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We study non-Hermitian Aubry-André-Harper models with p-wave pairing, where the non-
Hermiticity is introduced by on-site complex quasiperiodic potentials. By analysing the PT sym-
metry breaking, winding numbers of energy spectra, localization and fractal dimensions of states,
and fate of Majorana fermions, a complete phase diagram on Anderson localization and topological
phase transitions is obtained. In particular, the non-Hermitian topological nature of Anderson lo-
calization phase transitions from extended to critical and then to localized phases is identified, using
both analytical and numerical methods. In the critical phase the complex spectrum is topological
nontrivial with a fractional winding number. In the localized phase the analytical localization length
of states can apply to the Hermitian case, which is absent so far. Both the non-Hermiticity and
disorder are detrimental to Majorana fermions.

I. INTRODUCTION

Anderson localization (AL) has been one of the most
important topics in condensed matter physics [1, 2].
In one dimension, an infinitesimal uncorrelated disor-
der localizes all single-particle states, whereas AL phase
transitions can occur at finite strengths in quasiperi-
odic systems, such as the Aubry-André-Harper (AAH)
model [3]. Recently, given the ability to engineer non-
Hermitian Hamiltonians [4–8], the interplay between
non-Hermiticity and disorder has attracted a great deal
of attention, as the non-Hermiticity brings new perspec-
tives on the AL [9–14]. In the presence of disorders,
non-Hermitian systems exhibit exotic localization phe-
nomena, such as the non-Hermitian skin effect [15–19]
induced finite-strength localization-delocalization tran-
sition [20–22] and purely imaginary disorder induced
AL [23–25]. Besides, non-Hermitian quasiperiodic sys-
tems, such as various extensions of the AAH model,
have also been intensively studied very recently. The
interplay between skin effect and quasiperiodicity leads
to asymmetrical AL, and boundary-dependent topolo-
gies and self-dualities [26–28]. Complex quasiperiodic
potentials result in PT symmetry breaking, topologi-
cal phase transitions, mobility edges, modified ALs and
topological Anderson insulators [29–43]. In particular, S.
Longhi showed recently that AL phase transitions in non-
Hermitian AAH models are of topological nature and are
characterized by winding numbers of energy spectra [44].
Is there any other type of system where the AL phase
transition is of the non-Hermitian topological nature?

Kitaev chain, a prototype model describing one dimen-
sional (1D) topological superconductors, has attracted a
lot of attention, since unpaired Majorana fermions (MFs)
are predicted when the system is in the topological phase
[45–47]. Due to potential applications in error-free topo-
logical quantum computation, many experiments tried to

realize the 1D topological superconductor and search for
the trace of MFs [48–52]. Theoretically, various aspects
of the Kitaev chain and its extensions have been explored
[53–59]. As to the topological quantum computation, the
robustness of MFs against perturbations like disorders
is an extremely important issue [60–62]. Previous stud-
ies showed that Hermitian quasiperiodic potentials drive
the system from the metal phase into a critical phase,
and later into the Anderson insulator phase, accompa-
nied by a topological phase transition characterized by
the disappearance of unpaired MFs [63, 64]. Subjected
to non-Hermitian perturbations, extended Kitaev chains
were also discussed recently, with a focus on the PT sym-
metry breaking and fate of MFs [65–70]. The AL phase
transition in non-Hermitian Kitaev chains, especially its
non-Hermitian topological nature and effects on MFs, are
not clear yet.

In this paper, we study non-Hermitian AAH models
with p-wave pairing, where the non-Hermiticity is intro-
duced by on-site complex quasiperiodic potentials. The
aims are to find out how the AL and topological phase
transitions are modified by the non-Hermiticity, to iden-
tify the non-Hermitian topological nature of these phase
transitions, and to determine the fate of MFs against the
non-Hermiticity and disorder. To these ends, we study
the PT symmetry breaking and winding numbers of en-
ergy spectra to identify non-Hermitian topological phase
transitions. The AL phase transition from extended to
critical and to localized phases will be clarified by the
inverse of participation ratio, using of the fractal theory,
and analytical calculation of Lyapunov exponent (inverse
of the localization length). Furthermore, we determine
the fate of MFs by the presence of Majorana zero-energy
mode (MZM), analytical localization length of MFs, and
Z2 topological invariant. Based on these analyses, a com-
plete phase diagram will be presented.

The rest of paper is organized as follows. In Sect. II
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we present the non-Hermitian AAH model with p-wave
pairing, its symmetries, the method to solve the model,
and the complete phase diagram on AL and topological
phase transitions. The phase diagram will be enriched
by studies presented in the next sections. Sect. III is de-
voted to studying the PT symmetry breaking, and non-
Hermitian topologies of the energy spectrum which are
characterized by winding numbers. Sect. IV discusses
the AL phase transition, Lyapunov exponents, and the
critical phase. In Sect. V we will discuss the fate of MFs
and the Z2 topological phase transition. A summary is
provided in Sect. VI.

II. MODEL, SYMMETRIES, AND PHASE
DIAGRAM

We consider non-Hermitian AAH models with p-wave
pairing, which are described by the following Hamilto-
nian

H =
∑

j

(−tc†jcj+1 +∆cjcj+1 + h.c.) +
∑

j

Vjc
†
jcj , (1)

where c†j is the creation operator of a spinless fermion at
lattice site j; t is the hopping amplitude and set as the
energy unit (t = 1); ∆ is the p-wave pairing amplitude
which can be made positive real, and without loss of gen-
erality we will restrict ourselves with 0 < ∆ < 1. The
on-site complex quasiperiodic potentials

Vj = 2V cos(2πβj + ih), (2)

with V the strength. β is an irrational number charac-
terizing the quasiperiodicity. It usually takes the value
of the inverse of golden ratio [β = (

√
5 − 1)/2], which

in practice is approximated by rational numbers β =
Fn/Fn+1 with Fn the nth Fibonacci number. Corre-
spondingly, the number of lattice sites L = Fn+1, and
in numerical calculations we will take L = 987 with
neglectable finite-size effects. h characterizes the non-
Hermiticity of the system, and we will take it positive
real. The model also can be thought of as Kitaev chains
subjecting to complex quasiperiodic potentials. When
h = 0, the Hermitian disordered Kitaev chain is obtained
[63, 64], in which topological and AL phase transitions
are well studied. When ∆ = 0, the model reduces to
the non-Hermitian AAH model [26, 44]. It undergoes
a non-Hermitian topological phase transition, where the
spectrum changes from real to complex with loops, and
accompanied by the AL phase transition.
The model has PT symmetry (PT )H(PT )−1 = H ,

but not P and T symmetries separately, where par-
ity (spatial reflection) P and time reversal T opera-
tors act as PcjP−1 = cL+1−j , and T iT −1 = −i. The
PT symmetry guarantees that the spectrum is made
of real or complex conjugate pairs (E,E∗) of energies.

In addition, the model also has particle-hole symmetry
(PC)H(PC)−1 = −H , where the charge conjugation op-

erator C is defined as CcjC−1 = ic†j , and CiC−1 = −i. The
particle-hole symmetry leads to the presence of (E,−E∗)
pairs in spectrum. As a combination of above two sym-
metries, the model has chiral symmetry SHS−1 = −H ,
with operator S = T C. The chiral symmetry results in
the quartet structure (E,E∗,−E,−E∗) in spectrum. Ac-
cording to these symmetries, the model falls into the class
BDI in periodic table despite the absence of Hermiticity,
and MZMs can exist [71, 72].
The Hamiltonian (1) can be diagonalized by the

Bogoliubov-de Gennes (BdG) transformation

η†n =
L
∑

j=1

[φn(j)γ
A
j + iψn(j)γ

B
j ], (3)

with n = 1, ..., L the state index. γAj ≡ c†j + cj and

γBj ≡ i(cj − c†j) are operators of two MFs belonging to

one physical site. They satisfy relations (γκj )
† = γκj and

{γκj , γλk } = 2δjkδκλ (κ, λ = A,B) [47]. Under the BdG
transformation, the eigenvalue problem turns into

(M −N)(M +N)φn = E2
nφn

(M +N)(M −N)ψn = E2
nψn, (4)

with vectors φn = [φn(1), φn(2), ..., φn(L)]
T and ψn =

[ψn(1), ψn(2), ..., ψn(L)]
T. The symmetric and antisym-

metric tridiagonal matrices M and N are

M =













V1 −t −t
−t V2

. . .

. . .
. . . −t

−t −t VL













, N =













0 −∆ ∆

∆ 0
.. .

. . .
. . . −∆

−∆ ∆ 0













.

(5)
Solving above equations, we obtain the spectrum and all
single-particle states (φn, ψn).
Properties of the model are concluded into the phase

diagram shown in Fig.1. It has two critical points

Vc1(2) = (t∓∆)e−h, (6)

corresponding to multiple phase transitions. When 0 <
V < Vc1, the spectrum of system is real and all bulk
single-particle states are extended. In this extended
phase, the system is also topological and has MZMs un-
der the open boundary condition. Two unpaired MFs
are exponentially localized at ends of chain, and the Lya-
punov exponent (LE) of them is independent of the dis-
order strength V . In the intermediate region (Vc1 < V <
Vc2), the system is in the critical phase, where all bulk
states are critical with fractal dimensions. The PT sym-
metry is broken, and the spectrum is complex with loops
in the energy plane. The winding number of spectrum is
fractional. Unpaired MFs still exist but with a disorder-
dependent LE. The transition from real to complex with
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FIG. 1. Phase diagram of the non-Hermitian AAH model
with p-wave pairing. The non-Hermitian topological phase
transition I (II) describes the transition between spectra with
and without the loop structure (encircling the origin) in the
complex energy plane.

loops in spectra is named the non-Hermitian topological
phase transition I in Fig.1. When V > Vc2, all states are
exponentially localized. In the localized phase, the PT
symmetry is still broken. But there is a loop in spec-
trum encircling the origin of the complex energy plane,
which is absent when V < Vc2. The changes of the
loop structure and winding numbers of energy spectra
at Vc2 define the non-Hermitian topological phase tran-
sition II in Fig.1. The loop encircling the origin causes
a band inversion and a topological phase transition hap-
pens. The system turns into the topological trivial phase
without unpaired MFs when V > Vc2. From another
perspective, the degree of non-Hermiticity also can drive
the above mentioned phase transitions, given a finite V .
Both the non-Hermiticity and disorder are detrimental to
MFs. Detailed discussions on AL and topological phase
transitions are presented in the following sections.

III. PT SYMMETRY BREAKING AND
WINDING NUMBERS OF SPECTRUM

The complex quasiperiodic potential is an overall bal-
anced gain and loss, and induces the PT symmetry
breaking. In the inset of Fig.2 (a) we show maximal val-
ues of imaginary parts of all eigenenergies E2 vs. V . As
V increases, systems undergo a PT symmetry breaking
phase transition. After rescaling, in Fig.2 (a) we present
them vs. ζ1 ≡ V eh/(t−∆) in the semi-log style. It clearly
shows that phase transition points collapse at ζ1 = 1, cor-
responding to V = Vc1. When V < Vc1, the system is in
the PT symmetry unbroken phase, whereas in the PT
symmetry broken phase when V > Vc1.

In order to explore more of the spectrum, in Fig.2 (b-
d) we present some exemplary spectra in the complex
energy plane. Here and after we treat Eqs.(4) as the
single-particle eigenvalue problem and E2 as the spec-
trum. When V < Vc1 the spectrum is real, and contains
bands with each having sub-bands due to the quasiperi-
odicity of complex potentials. Whereas when V > Vc1
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FIG. 2. PT symmetry breaking. (a) Behaviour of the largest
values of |Im(E2)| vs. ζ1 ≡ V eh/(t−∆). Inset in (a): Corre-
sponding ones vs. V . (b-d) Spectra E2 in the complex energy
plane for systems in PT symmetry (un)broken or different
topological phases. (e,f) Enlargements of (c,d) around the
origin, respectively. ∆ = h = 0.1 in calculations of (b-f), and
corresponding critical points Vc1 ≃ 0.8144 and Vc2 ≃ 0.9953.

the PT symmetry is broken and the spectrum is complex
with loops. The PT symmetry is almost completely bro-
ken, and only a few eigenenergies have very small imagi-
nary parts due to the presence of loops crossing the real
axis. Further careful analysis shows that when V > Vc2
there exists a loop encircling the origin of the complex
energy plane, which is absent when V < Vc2 [see Fig.2
(e,f)]. For the orginal Hamiltonian H , whose eigenener-
gies are (E,−E) paired because of the chiral symmetry,
this means that as V increases and crosses the critical
point Vc2 the superconducting gap closes and reopens
with a band inversion, which usually induces a topologi-
cal phase transition (see section V).
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FIG. 3. Topology of spectrum. (a) Winding numbers ν1 vs.
V , numerically computed using Eq.(7). Insets (a1-2) in (a):
Corresponding ν1 vs. ζ1 and ζ2 ≡ V eh/(t +∆), respectively.
(b) The phase argument of det(H2−EB) vs. δ for systems in
phases with different ν1. ∆ = 0.5 and h = 0.2 in calculation
of (b), and corresponding critical points Vc1 ≃ 0.4094 and
Vc2 ≃ 1.2281. (c) Winding numbers ν2 vs. ζ2. The legend of
(c) is the same as for (a).

Due to the complex nature, the spectrum of non-
Hermitian system can have non-trivial topological struc-
tures (loops) [15–19, 26, 44]. To study the topology
of spectrum, we introduce an additional dimension by
adding a phase δ in the complex quasiperiodic potential.
Given Vj = 2V cos(2πβj+ ih+ δ/L), winding numbers of
energy spectra are defined as [26, 44]

ν = lim
L→∞

1

4πi

∫ 2π

0

dδ
1

∂δ
ln[det(H2 − EB)], (7)

which refer to how the complex spectral trajectory E2

encircles the base energyEB in the complex energy plane,
with respect to δ from 0 to 2π. Based on Eqs.(4), in the
definition H2 is used instead of H . And an additional
1/2 is added in the prefactor.
Different choices of the base energy EB give wind-

ing numbers characterizing different loop structures. We
concentrate on two cases: (1) The most non-trivial wind-
ing number for any EB, i.e. ν1 = sgn(ν)·max(|ν|), ∀EB ∈
C, which characterizes the existence of loops in the com-
plex energy plane. (2) The winding number ν2 = ν|EB=0,
characterizing loops which encircle the origin. In Fig.3

(a) and insets (a1) and (a2) we show ν1 vs. V , ζ1, and
ζ2 ≡ V eh/(t+∆) respectively, numerically computed us-
ing Eq.(7). The winding number

ν1 =







0, 0 < V < Vc1,
−1/2, Vc1 < V < Vc2,
−1, V > Vc2,

(8)

with two critical points Vc1(2), or ζ1(2) = 1. When
V < Vc1, the system is in the PT symmetry unbroken
phase and the spectrum is real with a trivial winding
number. In the middle (Vc1 < V < Vc2), the complex
spectrum has loops with a fractional winding number.
Fractional winding numbers were reported before in other
non-Hermitian systems [73, 74]. As δ increases from 0 to
2π, the spectral trajectory E2 encircles the base energy
once, which is confirmed by the relation between phase
argument of det(H2−EB) and δ [shown in Fig.3 (b)]. Ef-
fectively, the spectrum of H winds half of the circle and
has a fractional winding number −1/2. When V > Vc2,
the spectral trajectory E2 encircles twice [see Fig.3 (b)],
and the winding number changes.
On the other hand, we show numerical winding num-

bers ν2 vs. ζ2 in Fig.3 (c). The winding number

ν2 = −θ(ζ2 − 1) = −θ(V − Vc2), (9)

with θ(x) the step function. It precisely characterizes the
presence of loops encircling the origin. When V > Vc2,
the spectral trajectory E2 encircles twice around the ori-
gin with a non-trivial winding number −1. An analytical
proof of Eq.(9) is given in Appendix A, where the deter-
minant det(H2) is obtained from that of the Hermitian
AAH model, using an asymmetrical similarity transfor-
mation and the Fourier transformation.

IV. ANDERSON LOCALIZATION AND
CRITICAL PHASE

With an irrational β, the quasiperiodic potential acts
as a disorder and induces the localization of states. We
treat φ and ψ as the single-particle states, and they
have the same localization properties. The inverse of the
participation ratio (IPR) is the most appropriate quan-
tity to characterize the localization of a single-particle
state. We focus on the IPR of φ, which is defined as
Pn =

∑L
j=1 |φn(j)|4 for a normalized φn. For an ex-

tended state the IPR is of the order 1/L, whereas it
approaches to 1 for a localized state. In the middle,
Pn ∝ L−α with 0 < α < 1, for a critical state which
has multi-fractal properties. In order to characterize the
localization of the whole system the mean inverse of the
participation ratio (MIPR) P =

∑

n Pn/L is defined. In
Fig.4 (a) and insets we present semi-log plots of MIPRs
vs. V , ζ1, and ζ2 respectively, for systems under the pe-
riodic boundary condition. There are sudden increases
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FIG. 4. Anderson localization and critical phase. We present
mean inverse of the participation ratios (MIPRs), mean multi-
fractal dimensions MD(2), and mean Lyapunov exponents γ
vs. V in (a), (b), and (c), and corresponding ones vs. ζ1(2) in
insets, respectively.

at ζ1 = 1 and ζ2 = 1, indicating dramatic changes in the
localization of states. The AL phase transition points
are the same as the topological ones. The system is in
the extended phase when V < Vc1, and (M)IPRs≃ 1/L,
whereas when V > Vc2 it is in the localized phase with
(M)IPRs≃ 1. No mobility edge is encountered. In the
intermediate region (Vc1 < V < Vc2), MIPRs are signifi-
cantly larger than 1/L, but still one order smaller than 1,

which indicates all single-particle states are critical. To
support this statement, we further use the box-counting
method to study multi-fractal properties of states.
Dividing a single-particle state into L/r segments with

each length r, one can define a quantity [75]

χn(q) =

L/r
∑

m=1





mr
∑

j=(m−1)r+1

|φn(j)|2




q

. (10)

Multi-fractal property of the state is characterized by a
power-law relation χ(q) ∼ (r/L)τ(q), where the expo-
nent τ(q) determines the multi-fractal dimension D(q) =
τ(q)/(q − 1) [76]. We set q = 2 as usual. The power-law
relation and a multi-fractal dimension 0 < D(2) < 1 are
characteristic features of a critical state, while D(2) = 1
for an extended state and D(2) = 0 for a localized state
in the thermodynamics limit. Similarly, we define the
mean multi-fractal dimension MD(2) for the system. In
Fig.4 (b) and insets we show MD(2) vs. V , ζ1, and ζ2,
respectively. The mean multi-fractal dimensions experi-
ence sudden changes at critical points Vc1(2). Considering
the finite-size effect, MD(2) ≃ 1 and states are extended
when V < Vc1, whereas when V > Vc2 states are local-
ized with MD(2) ≃ 0. In the middle (Vc1 < V < Vc2),
states are critical.
Now we study the exponential decay of states in the

localized phase. We adopt exponential wave functions
φn(j) = exp(−γn|j − j0|) with j0 the localization cen-
ter and γn the LE or inverse of localization length. Ex-
tracted by fitting numerical single-particle states with
above wave functions, the mean LEs γ =

∑

n γn/L are
shown in Fig.4 (c). After rescaling, all mean LEs col-
lapse into a single curve with the AL phase transition
point ζ2 = 1 [see inset in Fig.4 (c)]. In Fig.4 (c) and
inset we also show the LE for Hermitian AAH model.
Given the LE γ = ln(V/t) for AAH model, we conclude
that in the localized phase the LE

γ = ln(ζ2) = ln
V eh

t+∆
, (11)

for the non-Hermitian AAH model (1). The LEs are
energy-independent. In Appendix B, we analytically
prove Eq.(11) by extending to the non-Hermitian realm
Thouless’s result relating LE to the density of state [77].
The LE (11) is also applicable to the Hermitian case
(h = 0), no knowledge about the localization detail has
been obtained before [64].

V. FATE OF MAJORANA FERMIONS AND Z2

TOPOLOGY

As mentioned in Sect. II, the model (1) is in the BDI
class and can have MZMs. In this section we exam-
ine the fate of MFs. In the top panel of Fig.5 (a) we
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tions of φ and ψ for the lowest excitation mode. ∆ = 0.5 and
h = 0.2 in calculation of (a), and corresponding critical point
Vc2 ≃ 1.2281. (b) Semi-log plot of the absolute bulk energy
gap vs. ζ2.

show typical absolute spectra |E2| vs. V for systems un-
der the open boundary condition (OBC). As V increases
the absolute bulk energy gap decreases, closes, and re-
opens again. Compared with spectra under the periodic
boundary condition, an obvious feature is the existence
of zero-energy mode in the gapped region before gap-
closing point. This zero-energy mode corresponds to two
unpaired MFs, which are exponentially localized at two
ends of chain respectively [see bottom panels of Fig.5 (a)].
The presence of MZM defines the non-trivial topological
nature of the system. In the gap reopened region, no
MZM exists and the system is topological trivial. Two
MFs for the lowest excitation mode are exponentially lo-
calized in the bulk and overlapped nicely. Consequently,
corresponding quasiparticle is a localized fermion which
can not split into two unpaired MFs. In order to deter-
mine the topological phase transition point, in Fig.5 (b)

we show the absolute bulk gap vs. ζ2 for different sys-
tems. All gap-closing points collapse at ζ2 = 1, indicating
the topological phase transition point Vc2.
In addition to the presence of MZMs and gap-closing

points, the topological nature is more precisely char-
acterized by the Z2 topological invariant I = (−1)η,
with η the number of MZMs. Next we use the trans-
fer matrix approach to identify the Z2 topological invari-
ant, LE of MFs, and the topological phase transition.
If the system under OBC hosts a MZM, from Eqs.(4)
states φ and ψ for the zero-energy mode should satisfy
(M + N)φ = 0, (M − N)ψ = 0. In the transfer matrix
form the equation of φ can be rewritten as

(

φ(j + 1)
φ(j)

)

= Tj

(

φ(j)
φ(j − 1)

)

, (12)

with

Tj =

(

2V cos(2πβj+ih)
∆+t

∆−t
∆+t

1 0

)

. (13)

Then the transfer matrix of the whole system T =
ΠL

j=1Tj , and we denote two eigenvalues of it by λ1 and
λ2. Given 0 < ∆ < 1, we have |det(T )| < 1 and
|λ1λ2| < 1. If both |λ1| and |λ2| are less than 1, there is a
MZM with normalizable wave functions and the system
is in the topological phase. Otherwise, states are unnor-
malizable and the system is topological trivial without
MZMs. Supposing |λ1| < |λ2|, the Z2 topological invari-
ant I = −θ(1 − |λ2|) and the LE of MF wave functions

is defined as γe = limL→∞
−ln|λ2|

L .
In order to determine the topological invariant and LE

of MFs, we perform a transformation [78]

T (t, V,∆) =

(

√

t−∆

t+∆

)L

ST (t,
V√

t2 −∆2
, 0)S−1,

(14)
with S = diag(ξ1/4, ξ−1/4) and ξ = t−∆

t+∆ . The matrix
T on right side is the transfer matrix of the model with
∆ = 0 and a renormalized disorder strength. According
to Ref.[26], the LE for transfer matrix on the right side

γ1 = ln
V eh√
t2 −∆2

, (15)

when V eh/
√
t2 −∆2 > 1, otherwise, γ1 = 0. Then fol-

lowing Eq.(14), the LE of MFs

γe =







γ0, V eh <
√
t2 −∆2,

γ0 − γ1,
√
t2 −∆2 < V eh < t+∆,

< 0(unphyical), V eh > t+∆,

(16)

where

γ0 =
1

2
ln
t+∆

t−∆
, (17)
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FIG. 6. Localization of Majorana fermions. Lyapunov expo-
nents γe of the state φ vs. V eh for the lowest excitation mode.
Inset: Corresponding ones vs. V . ∆ = 0.2 in the numerical
calculation.

is the LE of MFs for the clean Kitaev chain [78]. In Fig.6
we show numerical LEs for the lowest excitation mode,
which agree very well with Eq.(16) when the system is
in the topological phase. From the LE of MFs we obtain
the topological invariant through λ2

I = −θ(1− V eh

t+∆
), (18)

which also indicates the topological phase transition
point ζ2 = 1 or Vc2. From above analyses, we also learn
that the non-Hermiticity is detrimental to the presence
of MFs. The larger h is, a weaker disorder is needed
to drive the system into the topological trivial Anderson
localized phase.

VI. SUMMARY

In summary, we have studied AL and topological phase
transitions in the 1D non-Hermitian AAH model with p-
wave pairing, where the non-Hermiticity is introduced by
on-site complex quasiperiodic potentials. By analyzing
the PT symmetry breaking, winding numbers of energy
spectra, IPRs, fractal dimensions of states, LEs of bulk
and edge states, and the existence of MZMs, we deter-
mined the complete phase diagram which was presented
in Fig.1. Two critical points are identified, corresponding
to multiple phase transitions. As the disorder strength
increases and passes through two critical points, the spec-
trum changes from real to complex with loops in the en-
ergy plane, and then to with loops encircling the origin.
Winding numbers of energy spectra change correspond-
ingly. Extended bulk single-particle states turn into crit-
ical states with fractal dimensions, and then into local-
ized states. We analytically derive the LE of bulk states,

which can apply to the Hermitian case where no analyt-
ical result has been obtained before. The exponentially
localized MFs become more and more extended, and then
disappear into the bulk. From another point of view,
the non-Hermiticity is also detrimental to the presence of
MFs. Increasing the degree of non-Hermiticity also can
drive the system into the critical phase, and then into
the topological trivial Anderson localized phase, when
the disorder strength is finite. The model can map to a
system of two coupled non-Hermitian AAH chains [63],
which can be experimentally realized in electric circuits
[26, 44, 79, 80].
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APPENDIX A: CALCULATION OF WINDING
NUMBER EQ.(9)

When EB = 0, the definition of winding number ν2 is

ν2 = lim
L→∞

1

4πi

∫ 2π

0

dδ
1

∂δ
ln[det(H2)]. (19)

Given Eqs.(4), it can be rewritten as

ν2 = lim
L→∞

1

2πi

∫ 2π

0

dδ
1

∂δ
ln[det(M +N)]. (20)

Above we have used the fact (M − N)T = (M + N).
When 0 < ∆/t < 1, we can define parameters

t1e
η ≡ t+∆, t1e

−η ≡ t−∆. (21)

Then the tridiagonal matrix M +N turns into

M +N =













V1 −t1eη −t1e−η

−t1e−η V2
. . .

. . .
. . . −t1eη

−t1eη −t1e−η VL













. (22)

Now we perform a similarity transformation

S(M +N)S−1 =













V1 −t1 −t1e−Lη

−t1 V2
. . .

. . .
. . . −t1

−t1eLη −t1 VL













,

(23)
with diagonal matrix S = diag(eη, e2η, ..., eLη). Then in
the large-L limit,

det(M +N) = −tL1 eLη + det(H1), (24)
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where

H1 =













V1 −t1
−t1 V2

. . .

. . .
. . . −t1
−t1 VL













. (25)

Introducing a Fourier transformation

Rn,j =
1√
L
e2πiβnje−nh+inδ/L, (26)

the matrix H1 is transformed into

RH1R
−1 =













W1 V V eLh−iδ

V W2
. . .

. . .
. . . V

V e−Lh+iδ V WL













, (27)

with Wn = −2t1cos(2πβn). Given the positive h, we
obtain

det(M +N) = −tL1 eLη + (−1)L+1V LeLh−iδ + det(H2),
(28)

with

H2 =













W1 V

V W2
. . .

. . .
. . . V
V WL













. (29)

The matrix H2 describes the single-particle physics of
the classic Hermitian AAH model under OBC, but with
a parameter interchange t1 ↔ V . Shown in Ref.[80], in
the large-L limit

lim
L→∞

|detH2| = [max(t1, V )]L. (30)

Finally, we have

det(M +N) =−tL1 eLη + (−1)L+1V LeLh−iδ

+ǫ[max(t1, V )]L,

=−tL1 eLη + (−1)L+1V LeLh−iδ, (31)

with ǫ a possible L-dependent sign.
Since the winding number Eq.(19) reveals how det(H2)

winds around the origin in complex energy plane with
respect to δ from 0 to 2π, we rewrite it with the aid of
sign operator [80]

ν2 =
1

2

∑

i

sgn[x(δi)] · sgn[
dy(δi)

dδ
], (32)

where x = Re[det(M + N)] is the real part and y =
Im[det(M + N)] is the imaginary part. δi is the i-th
solution of y(δ) = 0. From Eq.(31), we can obtain

x = −(t1e
η)L + (−1)L+12V Lcosh(hL)cos(δ)

y = (−1)L2V Lsinh(hL)sin(δ). (33)

In order to separate real and imaginary parts nicely, we
added an infinitesimal term in det(M +N). y(δ) = 0 has
two solutions δ1 = 0 and δ2 = π. The winding number

ν2 =
1

2
sgn[−(t1e

η)L + (−1)L+12V Lcosh(hL)](−1)L

+
1

2
sgn[−(t1e

η)L − (−1)L+12V Lcosh(hL)](−1)L+1

= −1 + sgn[2V Lcosh(hL)− (t1e
η)L]

2

= −1 + sgn[(V eh)L − (t+∆)L]

2

= −θ(V eh − [t+∆]), (34)

with θ the step function.

APPENDIX B: CALCULATION OF LYAPUNOV
EXPONENT EQ.(11)

According to Thouless [77], the LE of an eigenstate
with an energy in the neighborhood of EB is given by

γ =

∫

dερ(ε)|ε− EB| − ln(t′), (35)

where ρ(ε) is the density of state. Due to the presence
of p-wave pairing, we introduced a parameter t′ to reset
the energy scale, which will be determined later. Fur-
thermore, numerical results show that LEs are energy-
independent, and we will set EB = 0 for the sake of
simplicity. In order to calculate the LE, we define

g≡ ln|det(H)| = 1

2
ln|det(H2)|

= ln|det(M +N)|. (36)

Indicating by λ1, ..., λL the eigenvalues ofM+N , we can
rewrite it as

g =

L
∑

n=1

ln|λn|. (37)

In the large-L limit, we replace the summation by inte-
gration and

g = L

∫

dερ(ε)|ε|. (38)

Now we obtain
∫

dερ(ε)|ε| = g

L
=

ln|det(M +N)|
L

, (39)

and the relation between LE and determinant of Hamil-
tonian

γ =
ln|det(M +N)|

L
− ln(t′). (40)
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Substituting Eq.(31), we have

γ =
ln
[

| − (t+∆)L + (−1)L+1V LeLh−iδ|/t′L
]

L

=

{

ln[(t+∆)/t′], V eh < t+∆,
ln[V eh/t′], V eh > t+∆.

(41)

Considering that the LE must be zero when V = 0, we
obtain t′ = t + ∆. Then the LE of bulk single-particle
states

γ =

{

0, V eh < t+∆,
ln[V eh/(t+∆)], V eh > t+∆.

(42)

Notice that the calculation shown in Appendixes also
works when h = 0, and the LE γ can apply to the Her-
mitian case.
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