcavities [22, 23], or by Feshbach-like
resonances in polariton-biexcitons [24, 25] or Rydberg
polaritons [26]. At equilibrium, the bosons undergo a
Bose-Einstein condensation (BEC) transition belonging
to the Ising universality class [27, 28]. In optical sys-
tems, the unavoidable presence of incoherent processes
causes a departure from equilibrium. Still, recent numer-
ical analyses showed that these driven-dissipative models
can undergo a BEC transition characterized by either the
quantum or classical Ising universality class [29–32].

In this paper, we show that the absence of thermal
equilibrium suppresses the Ising phase transition in a
two-dimensional, driven-dissipative Bose gas, in favour
of an emerging KPZ phase. Our two main results are
summarized as follows. First, we find that the long-
wavelength description of the quadratically-driven Bose
gas is given by a driven sine-Gordon equation for the
phase degree of freedom. In two spatial dimensions, this
dynamics is dominated by the KPZ scaling at long wave-
lengths, ultimately resulting in the suppression of the
BKT and Ising phases, present instead at equilibrium.
Second, we find that the presence of the quadratic drive
reduces the scale at which the KPZ physics sets in, en-
hancing its visibility in finite-size systems. This hold
promises for identifying this physics in two spatial di-
mensions, where experimental realizations remain so far
elusive [33, 34].
Microscopic model— We consider a gas of

quadratically-driven and dissipative bosons, whose
dynamics is described by the master equation

∂tρ̂ = −i[Ĥ, ρ̂] +

∫
r

∑
n

[
L̂nρL̂

†
n −

1

2
{ρ̂, L̂†nL̂n}

]
, (1)

with ρ̂ the system’s density matrix, Ĥ the Hamiltonian
and L̂n = L̂n(r) Lindblad operators. The quadratic drive
can be regarded as a process coherently creating or de-
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stroying two particles at a given position. The Hamilto-
nian is thus given by

Ĥ=

∫
r

[
∇ψ̂†∇ψ̂

2m
+ δψ̂†ψ̂ +

G

2
(ψ̂2 + ψ̂†2) +

U

2
ψ̂†2ψ̂2

]
,

(2)
with m the mass of the bosons, δ > 0 the detuning be-
tween the bosonic fundamental frequency and the drive
frequency, and U > 0 the particle interaction. The
quadratic drive comes with a strength G, and we can set
G > 0 without loss of generality, by absorbing its phase
into a redefinition of the fields. The presence of further
incoherent processes, such as single particle losses and
pump, as well as two-particle losses, is included via the

Lindblad operators L̂1l = ψ̂, L̂1p = ψ̂†, and L̂2l = ψ̂2,
respectively. In the following, we will assume the single-
particle pump to be weaker than single-particle losses.

Since we are interested in the critical properties of this
model, we neglect quantum fluctuations, as they are ir-
relevant compared to the statistical fluctuations induced
by the incoherent processes [35, 36]. This approximation

allows us to treat ψ̂ as a stochastic field rather than an
operator: its dynamics is accordingly described by the
Langevin equation

∂tψ = −
(
−K∇2 + r + u|ψ|2

)
ψ − iGψ∗ + ζ, (3)

with K, r, u complex numbers, and ζ a Gaussian, zero-
average white noise with correlations 〈ζ(r, t)ζ∗(r′, t′)〉 =
2σδ(t− t′)δ(2)(r− r′). The imaginary parts of K, r, u (in
the following denoted by a “c” subscript) correspond to
coherent couplings describing reversible dynamics, while
their real parts (in the following denoted by a “d” sub-
script) correspond to dissipative couplings representing
irreversible processes. Moreover, Eq. (3) includes terms
which, while zero at the microscopic level, are expected
to be generated by coarse-graining, e.g., Kd, describing
spatial diffusion.

For G = 0, Eq. (3) is invariant under the U(1) trans-
formation ψ → eiαψ,ψ∗ → e−iαψ∗, and it is known
as complex Ginzburg-Landau equation [37, 38], or as
driven-dissipative Gross-Pitaevski equation in the con-
text of exciton-polaritons [15]. For finite values of G,
Eq. (3) is invariant under the Z2 transformation ψ → −ψ,
ψ∗ → −ψ∗, and it is known as periodically-driven com-
plex Gross-Pitaevski equation [38].

Driven sine-Gordon equation — A simple mean-field
analysis of Eq. (3) shows that a phase transition is ex-
pected for G > Gc, predicting the spontaneous break-
ing of the Z2 symmetry and the emergence of a conden-
sate. This result is expected to be qualitatively robust
in higher spatial dimensions d > 2, while in lower dimen-
sions fluctuations can dramatically modify the mean-field
result.

In order to assess the effect of fluctuations, we proceed
in the spirit of the hydrodynamic theory for quasiconden-
sates [13, 39], and we represent the bosonic complex field
as ψ(r, t) = χ(r, t)eiθ(r,t), with χ and θ real fields associ-
ated with density and phase fluctuations. By assuming

that a condensate exists, with a density determined by
the saddle-point equations, the dynamics is dominated
by configurations of χ around that value. The density
field χ is gapped and can therefore be eliminated adia-
batically from the dynamics (see App. A). This results
in the following effective equation for the phase

η ∂tθ = γ∇2θ − 2g sin(2θ) +
λ

2
(∇θ)2 + F + ξ, (4)

with ξ a zero-average Gaussian white noise with corre-
lations 〈ξ(r, t)ξ (r′, t′)〉 = 2Dδ(2)(r − r′)δ(t − t′). The
microscopic values of the six parameters η, γ, g, λ, F,D
are given by

η = 1, γ = Kd +
uc
ud
Kc,

g =
G

2

√
1 +

u2c
u2d
, λ = 2

(
−Kc +

uc
ud
Kd

)
, (5)

F = −rc +
uc
ud
rd, D =

σ

2χ2
0

(
1 +

u2c
u2d

)
.

The Z2 symmetry of Eq. (3) is inherited by Eq. (4) as an
invariance under the transformation θ → θ +mπ, for all
odd integers m. The properties of the phase θ derived
from the solutions of Eq. (4) can be directly translated
into the correlations of the original complex fields ψ,ψ∗

via

〈ψ(r)〉 ≈ χ0e
iθ0 e−

1
2 〈θ(r)2〉, (6a)

〈ψ(r)ψ∗(0)〉 ≈ χ2
0 e
〈θ(r)θ(0)〉−〈θ(r)2〉, (6b)

with θ0 the saddle point value of θ. The previous re-
lations are obtained by neglecting the fluctuations of χ,
and retaining only the leading terms in the cumulant ex-
pansion of 〈ei(θ(r)−θ(0))〉.

A first insight into the solution of Eq. (4) can be gained
by considering two limiting cases and only then the gen-
eral scenario:
(i) KPZ limit — For g = 0, the equation possesses

a U(1) symmetry, realized by the invariance under the
transformation θ → θ + α, with α any real number, and
the drift term F can be removed by a gauge transforma-
tion θ → θ+Ft/η. Equation (4) thus reduces to the pris-
tine KPZ equation [40]. In two spatial dimensions, the
massless, KPZ-like fluctuations of the phase were shown
to erase the BKT phase usually expected in equilibrium
Bose gases, and replace it with a disordered phase [13].
(ii) Equilibrium limit — Another relevant limiting

case is given by thermal equilibrium. This is achieved
when the condition Kc/Kd = rc/rd = uc/ud is satis-
fied [13, 41], which entails the validity of the fluctuation-
dissipation theorem, or, more generally, the presence
of the associated thermal symmetry of the Keldysh ac-
tion [42]. In this case, one has λ = 0 and F = 0, and
Eq. (4) reduces to the relaxational dynamics of a sine-
Gordon field, whose renormalization was first studied
in relation to the roughening transition of crystal sur-
faces [43].
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FIG. 1. Effect of fluctuations on the mean-field phase diagram of Eqs. (3) and (4), in- and out-of-equilibrium. Center—
Mean-field phase diagram of a quadratically driven, open condensate, as a function of the imprinted pairing strength G and
the detuning δ. Left— Equilibrium phase diagram (see App. B for the derivation). Fluctuations give rise to an additional
intermediate phase featuring BKT scaling. Right— Nonequilibrium phase diagram of the full model (4). The Ising phase is
replaced by a phase which features KPZ scaling. A residual Ising phase (denoted by the striped region) may persist in the
non-perturbative regime of large G, inaccessible to our method.

This model predicts two different phases, depending on
the relevance of the sine term. In the first phase, the field
θ is massive, which is signalled by the coupling g being
relevant in the RG sense. As a consequence, the value of
〈θ(r)2〉 is infrared-convergent, while 〈θ(r)θ(0)〉 decays ex-
ponentially at long distances. Accordingly, Eqs. (6) pre-
dict the order parameter 〈ψ〉 to be finite and long-range
order is established, indicating that the system lies in the
ordered phase with a spontaneously broken Z2 symme-
try. In the second phase, g is irrelevant in the RG sense,
and θ becomes massless. Accordingly, 〈θ(r)2〉 is infinitely
large as a consequence of the infrared divergence, while
〈θ(r)θ(0)〉 − 〈θ(r)2〉 grows logarithmically, implying an
algebraic decay of 〈ψ∗(r)ψ(0)〉. This then suggest that
long-range order is no longer supported, and the con-
densed phase is replaced by a BKT phase characterized
by quasi-long-range order. This is the usual case for two-
dimensional Bose gases with U(1) symmetry (i.e., G = 0
in Eq. (2)).

Summarizing, for an equilibrium gas in two dimen-
sions, the following three phases are expected: a normal
fluid with short-range correlations (corresponding to the
mean-field solution without condensate), a BKT phase
with quasi-long-range order, and a Z2-symmetry-broken
phase with long-range order. The corresponding phase
diagram in terms of G and δ is reported in Fig. 1, (see
App. B for derivation). Analogous phases have been ob-
tained for the ANNNI model [44, 45] and the XYZ spin
chain in transverse field [46, 47], which share the same ef-
fective dimensionality and Z2 symmetry with the present
model. For these spin chains, the correct hydrodynamic
description is provided by the Luttinger liquid theory
with sine-Gordon perturbations.

(iii) Full problem — In the full Eq. (4), the KPZ fluc-
tuations wash out the sine-Gordon physics, thus destabi-

lizing the phases predicted at thermal equilibrium. The
renormalization analysis of this equation was first per-
formed in Refs. [48, 49] in order to study the effect of
nonlinearities on the roughening transition of crystal sur-
faces. There, it was shown that the KPZ physics dom-
inates over large distances. We will show that this has
dramatic implications for driven-dissipative Bose gases,
as the equilibrium ordered and BKT phases are destabi-
lized by nonequilibrium fluctuations, and replaced by a
phase with short-range order, see Fig. 1.

Absence of long-range order— The long-wavelength
physics of Eq. (4) can be conveniently studied using a
perturbative renormalization group approach. The idea
consists in treating g and λ as perturbations around
the Gaussian model, and in deriving an effective long-
wavelength theory by progressively integrating out high-
energy modes. The form of the couplings of the long-
wavelength model is then encoded in a set of flow equa-
tions. We will consider two different RG schemes, de-
rived in Refs. [49] and [50], respectively, and discussed
in App. C. The equations are expressed in terms of the
dimensionless quantities ḡ ≡ g/Λ2, and F̄ ≡ F/Λ2. Be-
fore proceeding to a more detailed analysis, we discuss
the qualitative behaviour of the solution of the RG equa-
tions.

If the system is in thermal equilibrium, then the equa-
tions reduce to the ones for the relaxational sine-Gordon
model of Ref. [43]. If ḡ = 0, instead, the equations re-
duce to the usual ones for KPZ [51]: the noise level D
and the effective temperature T flow to infinity, indicat-
ing the relevance of the KPZ scaling. Finally, if both
ḡ0 and λ0 are finite, the KPZ nonlinearity λ dominates
over the sine-Gordon one ḡ, which eventually renormal-
izes to zero. Typical flows of ḡ are shown in Fig. 2: for
λ = 0 and F̄ = 0, ḡ(`) grows indefinitely (dashed curves),
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FIG. 2. Flow of ḡ(`) for different initial values of ḡ0. Pa-
rameters for the solid curves: γ0 = 0.3, T0 = 1, λ0 =
0.4, η0 = 1, F̄0 = 0. Parameters for the dashed curves:
γ0 = 0.3, T0 = 1, λ0 = 0.0, η0 = 1, F̄0 = 0. The diamond
symbols denote the onset of a divergence in the RG flow, oc-
curring at the values of `∗ reported in Fig. 3.

signalling that the field θ is in the gapped phase. For fi-
nite initial values of λ0 or F̄0, however, the growth of ḡ
is interrupted, and it flows back to zero, indicating the
irrelevance of the sine-Gordon term. The diamond sym-
bols denote the onset of a divergence in the RG flow (see
below).

At long wavelengths, the phase correlations are then
expected to be captured by the KPZ exponents, i.e.,
〈θ(r)θ(0)〉 − 〈θ(r)2〉 ∼ −|r|2χ, with χ ≈ 0.38 [52]. More-
over, the value of 〈θ(r)2〉 diverges due to long-wavelength
fluctuations. Accordingly, by replacing these values in
Eqs. (6), we find that complex fields are short-range cor-
related via a stretched exponential, leading to the con-
clusion that no phase transition can take place. Whether
the ordered phase is completely removed, or survives for
large values of the two-particle drive (corresponding to
large values of g) cannot be determined from our analy-
sis, as the RG analysis is not valid for non-perturbative
values of g. Finally, here we neglected the presence of
topological excitations, such as vortices and anti-vortices,
which are essential to describe the transition between the
KPZ and a normal, featureless phase [53–58]. The im-
pact of the Z2 symmetry on these excitations is left for
future work.

Enhancement of KPZ physics— An essential question
concerns the visibility of the predicted 2D KPZ physics
in experimental systems or numerical simulations with
limited size. It turns out that the length scale L∗ above
which the KPZ physics becomes visible is usually very
large, and can exceed the accessible systems’ size: this is
the case for, e.g., the roughening transition in crystal sur-
faces [59], and for exciton-polaritons in two-dimensional
microcavities [13, 18, 60–62]. Here we show that the pres-
ence of a sine-Gordon nonlinearity can actually lower the

0 0.03 0.06 0.09
1

2

3

4

ḡ0

`∗
(ḡ

0
)

F̄0 = 0

F̄0 = 0.1

F̄0 = 0.5

FIG. 3. RG scale for the KPZ crossover as a function of
the microscopic sine-Gordon nonlinearity ḡ0, for different val-
ues of F̄0. The solid and dashed lines correspond to the
RG schemes derived in Ref. [49] and [50], respectively (cf.
App. C). Parameters: γ0 = 0.3, T0 = 1, λ0 = 0.4, η0 = 1.

length scale L∗, thus enhancing the visiblity of the 2D
KPZ.

The value of L∗ can be extracted from the solution of
the flow equations [63]. To illustrate this, it is conve-
nient to first focus on the pure KPZ case of Eqs. (C1),
i.e., ḡ = 0. In this case, the relevant RG equation is the
one for the effective temperature T in Eq. (C1d) with γ
and λ constant under the RG flow. T (`) features a di-
vergence for finite values of the flow parameter `, namely
`∗ = 8πγ3/(T0λ

2), with T0 the initial value of T . The
value of `∗ determines therefore the physical length scale
above which the KPZ scaling is visible via L∗ = ξ0e

`∗ ,
with ξ0 some microscopic length scale. As L∗ is expo-
nentially sensitive to the value of `∗, finding conditions
to minimize `∗ is crucial to observe the KPZ physics. For
finite values of ḡ, the value of `∗ cannot be determined
analytically, but it can be extracted from the divergence
of the numerical solutions. We computed `∗ for different
values of ḡ0 and F̄0: the results are reported in Fig. 3.
Since `∗ is not a universal quantity, we extracted its value
using two different RG schemes (cf. App. C), finding the
same qualitative behavior.

Our results indicate that the value of `∗ generically
decreases as a function of ḡ0. The decrease can be op-
timized by varying the value of F̄ , which, corresponding
to the laser detuning (cf. Eq. (6a)), is an experimentally
tunable parameter. The value of `∗ can be reduced by
up to a factor 4 upon reaching ḡ0 ∼ 0.1, indicating that
L∗ can be reduced by four orders of magnitude compared
to the case with ḡ0 = 0. This result implies a dramatic
improvement of the visibility of the KPZ scaling in two
dimensional driven-dissipative gases, where it has so far
remained elusive. As an example, in exciton-polariton
fluids in the optical parametric oscillator regime, the
KPZ length scale was predicted to be ∼ 103µm in the
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bad-cavity regime [60], which is one order of magnitude
larger than the typical size in current experiments [64–
66]. The presence of a quadratic drive would then bring
the KPZ length scale well below the system size, unveil-
ing the corresponding scaling.

Outlook— We showed that, in two-dimensional
quadratically-driven Bose gases, the absence of thermal
equilibrium leads to an emerging phase characterized by
KPZ scaling. Correspondingly, the BKT and Ising phases
expected at thermal equilibrium are suppressed. More-
over, we discovered that the presence of a quadratic drive
may shrink the length scale at which the KPZ physics oc-
curs, thus enhancing its visibility in systems with finite
size. Our results open novel perspectives for the detection
of nonequilibrium phases of matter in experimental plat-
forms, in particular exciton-polaritons in microcavities
and nonlinear photonic lattices. There, a quadratic drive
can serve as a tool to enhance the nonequilibrium nature
of driven-dissipative condensates, and may provide the
necessary assist to experimentally access the unexplored
physics of the 2D KPZ equation.
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ternational Max Planck Research School for Quantum
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Appendix A: Derivation of driven sine-Gordon
equation

We provide here a more detailed discussion of the map-
ping used to derive Eq. (4). Starting from Eq. (3), we
insert the phase amplitude representation for the field
ψ(r, t) = χ(r, t)eiθ(r,t), and separate real and imaginary
parts, obtaining the two equations:

∂tθ = −rc +Kc

[∇2χ

χ
− (∇θ)2

]
+Kd

[
2
∇χ
χ
∇θ +∇2θ

]
−G sin(2θ) + Im

[
ζe−iθ

χ

]
, (A1a)

∂tχ = −rcχKd

[
∇2χ− χ(∇θ)2

]
−Kc

[
2∇χ∇θ + χ∇2θ

]
− udχ3 −Gχ sin(2θ) + Re

[
ζe−iθ

]
. (A1b)

By linearizing the equation for χ around its saddle point
value χ0, the gapped nature of the fluctuations becomes
evident. Assuming that these fluctuations are small com-
pared to χ0, we neglect spatial and time derivatives of χ
from the previous equations, and we can adiabatically
eliminate χ from the remaining equations. By further
performing the shift θ → θ + θ0, with tan(2θ0) = ud/uc,
we obtain the effective equation for θ given in Eq. (4).

Appendix B: Derivation of equilibrium phase
diagram

In this appendix, we derive the equilibrium phase dia-
gram in Fig. 1 in the main text. To this end, we consider
the purely relaxational dynamics given by

∂tψ = − δH
δψ∗

+ ζ, (B1)

with H the Hamiltonian given in Eq (2). Then, we per-
form a mean field analysis by taking the expectation
value of the previous equation, and using the space- and
time-independent Ansatz 〈ψ(x, t)〉 = ψ0 = χ0e

iθ0 . The
resulting equation predicts, for δ > 0, two different val-
ues for the amplitude χ0, namely an ordered phase with a
finite expectation value of ψ for G ≥ δ, and a disordered
phase with a vanishing field expectation value for G < δ.

Next, we investigate how fluctuations affect the or-
dered phase predicted by the mean field. As the ampli-
tude field is gapped, the relevant low-energy excitations
are the fluctuations of the phase field, whose dynamics is
described by

η ∂tθ = γ∇2θ − 2g sin(2θ) + ξ, (B2)

where we identify γ = 1/2m and 2g = G. The BKT
RG flow of these two parameters shows two basins of
attraction, whose separatrix can be approximated by a
line g = β(γ − γc), which has a zero at γc = D/2π with
D = σ/2χ2

0, and a slope of β ≈ −1.7. The region where
g is irrelevant, and therefore the phase with long range
order is replaced by a BKT phase (cf. discussion in the
main text) is described by

G

2U
< β

(
σ

4π

1

G− δ −
1

2mU

)
. (B3)

In Fig. 1, we show the phase diagram for the values σ = 4
and m = U = 1.

Appendix C: RG equations

We discuss here the RG equations used, corresponding
to the schemes used in Refs. [49] and [50], respectively.
Both schemes are based on partitioning the phase fluctu-
ations θ and the noise ξ (cf. Eq. (4)) into fast and slow
modes, the first corresponding to modes with momenta
q lying in the shell Λ(1 − d`)|q| ≤ Λ, and the seconds
to modes |q| < Λ(1− d`). Here Λ is the ultraviolet cut-
off of the model, while d` corresponds to an infinitesimal
dimensionless number controlling the width of the mo-
mentum shell. The fast modes are then integrated out,
generating an effective action for the slow modes, which
is computed perturbatively in g and λ. Finally, the mo-
menta, frequencies, and fields are rescaled in order to
restore the original cut off Λ: the resulting action pro-
vides the flow of the coupling constants upon taking the
limit d`→ 0.
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This program can be carried out in different ways. In
Ref. [49], the perturbative corrections are evaluated at
level of the Langevin function (4), using the Nozieres-
Gallet scheme [43]. In Ref. [50], instead, Eq. (4) is
represented as Martin-Siggia-Rose-Janssen-De Dominicis
functional [51], and then the perturbative corrections are
computed in a fashion similar to the usual sine-Gordon
renormalization (see, e.g., Ref.[67]). The two schemes
lead expectedly to two different schemes of RG equations,
which lead to quantitatively different RG flows. However,
the fixed-points structure is the same, as a consequence of
universality. The equations can be brought in the general
form:

dḡ

d`
=

(
2− T

πγ

)
ḡ, (C1a)

dγ

d`
=

2T

πγ2
A(γ)(n, κ)ḡ2, (C1b)

dη

d`
=

8Tη

πγ3
A(η)(n, κ)ḡ2, (C1c)

dT

d`
=
T 2λ2

8πγ3
+

8T 2

πγ3
A(T )(n, κ)ḡ2, (C1d)

dλ

d`
=

8T

πγ2
A(λ)(n, κ)ḡ2, (C1e)

dF̄

d`
= 2F̄ +

Tλ

4πγ
− 4T

πγ2
A(F )(n, κ)ḡ2, (C1f)

with T ≡ D/η the effective temperature, ḡ ≡ g/Λ2,
F̄ ≡ F/Λ2, κ ≡ 2F̄ /γ, and n ≡ T/πγ. The functions
A(n, κ) take different values depending on the renormal-
ization scheme. The scheme followed in Ref. [50] leads to

functions independent of n, which read:

A(η)(κ) = 2
4− κ2

(4 + κ2)2
, (C2a)

A(γ)(κ) = 2
32− 12κ2 − κ4

(4 + κ2)3
, (C2b)

A(T )(κ) =
4κ2

(4 + κ2)2
, (C2c)

A(λ)(κ) = 8
κ3 + 20κ

(4 + κ2)3
, (C2d)

A(F )(κ) =
2κ

4 + κ2
. (C2e)

The functions obtained in Ref. [49] read, instead:

A(η)(n, κ) =

∫ ∞
0

dxdρ ρ3g(x, ρ;n) cos(κxρ2), (C3a)

A(γ)(n, κ) =

∫ ∞
0

dxdρ
ρ3

x
g(x, ρ;n) cos(κxρ2), (C3b)

A(λ)(n, κ) =

∫ ∞
0

dxdρ
ρ3

x
g(x, ρ;n) sin(κxρ2), (C3c)

A(F )(n, κ) =

∫ ∞
0

dxdρ
ρ

x
g(x, ρ;n) sin(κxρ2), (C3d)

with A(T )(n, κ) = 0 and

g(x, ρ;n) ≡ J0(ρ)e−
1
4x−xρ2−2nϕ(ρ,x), (C4)

with

ϕ(ρ, x) =

∫ 1

0

dk

k

(
1− J0(kρ)e−k

2xρ2
)
. (C5)

The form of the functions A is shown in Fig. 4 as a
function of κ and for different values of n (cf. also
Refs. [43, 49]). The numerical evaluation of the functions
A(η), A(γ), A(λ) and A(F ) is a computationally demand-
ing task, given the double integration in ρ and x, and
the integration in the function ϕ(ρ, x). This task is sim-
plified for n � 1 or κ � 1: in those cases only values
around ρ = 0 give significant contribution. Accordingly,
by approximating g(x, ρ;n) ≈ e−

1
4x−n

ρ
2 (1+4x), the inte-

gral over ρ can be computed exactly in the saddle-point
approximation. The functions can then be approximated
as:

A(η)(n, κ) ≈ 2

∫ ∞
0

dx e−
1
x
n2(1 + x)2 − (κx)2

[n2(1 + x)2 + (κx)2]2
, (C6a)

A(γ)(n, κ) ≈
∫ ∞
0

dx e−
1
x

8

x

n2(1 + x)2 − (4κx)2

[n2(1 + x)2 + (κx)2]2
, (C6b)

A(λ)(n, κ) ≈
∫ ∞
0

dx e−
1
x

16κn(1 + x)

[n2(1 + x)2 + (κx)2]2
, (C6c)

A(F )(n, κ) ≈
∫ ∞
0

dx e−
1
x

2κ

n2(1 + x)2 + (κx)2
, (C6d)

which can be easily numerically evaluated.
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[8] B. Buča, J. Tindall, and D. Jaksch, Nat. Comm. 10,
1730 (2019).

[9] A. Lazarides, S. Roy, F. Piazza, and R. Moessner, Phys.
Rev. Research 2, 022002 (2020).

[10] J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995).
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L. Worschech, A. Forchel, and Y. Yamamoto, Proc. Natl.
Acad. Sci. 109, 6467 (2012).

[17] W. H. Nitsche, N. Y. Kim, G. Roumpos, C. Schneider,
M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto,
Phys. Rev. B 90, 205430 (2014).

[18] G. Dagvadorj, J. M. Fellows, S. Matyjaśkiewicz, F. M.
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