
Electrically tunable and reversible magnetoelectric coupling in strained bilayer
graphene

Brian T. Schaefer
Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY 14853, USA

Katja C. Nowack
Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY 14853, USA and
Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA∗

(Dated: September 28, 2021)

The valleys in hexagonal two-dimensional systems with broken inversion symmetry carry an in-
trinsic orbital magnetic moment. Despite this, such systems possess zero net magnetization unless
additional symmetries are broken, since the contributions from both valleys cancel. A nonzero
net magnetization can be induced through applying both uniaxial strain to break the rotational
symmetry of the lattice and an in-plane electric field to break time-reversal symmetry owing to
the resulting current. This creates a magnetoelectric effect whose strength is characterized by a
magnetoelectric susceptibility, which describes the induced magnetization per unit applied in-plane
electric field. Here, we predict the strength of this magnetoelectric susceptibility for Bernal-stacked
bilayer graphene as a function of the magnitude and direction of strain, the chemical potential, and
the interlayer electric field. We estimate that an orbital magnetization of ~5400µB/µm2 can be
achieved for 1 % uniaxial strain and a 10 µA bias current, which is almost three orders of magnitude
larger than previously probed experimentally in strained monolayer MoS2. We also identify regimes
in which the magnetoelectric susceptibility not only switches sign upon reversal of the interlayer
electric field but also in response to small changes in the carrier density. Taking advantage of this
reversibility, we further show that it is experimentally feasible to probe the effect using scanning
magnetometry.

I. INTRODUCTION

Two-dimensional hexagonal Dirac materials are a
promising platform for realizing orbital magnetic effects.
In these materials, the low-energy band structure fea-
tures two degenerate energy minima (or “valleys”) at the
K and K′ points at the corners of the Brillouin zone [1].
If inversion symmetry is broken, the energy bands are di-
rectly gapped at each valley. In this case, the electronic
states in each valley are characterized by a strong in-
trinsic orbital magnetic moment and Berry curvature [2].
These quantities differ in sign between the two valleys,
exhibiting distributions centered at K and K′ with max-
ima that typically increase with decreasing magnitude of
the gap [3]. The control of orbital magnetic moments
is both fundamentally and technologically interesting:
it provides a direct window into phenomena driven by
the Berry curvature and may provide an efficient way to
switch magnetic layers through the generation of strong
magnetic torques [4, 5]. However, in equilibrium the total
magnetization, which depends on both the orbital mag-
netic moment and Berry curvature, is precisely zero due
to equal and opposite contributions from each valley. Dif-
ferent strategies to induce and detect net magnetic mo-
ments have been demonstrated previously in transition
metal dichalcogenide (TMD) devices [6–10].

Here, we focus on Bernal-stacked bilayer graphene
(BLG) which is promising for generating a strong, purely
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orbital magnetization for several reasons. First, the max-
imum orbital magnetic moment and Berry curvature in
each valley are expected to be inversely related to the in-
terlayer asymmetry ∆ (see Appendix A) [3]. This quan-
tity describes a potential energy difference between the
two layers and controls the size of the bandgap. In dual-
gated BLG devices, the size and sign of ∆ can be tuned
independently of the carrier density through an inter-
layer electric field [11–13]. The low charge inhomogeneity
in state-of-the-art graphene-based devices enables oper-
ation at low carrier densities [14], which is necessary to
take advantage of the enhanced magnetic moment and
Berry curvature at small bandgap. Second, graphene has
a nearly vanishing spin-orbit coupling [1]. This suggests
that the magnetization in BLG is entirely orbital in ori-
gin, in contrast with TMDs in which spin contributions
can be intertwined with orbital effects [2, 15]. Finally,
BLG has a rich low-energy fermiology due to trigonal
warping of the band structure, offering an interesting
platform in which to study orbital magnetism [16–18].

Naturally, one route towards generating a net orbital
magnetization is to create a net valley polarization [3].
This can be achieved by selective optical excitation of
electrons in a single valley using circularly polarized light
as demonstrated previously in MoS2 [6, 7]. An electri-
cally tunable valley polarization has also been realized in
WSe2/CrI3 heterostructures, in which the valley polar-
ization of WSe2 is controlled through proximity coupling
to CrI3 [8]. However, the terahertz-scale optical transi-
tions and lack of spin-orbit coupling in BLG make these
methods difficult to extend to BLG.
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FIG. 1. (a)-(b) Schematics of the BLG lattice under (a) zero
strain and (b) uniaxial tensile strain along the x zigzag crystal
axis. (c)-(d) Brillouin zone (geometry exaggerated) and low-
energy band structure for the K and K′ valleys calculated from
the model below (see Sec. II A) with ∆ = 7 meV, θ = 0, and
(c) ε = 0 or (d) ε = 0.01. The intensity (color) of the shading
represents the magnitude (sign) of the quantity M, which
captures contributions from the orbital magnetic moment and
Berry curvature. M and the color scale are more precisely
defined in Sec. II B and Fig. 4 below.

An alternative way to create a net orbital magnetiza-
tion was demonstrated in uniaxially strained MoS2 de-
vices through a magnetoelectric effect: application of an
in-plane electric field drives a transport current that in-
duces a net orbital magnetization [9, 10]. Here, we con-
sider the analogous effect in strained bilayer graphene
(sBLG). This effect does not rely on a net valley polar-
ization but rather on the combination of strain, which
breaks the rotational symmetry of the lattice, a bias cur-
rent, which breaks time-reversal symmetry, and an inter-
layer electric field, which breaks layer inversion symme-
try.

In the following, we briefly illustrate the effect using
results from the model described in Sec. II. Figure 1(a)
shows the lattice, Brillouin zone, and low-energy band
structure for gapped BLG at zero strain. The colored
shading on the energy bands represents the magnitude
and sign of the quantity M as defined below. This quan-
tity captures the contributions of occupied electronic
states to the total magnetization from both the orbital
magnetic moment and the Berry curvature. Close to the
K and K′ points, trigonal warping of the band structure
gives rise to three mini-valleys which result in hotspots of
M [17, 18]. Applying uniaxial strain to the BLG lattice
breaks the three-fold rotational symmetry and distorts
the energy bands and magnetic moment distribution as
shown in Fig. 1(b). Despite this distortion, the distribu-

tions of M in the two valleys are still equal in magnitude
and opposite in sign, leading to zero net magnetization.
However, an in-plane electric field creates an electric cur-
rent that breaks time-reversal symmetry. As a result,
the electronic states contributing to the net magnetiza-
tion are described by non-equilibrium occupation func-
tions which are shifted in the same direction in momen-
tum space for each valley. Integrating over contributions
from occupied states in each valley therefore leads to a
net bulk magnetization that is purely orbital in nature.
The strength of this effect is characterized by a mag-
netoelectric susceptibility, i.e., the coefficient describing
the magnitude of induced magnetization per unit applied
electric field. The sign of the magnetoelectric suscepti-
bility can be switched by reversal of either the in-plane
or the interlayer electric field.

The Berry curvature dipole, which is related to the
magnetoelectric susceptibility, has been previously stud-
ied in hexagonal Dirac materials in the context of non-
linear transport [18–22]. In particular, Battilomo et al.
show that interlayer hopping processes that induce trig-
onal warping lead to a finite Berry curvature dipole in
sBLG that can exhibit sign reversal upon continuous tun-
ing of the carrier density [18]. Here, we also find regimes
where the sign changes in response to small changes in
the carrier density. These reversals are associated with
changes in the topology of the Fermi surface such as the
formation of an additional Fermi surface pocket or merg-
ing of pockets.

Recently, strong orbital magnetic effects have also been
discovered and explored both experimentally and theo-
retically in twisted bilayer graphene (TBG) [23–30]. The
magnetization in TBG can be switched electrically in
some regimes through small changes in either carrier den-
sity or an applied bias current. Recent work suggests that
the latter can be explained by a magnetoelectric effect
similar to the one considered here [26, 27].

This paper is organized as follows. In Sec. II A, we
describe the tight-binding model used to calculate the
energy bands and eigenstates for sBLG under uniaxial
strain. Then, in Sec. II B, we combine the orbital mag-
netic moment and Berry curvature to arrive at an ex-
pression for the net orbital magnetization and extract
the linear magnetoelectric susceptibility. We calculate1

the susceptibility as a function of various model param-
eters in Sec. III and discuss how its magnitude and sign
can be tuned. We estimate the magnitude of the effect
in Sec. IV A, propose an experiment to detect the effect
using scanning magnetometry in Sec. IV B, and conclude
in Sec. V.

1 Source code available at https://github.com/nowacklab/blg_

strain.

https://github.com/nowacklab/blg_strain
https://github.com/nowacklab/blg_strain
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FIG. 2. (a) Schematic of the unstrained BLG lattice, with
hopping parameters γj , interlayer asymmetry ∆, and dis-
placement field D. Atoms A2 and B1 are stacked directly
on top of one another. (b) Schematic top view of BLG lattice
under uniaxial strain with magnitude ε applied at an angle
θ ≈ 15° to the x axis, with modified bond vectors δ′

m
j . The

dashed (solid) arrows in each panel represent interlayer (in-
tralayer) coupling.

II. THEORY

A. Tight-binding model

Based on the Hamiltonian for unstrained BLG [1, 16,
37], we construct a tight-binding model for sBLG with
a 4 × 4 Hamiltonian yielding four energy bands En la-
beled with n ∈ (0, 1, 2, 3) from lowest to highest energy.
The wavefunction Ψn(k) for each band has components
ψσin (k) corresponding to the wavefunction amplitude for
each layer σ ∈ (A,B) and sublattice i ∈ (1, 2). Written
in the (A1, B2, A2, B1) basis, the Hamiltonian and its
eigenstates are

H =


− 1

2∆ h3 h4 h0

h∗3
1
2∆ h∗0 h∗4

h∗4 h0
1
2∆ + ∆′ h1

h∗0 h4 h∗1 − 1
2∆ + ∆′

+ hnĪ4

|n〉 ≡ Ψn(k) =


ψA1
n (k)

ψB2
n (k)

ψA2
n (k)

ψB1
n (k)

 ,

Hopping
processes

Matrix
element

γj (eV) ηj

Zero-strain
bond vectors

δm
j /a

A1-B1
A2-B2

h0 3.16 −2

(√
3
2
,− 1

2

)
;
(
−
√
3
2
,− 1

2

)
;

(0, 1)

A2-B1 h1 −0.381 — (0, 0)

A1-B2 h3 0.38 −1

(
−
√
3
2
, 1
2

)
;
(√

3
2
, 1
2

)
;

(0,−1)

A1-A2
B1-B2

h4 0.14 −1

(√
3
2
,− 1

2

)
;
(
−
√
3
2
,− 1

2

)
;

(0, 1)

A1-A1a

A2-A2a

B1-B1a

B2-B2a

hn ∼ 0.3 −1

(√
3, 0

)
;
(
−
√

3, 0
)
;(√

3
2
, 3
2

)
;
(
−
√
3
2
, 3
2

)
;(√

3
2
,− 3

2

)
;
(
−
√
3
2
,− 3

2

)
a next-nearest neighbor

TABLE I. Hopping processes in the tight-binding model
and corresponding matrix elements hj , Slonczewski-Weiss-
McClure hopping parameters γj , Grüneisen parameters ηj ,
and zero-strain bond vectors δm

j reported in units of the
carbon-carbon distance a = 0.142 nm. The magnitudes of the
hopping parameters follow the values reported in Ref. [31] and
the typical estimate γn ∼ 0.1γ0 [32]. The signs of the hopping
parameters are chosen to address the ambiguity discussed in
Ref. [33, 34]. The magnitude of the Grüneisen parameter η0
follows from both Raman spectroscopy measurements (η0 ≈
−1.99) and first principles calculations (η0 ≈ −1.87) [35]. The
estimate η3,4,n ∼ −1 accounts for the longer intralayer and
next-nearest neighbor bond lengths [17, 36].

where Ī4 is the 4× 4 identity matrix and the elements hj
are defined below. ∆ is the interlayer asymmetry induced
by an applied electric displacement field D between the
layers (Fig. 2(a)) and ∆′ ∼ 0.022 eV accounts for a small
energy cost associated with the dimerization of B1-A2
atoms [17, 31, 38].

The matrix elements hj describe inter- and intralayer
interactions using the Slonczewski-Weiss-McClure pa-
rameterization (Table I and Fig. 2(a)) [39, 40]. Each
hj is the product of a hopping parameter γj and a struc-
ture factor that depends on the relevant bond vectors
δmj (Table I and Fig. 2(a)). The subscript j denotes ei-
ther intralayer nearest neighbor (j = 0), dimer (j = 1),
interlayer (j = 3, 4), or intralayer next-nearest-neighbor
(j = “n”) interactions. Application of strain leads to
modified bond vectors δ′

m
j that depend on the strength

and the orientation of the strain. The changes in bond
lengths directly modify the hopping parameters γmj as
well as the structure factors. In total, this can be cap-
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tured by matrix elements with the more general form

hj =
∑
m γ

m
j e

ik·δ′
j
m

, where the index m runs over the
bonds listed in Table I.

To linear order the modified bond vectors are given by

δ′j
m

=
(
Ī2 + ε̄

)
· δmj ,

where Ī2 is the 2×2 identity matrix and ε̄ is an arbitrary
two-dimensional strain tensor [41, 42]. The correspond-
ing hopping parameter is expected to depend exponen-
tially on changes in the bond length following

γmj = γje
ηj(|δ′

j
m|/|δm

j |−1),

where ηj is the appropriate Grüneisen parameter (Ta-
ble I) [41–43]. For uniaxial tensile strain2 as illustrated
in Fig. 2(b), the strain tensor is [41]

ε̄ = ε

(
cos2 θ − ν sin2 θ (1 + ν) cos θ sin θ

(1 + ν) cos θ sin θ sin2 θ − ν cos2 θ

)
. (1)

Here, ε is the strain magnitude, θ is the angle between the
principal strain axis and the x axis, and ν is the Poisson’s

ratio. Following Fig. 2, θ = 0 (θ = π/2) corresponds to
strain along a zigzag (armchair) axis of the crystal. We
use ν ≈ 0.165 as the Poisson’s ratio for graphene [41],
but generically if strain is transferred via adhesion to a
flexible substrate, the relevant Poisson’s ratio is that of
the substrate [35].

The Hamiltonian explicitly depends on the applied
strain ε̄(ε, θ) and the interlayer asymmetry ∆ (Fig. 2(a)).
Below we diagonalize the Hamiltonian for each combina-
tion of ε̄ and ∆ to obtain the energy bands and eigen-
states over a momentum-space grid around the K val-
ley. We obtain the energy bands and eigenstates at
the K′ valley by using the symmetry of the Hamilto-
nian H(kx, ky) = H(−kx,−ky), valid even under uniaxial
strain.

B. Linear magnetoelectric susceptibility

The orbital magnetization includes contributions from
the orbital magnetic moment µn and Berry curvature Ωn

for band n. These can be calculated using the standard
expressions [2, 17]:

µn(k) =
e

2h̄
i 〈∇kn| × [En(k)−H(k)] |∇kn〉 = − e

h̄
Im
∑
m 6=n

〈n|∂kxH|m〉 〈m|∂kyH|n〉
En(k)− Em(k)

ẑ

Ωn(k) = i 〈∇kn| × |∇kn〉 = −2 Im
∑
m6=n

〈n|∂kxH|m〉 〈m|∂kyH|n〉
[En(k)− Em(k)]

2 ẑ.

Here, |n〉 is the eigenstate for band n and |∇kn〉 is its momentum-space gradient. We define the quantity Mn to
capture contributions from both the orbital magnetic moment and Berry curvature:

Mn(k) = µn(k) +
eΩn(k)

h̄
[µ− En(k)]

= − e
h̄

Im
∑
m 6=n

〈n|∂kxH|m〉 〈m|∂kyH|n〉
En(k)− Em(k)

[
1 + 2

µ− En(k)

En(k)− Em(k)

]
ẑ.

(2)

For the case of a two-band model with electron-hole sym-
metry, this expression can be further simplified (see Ap-
pendix A) [3]. However, we choose to work with the full
four-band Hamiltonian as introduced in the previous sec-
tion, with electron-hole asymmetry from the parameters
∆′, γ4, and γn [16, 17, 38]. At zero temperature, the
net orbital magnetization is given by an integral over all

2 Here, we focus on tensile strain because graphene-based devices
often possess a small critical buckling strain in compression [44,
45].

occupied states in momentum space [2, 46–48]:

M =
∑
n

∫
d2k

(2π)2
fn(k)Mn(k). (3)

Here, fn(k) is the occupation function, which is a step
function in equilibrium at zero temperature:

f0
n(k) = Θ[µ− En(k)].

Figure 3(a-d) shows an example of the conduction band
E2(k) and distribution of Mz

n(k) in the K and K′ val-
leys under applied strain. The sign of Mz

n differs be-
tween the two valleys as expected [3]. Strain breaks the
three-fold rotational symmetry of the lattice, leading to
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FIG. 3. (a)-(b) Conduction band, (c)-(d) M distributions, and (e)-(h) their gradients for sBLG in the K (top row) and K′

(bottom row) valley. The black contour outlines the Fermi surface at chemical potential µ = 10 meV. The model parameters
are ∆ = 7 meV, ε = 0.01, and θ = 0° (strain applied along the x zigzag axis). The maps span a 0.05a−1 × 0.05a−1 region
of momentum space centered at each valley. Panels (c)-(h) use a logarithmic color scale, where the neutral-colored regions
represent regions of momentum space in which |Mz

2| ≤ µB or |∂kxMz
2| ≤ 102 µBa.

an asymmetric distribution of Mz
n within each valley.

In equilibrium, the net magnetization (Eq. (3)) vanishes
due to equal and opposite contributions from the two
valleys. However, application of an in-plane electric field
E = (Ex, Ey) leads to a non-equilibrium occupation func-
tion, which to lowest order corresponds to a shift of the
Fermi surface in the direction of E for both valleys. As a
result, the occupied states lead to a net magnetization.

Under the linear relaxation-time approximation, the
occupation function can be approximated as [49]

fn(k) ≈ f0
n(k) +

eτE
h̄
·∇kf

0
n(k),

where τ is a mean scattering time. Inserting fn(k) into
Eq. (3) gives for the net orbital magnetization

Mz =
eτE
h̄
·
∑
n

∫
d2k

(2π)2
∇kf

0
n(k)Mz

n(k), (4)

where the equilibrium term integrates to zero consider-
ing both valleys. The linear relationship between the ap-
plied electric field E and net magnetization Mz describes
a magnetoelectric effect. We define the dimensionless lin-
ear magnetoelectric susceptibility α = (αx, αy) such that

µ0Mz = τ(α · E). (5)

Integrating Eq. (4) by parts and discarding the boundary
term which evaluates to zero finally results in

α = −eµ0

h̄

∑
n

∫
d2k

(2π)2
f0
n(k)∇kMz

n(k),

i.e., an integral of ∇kMz
n(k) over occupied states.

In Fig. 3(e-h) we show an example of the kx and ky
components of ∇kMz

2(k). The component αx (αy) of
the magnetoelectric susceptibility is proportional to the
sum of the integral over occupied states within the black
contours in Fig. 3(e,f) (Fig. 3(g,h)) considering both val-
leys. For the case of strain along the x (zigzag, θ = 0)
axis shown here, the contributions to αx from each val-
ley are equal in both sign and magnitude, whereas the
contributions to αy are zero in both valleys. Similarly,
strain along the y (armchair, θ = π/2) axis also yields
zero αy. In both cases, the strain tensor in Eq. (1) is
diagonal. Strain applied along a general direction can
lead to nonzero components of both αx and αy when the
strain tensor is non-diagonal (see Sec. III C).

III. RESULTS

A. Electrical tuning

We focus on the two strain orientations shown in
Fig. 4(a), with strain either along the x or y direction
for which αy = 0. For each strain orientation, Fig. 4(b)
shows αx as a function of ∆ and µ. In an experiment,
electrostatic gating directly adjusts the interlayer dis-
placement field D and carrier density n rather than ∆
and µ (see Appendix B). In Fig. 4(c) we therefore show
similar maps of αx as a function of D and n. The distor-
tion of the features is due to the nonlinear relationships
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FIG. 4. Magnetoelectric susceptibility αx for strain of mag-
nitude ε = 0.01 aligned along the x axis (left panels) and y
axis (right panels). (a) Schematic of each strain state (not
to scale). (b) Maps plotted against model parameters ∆ and
µ. (c) The same maps as in (b) transformed onto axes of
derived parameters D and n. The white triangular regions
correspond to values of D and n not covered by the range of
∆ and µ considered in (b). (d) Line profiles for fixed D/ε0 at
positions indicated by the arrows in (c).

between (∆, µ) and (D,n).

The susceptibility αx exhibits a rich dependence on
these tuning parameters. The maps in Fig. 4(a,c) are
antisymmetric upon reversal of ∆ or D, show non-
monotonic dependences on the parameters, and have no
symmetry between µ > 0 and µ < 0 reflecting the lack
of electron-hole symmetry of the Hamiltonian. In both
strain configurations, αx reaches a broad maximum cen-
tered at larger |n| for larger |D|, as highlighted by the
line profiles in Fig. 4(d). Notably, the sign of αx is fairly
uniform in each of the four quadrants of the map, but also
exhibits a sharp reversal in the valence band (µ < 0 or

−12 −10 −8 −6
μ (meV)

−1

0

1

10
6 α

x

(a)

5 6 7 8
μ (meV)

−1

−0.5

0

(b)

(c) ∂kxz
1 (d) ∂kxz

2

−105 ±102 105 μBa

FIG. 5. (a) Valence band and (b) conduction band line
profiles of αx from Fig. 4(b) at ∆ = 12 meV. (c) ∂kxMz

1

at µ = −10.1 meV and (d) ∂kxMz
2 at 6.8 meV, with Fermi

surface contours at the values of µ marked in (a)-(b). From
left to right: circle, −10.1 meV; square, −9.8 meV; triangle,
−8.0 meV; “+”, 5.7 meV; diamond, 6.2 meV; “×”, 6.8 meV.

n < 0). This suggests that the orientation of Mz can be
reversed upon changing the carrier type, reversing the di-
rection of the displacement field, or applying even smaller
perturbations to either n or D in some regimes.

The distinctive features in αx coincide with changes in
the topology of the Fermi surface. Figure 5(a,b) shows
line profiles from the left panel of Fig. 4(b) at fixed
∆ (dashed line), and Fig. 5(c,d) shows the Fermi sur-
faces for a few values of µ superimposed on the typical
momentum-space distribution of ∂kxM

z. For small |µ|
near the band edges, the Fermi surface first consists of
two pockets (darkest contours) approximately centered
around the hotspots ofM. Sweeping to larger |µ|, a cen-
tral third pocket appears, and the three pockets eventu-
ally merge into a single continuous Fermi surface (lightest
contour). The appearance of the third pocket coincides
with a cusp in αx, and the merging of the pockets coin-
cides with an inflection point. In the valence band, αx
changes sign approximately at this inflection point. Our
observations are consistent with Ref. [18], which predicts
a sign change in the Berry curvature dipole as a function
of the carrier density in sBLG.
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FIG. 6. Susceptibility αx versus strain magnitude ε and chemical potential µ for fixed ∆ = 5 meV, with strain along either
(a) the x direction or (b) the y direction. The arrows above each main panel indicate the following values of µ used for the
line profiles in the corresponding right panel (in meV, from left to right): (a) −4.8, 4.8, 11.2; (b) −16.0, −4.8, 2.4. The arrows
to the right of each main panel indicate the following values of ε) used for the line profiles in the corresponding upper panel
(from top to bottom): (a) 1.2 %, 0.2 %; (b) 1.2 %, 0.4 %.

B. Strain magnitude tuning

The strain amplitude ε alters the band structure and
M distribution nontrivially. In Fig. 6, we show αx as
a function of µ and ε for a fixed value of ∆, again for
strain applied along the x and y directions. Similar to
the previous section, we observe sharp features and non-
monotonic dependences on ε that are associated with
changes in the Fermi surface topology. These changes
generally occur at larger values of |µ| with increasing
strain, because one of the three mini-valleys is shifted
to higher energies. Therefore the corresponding Fermi
pocket emerges at larger |µ|. At sufficiently large strain
along the y direction, the indirect band gap in sBLG
closes. This gives rise to finite values of αx at any value
of µ for large strains as visible in Fig. 6(b).

The maximum value of |αx| does not change signifi-
cantly with ε. However, for large |µ| at which the Fermi
surface consists of a single pocket, αx is approximately
proportional to ε (see black curves in Fig. 6). This mono-
tonic dependence of αx on ε is consistent with the mag-
netoelectric effect previously reported in strained mono-
layer MoS2, which has a larger and approximately circu-
lar Fermi surface [9, 10].

C. Strain angle tuning

Next, we show how α depends on the orientation of
the principal strain axis relative to the crystallographic
axes. Figure 7 plots the components of αx and αy as a

function of the strain angle θ defined in Fig. 2. We also

show the magnitude |α| =
√
α2
x + α2

y, which exhibits the

six-fold symmetry of the unstrained lattice as expected.
The magnitude of the x component |αx| exhibits a local
maximum whereas αy = 0 for θ = 0, π/2, ... at which
the strain tensor is diagonal. This is due to our choice
of coordinate system, in which x and y correspond to
one of the zigzag and armchair directions of the lattice
respectively. Generally, the shape and size of the lobes,
in addition to the intermediate angles for which either
component is zero, depend on the model parameters ∆,
µ, and ε.

Applying an in-plane electric field E generates an out-
of-plane magnetization Mz ∝ α · E (Eq. (5)). Therefore,
the magnitude of Mz is maximized with α ‖ E. We
discuss below a relatively simple device geometry, with
one pair of contacts that both clamps the sheet to apply
strain and makes electrical contact to apply an in-plane
electric field that drives a bias current (see Sec. IV B). In
this geometry, the effect is maximum if a zigzag axis of
the BLG crystal is aligned with the strain and current
direction, which can be established during device fabri-
cation.

IV. DISCUSSION

A. Magnitude of the effect

Here we estimate the net magnetization that can be
induced for realistic experimental parameters. For a de-
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FIG. 7. Dependence of (a) αx, (b) αy (dark curves), and
|α| (light grey curve in both panels) on the angle θ between
the principal strain axis and the x axis. The radial coordinate
represents |α|, αx, or αy up to a maximum of 1.5×10−6. The
solid (dashed) part of the blue curves indicate where αx or αy

is positive (negative). In both panels, the model parameters
are ∆ = 4 meV, µ = 4 meV, and ε = 0.01.

vice with channel width W , sheet resistance ρ and a bias
current I, Eq. (5) can be rewritten as

Mz =
ταxρ

Wµ0
I. (6)

In our model, we use the linear relaxation-time approx-
imation. This assumes that the shift |δk| = eτ |E|/h̄
of the Fermi surface does not exceed its momentum-
space width (typically 0.01a−1 = 7× 107 m−1, from
Fig. 5). We also assume a scattering time τ ∼ 2 ps for
graphene-based systems near charge neutrality [50–52].
Together, this limits the maximum electric field strength
|E| < 23 000 V m−1. We choose |E|max = 104 V m−1 to
be concrete. Further assuming W ∼ 1 µm, ρ ∼ 1 kΩ,
and a maximum αx ∼ 3× 10−6 for 1 % uniaxial strain
(Fig. 4), we arrive at Mz ∼ 0.005I. This is expected
to describe the system up to a maximum bias current
Imax = |E|maxW/ρ ∼ 10 µA, corresponding to a maxi-
mum magnetization of 50 nA = 5400µB/µm2.

The magnetoelectric effect considered in this work
has been theoretically predicted in strained monolayer
NbSe2 [53] and TBG [26] and experimentally observed in
strained monolayer MoS2 [9, 10]. Here we briefly com-
pare the magnitude of the effect for these different ma-
terials assuming ~0.5-1 % uniaxial tensile strain (see Ap-

pendix C for details). We find Mz/I ∼ 5× 10−6 in MoS2,
Mz/I ∼ 10−3 in NbSe2, and Mz/I ∼ 4× 10−4 in TBG.
In sBLG, we predict a potentially larger effect with mag-
netization as high as Mz/I ∼ 5× 10−3 possible in some
regimes of the tuning parameters. This is a result of the
large magnitude and asymmetric redistribution of the or-
bital magnetic moment and Berry curvature in sBLG.

B. Proposed experimental observation

Studying the magnetoelectric effect in sBLG experi-
mentally requires two components: (1) a technique to
strain dual-gated BLG devices with electrical contacts
and (2) a technique to detect the resultant magnetiza-
tion. Recently, several experimental approaches have
been reported to continuously and reversibly strain de-
vices based on two-dimensional materials while main-
taining well-performing electrical contacts [10, 54–56].
In MoS2 [9, 10], the magnetization was probed pre-
viously using magneto-optic imaging, but due to the
small bandgap in BLG this is challenging to apply here.
We therefore consider scanning magnetometry techniques
that detect the stray magnetic field above the surface of a
device such as scanning SQUID, Hall probe, or nitrogen-
vacancy center microscopy [29, 57–60].

Figure 8(a,b) shows a schematic of a W ×W square
sBLG device that is strained and electrically biased with
the same pair of metal contacts. Applying voltage to the
top and bottom metal gates tunes the electric displace-
ment field D and carrier density n. The total magnetic
field above the device is a combination of the Oersted
field due to the bias current Bbias(r) and the magnetic
field produced by the orbital magnetization BsBLG(r):

Bz(r) = Bbias(r) +BsBLG(r).

We model Bbias(r) using an infinitely long, width-W wire
with current flowing in the +x direction. Because the
induced magnetization is out-of-plane, BsBLG(r) can be
modeled using the Oersted field from an effective current
IM with magnitude Mz flowing at the boundary of the
sBLG square.

Figure 8(c) shows the z component of the stray mag-
netic field at height z0 = 100 nm above the surface of
a sBLG device. Bbias(r) dominates the image, with a
distortion from BsBLG(r). The contrast between the two
sources of field is controlled by the ratio Mz/I. For il-
lustration, we use a value of Mz/I ten times larger than
estimated above. To clearly reveal the magnetization, we
take advantage of the symmetry Mz(D) = −Mz(−D).
Reversing the sign of D reverses the sign of BsBLG(r)
without changing the Oersted field from the bias cur-
rent. The difference of two images corresponding to op-
posite values of D therefore shows the stray field from
the magnetization alone (Fig. 8(d)). From Fig. 8(d), we
see that the magnetic field is on the order of tens to
hundreds of nanotesla (accounting for the factor of 10 by
which the effect is exaggerated). Detecting this magnetic
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ε

FIG. 8. (a) Side view and (b) top view schematics of a
1 µm× 1 µm square sBLG device with orbital magnetization
M = Mz ẑ. The metal electrodes simultaneously clamp the
BLG sheet and bias the device with a current I in the +x di-
rection. Applying strain to the substrate along the x direction
results in corresponding strain in the BLG sheet aligned with
the applied current. The top and bottom metal gates tune the
carrier density n and displacement field D. (c) Total out-of-
plane stray magnetic field Bz at a height z0 = 100 nm above
the surface of the device for Mz/I = 0.05 and I = 10 µA.
(d) Difference in magnetic field ∆Bz = [Bz(D)−Bz(−D)] /2
between images at opposite D.

field strength is within the capabilities of scanning mag-
netometry techniques, with typical best magnetic field
sensitivity down to the nanotesla scale [58].

V. CONCLUSION

In summary, we develop a tight-binding model for
sBLG that predicts an orbital magnetization on the or-
der of up to 5000µB/µm2 under a 1 % uniaxial strain
and 10 µA bias current. The model includes all rele-
vant nearest and next-nearest neighbor coupling terms
and is compatible with an arbitrary direction of the ap-
plied strain. We show that the effect is a source of an
electrically controlled out-of-plane magnetization that is
uniform throughout the sBLG layer and can be exper-
imentally detected using scanning magnetometry. One
opportunity to explore this effect is in the context of
2D spintronic devices [4]. Here, an interesting possibil-
ity is to combine sBLG with a magnetic layer and ex-
plore switching of the layer by current-induced magnetic
torques from sBLG. Finally, the orbital magnetoelectric
effect discussed here offers a direct window into Berry
curvature effects in BLG, which are of both fundamental
and applied interest.
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Appendix A: Effective two-band Hamiltonian

For monolayer graphene, it is an established result that
the Berry curvature and orbital magnetic moment in-
versely depends on the band gap [3]. Here we briefly de-
rive the same result for a simple model of BLG in the ab-
sence of strain to show that the same general dependence
is expected in BLG. A low-energy two-band effective
Hamiltonian for electronic states at location q = (qx, qy)
in momentum space relative to the K or K′ point is [16]:

H = − h̄2

2m

(
0 (qx − iqy)2

(qx + iqy)2 0

)
+

∆

2

(
1 0

0 −1

)
,

where

m =
γ1

2v2

is an effective mass, with

v =

√
3

2

aγ0

h̄
.

This Hamiltonian only includes the hopping parameters
γ0 and γ1 (Table I) and therefore lacks trigonal warp-
ing and is electron-hole symmetric. Diagonalizing this
Hamiltonian leads to symmetric parabolic energy bands
with a mass gap ∆:

En(k) = ±

√(
h̄2|k|2

2m

)2

+

(
∆

2

)2

.

For any two-band model with particle-hole symmetry [3],

µzn(k) ≡ e

h̄
En(k)Ωzn(k)

and Eq. (2) becomes

M(k) =
e

h̄
µΩzn(k),

where µ is the chemical potential. Using the expression
for the Berry curvature reported previously [12, 61, 62],
we obtain

M(k) = ∓ eh̄

2m

µ∆

√
En(k)2 −

(
∆
2

)2
En(k)3

,
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where the upper (lower) sign corresponds to the K (K′)
valley. Under this model, M is zero at the valley center
and is distributed in a ring at finite momentum

|k∗| =
√

m√
2

∆

h̄

surrounding the valley center. At this momentum, M
reaches a maximum value of

Mmax = ∓ 8

3
√

3

eh̄

2m

µ

∆

which depends on the ratio of the chemical potential
to interlayer asymmetry (µ/∆). This expression implies
that BLG systems with smaller ∆ will exhibit stronger
valley effects.

Appendix B: Electrostatic tuning of model
parameters

In the calculations discussed above, we fix the inter-
layer asymmetry ∆ and chemical potential µ. Experi-
mentally, electrostatic tuning controls instead the inter-
layer electric displacement field D and carrier density
n [11–13]. The total carrier density n = n1 + n2 is the
sum of carrier density ni on each layer, with [16]:

ni = 4
∑
n

∫
dk

(2π)2
f0
n(k)

[∣∣ψAin ∣∣2 +
∣∣ψBin ∣∣2] . (B1)

The displacement field D is related to ∆ accounting for
screening from charge on each layer [16, 37]:

∆ =
ed

ε0
[D + (n1 − n2)e] , (B2)

where d = 0.34 nm is the interlayer spacing. We use
Eq. (B1) and Eq. (B2) along with the results of our model
for chosen ∆ and µ to obtain Fig. 4(c) from Fig. 4(b).

Considering the device structure in Fig. 8(a-b), the dis-
placement field D is a difference between gate voltages
V1 and V2, while the carrier density n is essentially a
sum of the gate voltages. Accounting for different dielec-
tric constants (ε1, ε2) and dielectric layer thicknesses (d1,
d2) [11]:

D =
ε0ε1V1

d1
− ε0ε2V2

d2

ne = (n1 + n2)e =
ε0ε1V1

d1
+
ε0ε2V2

d2
.

Solving for the gate voltages directly,

ε0ε1V1

d1
=

1

2

ε0∆

de
+ n2e

ε0ε2V2

d2
= −1

2

ε0∆

de
+ n1e.

These expressions are useful for comparing the expected
magnitude of the magnetoelectric susceptibility calcu-
lated here to that obtained experimentally under equiv-
alent conditions. The inverse problem (determining ∆,
µ from gate voltages V1, V2) is less approachable, since
the calculation of n1 and n2 requires integration over a
Fermi surface with nontrivial geometry and topology (see
Eq. (B1)).

Appendix C: Magnitude of orbital magnetization in
other systems

Here we compare the orbital magnetization predicted
for sBLG to a few other 2D materials. The magnetoelec-
tric effects described below are expected to be linear in
both strain magnitude ε and bias current I, so we calcu-
late the normalized magnetization Mz/(Iε).

1. MoS2

In Ref. [9], the combination of Kerr rotation
microscopy of strained single-layer MoS2 and a tight-
binding model is used to estimate Mz ∼ 4× 10−11 A
with current density J ∼ 10 A/m for a W ∼ 8 µm
device under ε ∼ 0.5 % strain [9]. This is equivalent
to a bias current of I ∼ 80 µA and normalized mag-
netization Mz/(Iε) ∼ 10−6 A/(A %). Ref. [10] reports
a maximum estimated volume magnetization per unit
current density (Mz/t)/(I/W ) ∼ 0.1 for a W ∼ 12 µm
device with thickness t = 0.67 nm under ε ∼ 1 % strain.
This corresponds to a normalized area magnetization
Mz/(Iε) = 0.1(t/W )/(1 %) = 5× 10−6 A/(A %).

2. NbSe2

A tight-binding model for strained monolayer
NbSe2 [53] predicts Mz ∼ 104 µB/µm2 ∼ 10−7 A for
ε = 5 % and E = 104 V m−1. Assuming a resistivity
ρ ∼ 1 kΩ and device length L ∼ 10 µm, this corre-
sponds to an approximate bias current I ∼ 100 µA and
normalized magnetization Mz/(Iε) ∼ 2× 10−4 A/(A %).

3. Twisted bilayer graphene

Ref. [26] predicts a magnetoelectric effect in strained
TBG with a relative rotation of 1.2° between the layers
and with the symmetry between the layers further broken
by a hexagonal boron nitride substrate [26]. For 0.1 %
uniform uniaxial strain and E = 104 V m−1, the esti-
mated magnitude ofMz is ~2× 104 µB/µm2 ∼ 2× 107 A.
Using ρ ∼ 1 kΩ and L ∼ 10 µm, the normalized magneti-
zation is Mz/(Iε) ∼ 4× 10−4 A/(A %).
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