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The Compton scattering process plays significant roles in atomic and molecular physics, condensed
matter physics, nuclear physics and material science. It could provide useful information on the
electromagnetic interaction between light and matter. Several aspects of many-body physics, such us
electronic structures, electron momentum distributions, many-body interactions of bound electrons,
etc, can be revealed by Compton scattering experiments. In this work, we give a review on ab
initio calculation of Compton scattering process. Several approaches, including the free electron
approximation (FEA), impulse approximation (IA), incoherent scattering function / incoherent
scattering factor (ISF) and scattering matrix (SM) are focused in this work. The main features
and available ranges for these approaches are discussed. Furthermore, we also briefly introduce the
databases and applications for Compton scattering.
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I. INTRODUCTION

Compton scattering process is the scattering between
a bound electron (e) in atomic or molecular system and
an incident photon (γ) in the electromagnetic field

e+ γ → e+ γ′

It is one of the most important and mysterious electro-
magnetic processes in physics. This process was first no-
ticed by A. H. Compton in 1923 [1, 2], through which
the quantum nature of X-rays was revealed successfully.
Since Compton scattering was discovered in 1920s, it has
been carefully studied and extensively investigated for
almost a century. The study of atomic Compton scatter-
ing could give us information on the interaction between
light and matter, and it can also provide opportunities
to reveal the underling nature of electric structures, elec-
tron correlations, electron momentum distributions, and
other aspects of physics [3–5]. Because of widely appli-
cations, Compton scattering is always an attractive topic
in atomic physics, molecular physics, condensed matter
physics, nuclear physics and material science [5–9]. (See
figure 1)

Since 1920s, great efforts has been made to develop
theoretical methods on ab initio calculations for Comp-
ton scattering process. The simplest approach is the free
electron approximation (FEA), which was first developed
by O. Klein and Y. Nishina in 1929 [10]. In the FEA ap-
proach, the electrons in atomic or molecular systems are
treated as free electrons. The atomic binding, electron
shielding, electron correlations, electron motions around
atomic nucleus, and other many-body effects are all omit-
ted for simplicity. In FEA, the angular distribution for
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FIG. 1: Schematic plot of Compton scattering process e+γ →
e+ γ′.

Compton scattering process is given by the Klein-Nishina
formula [10, 11](

dσ

dΩf

)
FEA

=
r2
0

2

(
ωC
ωi

)2(
ωi
ωC

+
ωC
ωi
− sin2 θ

)
(1)

Furthermore, in FEA approach, the final state photon
energy ωf after the scattering process is totally deter-
mined by the scattering angle θ in Compton scattering
process

ωf = ωC =
ωi

1 + ωi(1− cos θ)/mec2
(2)

Here, ωC is called as the Compton energy. Because of
computational simplicity and clearly physical meaning,
the FEA approach is most widely used in many branches
of science. over the past few decades, it has become a
standard treatment for atomic Compton scattering in
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many textbooks. However, the FEA approach is much
too simple, very little information on electronic struc-
tures and property of materials can be acquired. From
equation (1), it is evident that the angular distribution(
dσ/dΩf

)
FEA

is independent of the electron momentum
distributions in target materials.

Soon after the FEA approach was formulated by O.
Klein and Y. Nishina in 1929, other approaches consid-
ering bound structures in atoms and molecules emerged.
It was J. W. M. DuMond first realized that the atomic
effects and electron motions would give inevitable effects
on the scattering process. Then he introduced an ap-
proach to effectively include atomic binding effects as well
as electron motion around atomic nuclei in the calcula-
tion of Compton scattering [12–14]. His approach was
later called as the impulse approximation (IA). The Du-
Mond’s approach is the nonrelativistic impulse approxi-
mation (NRIA), and the same result was re-derived by
P. Eisenberger et al. in 1970s [15–18]. The relativistic
impulse approximation (RIA) was developed until 1970s-
1980s by R. Ribberfors et al. [18–23]. In the IA formu-
lation, the doubly differential cross section (DDCS) for
Compton scattering process can be factorized into two
parts as follows:(

d2σ

dωfdΩf

)
IA

= YIA · J(pz) (3)

where Ωf is the solid angle for final state outgoing pho-
ton. In equation (3), YIA is a factor dependent on kine-
matical and dynamical properties of atomic Compton
scattering, and irrelevant to the electronic structure of
target materials. The factor J(pz), which is known as
the Compton profile, is related to the momentum dis-
tributions of bound electrons in the atomic or molecular
systems [24]. The Compton profile can reflect electronic
structures, physical and chemical properties of target ma-
terials. It can be determined from theoretical calcula-
tions and experimental measurements. In actual ab initio
calculations, the Compton profile J(pz) can be obtained
using the nonrelativistic Hartree-Fock theory (HF), the
relativistic Dirac-Hartree Fock theory (DHF), and the
density functional theory (DFT). It is worth noting that,
in the IA approach, all the many-body effects in atomic
and molecular systems in Compton scattering processes
are incorporated into Compton profiles J(pz).

From the IA approach, the angular distribution of
Compton scattering process can be obtained by integra-
tion of equation (3), and the results is also a simple cor-
rection for FEA:(

dσ

dΩf

)
IA / ISF

=

(
dσ

dΩf

)
FEA

SF (ωi, θ) (4)

Here,
(
dσ/dΩf

)
FEA

is the angular distribution calcu-

lated in FEA approach as shown in equation (1), and
the correction factor SF (ωi, θ) is called the scattering
function. It should be mentioned that, apart from IA,

there are other approaches which can give the same re-
sults in equation (4). In other words, scattering func-
tion SF (ωi, θ) can also be calculated by other methods,
such as the nonrelativistic Waller-Hartree theory [25, 26].
This kind of approach, in which the angular distribution
of Compton scattering is given by equation (4), is called
the incoherent scattering function or incoherent scatter-
ing factor (ISF) approach. Same as Compton profile
J(pz), the scattering function SF (ωi, θ) can also reflect
the electronic properties of target materials. On the one
hand, J(pz) and SF (ωi, θ) can be measured from Comp-
ton scattering experiments with high precision. On the
other hand, they can also be predicted by theoretical ab
initio calculations in atomic, molecular, and condensed
matter physics [24, 27]. The Compton profile J(pz) and
scattering function SF (ωi, θ) provide a bridge between
Compton scattering and interdisciplinary studies in many
branches of science. They can offer opportunities to learn
the electronic structure and properties of target materi-
als from Compton scattering process. Recently, there are
many studies in which electronic structures and proper-
ties (include electron interactions, electron correlations,
electron momentum distributions, band structures and
fermi surfaces) are investigated through Compton profile
and scattering function [6–9].

In the past decades, several methods beyond IA and
ISF were emerged and formulated [28–34]. Among these
approaches, the most successful one is based on the per-
turbation expansion of many-body electromagnetic inter-
actions in atomic or molecular systems. In this approach,
the DDCS of Compton scattering process can be calcu-
lated by the scattering matrix of a many-body theory(

d2σ

dωfdΩf

)
SM

∝|Mif |2 (5)

This approach is called the Scattering Matrix (SM) ap-
proach. In the SM, scattering matrix of Compton scatter-
ing process Mif ∝ 〈Ψf |HI |Ψi〉 can be calculated through
the many-body interaction Hamiltonian HI , which gives
the many-body interaction between photon and bound
electrons in atomic or molecular systems. The SM ap-
proach can take into account the factor of atomic bind-
ings and electron interactions in atomic or molecular sys-
tems as much as possible. SM could handle with these
many-body effects precisely in the dynamical process of
Compton scattering. Recently, the SM formulation has
revealed many nontrivial properties of Compton scatter-
ing, and it has attracted lots of interests in interdisci-
plinary studies [29, 32].

Furthermore, there are several experiments which give
supporting to the SM predictions [35–41]. Recently, Max
Kircher et al. conducted a kinematically complete Comp-
ton scattering experiment utilizing X-rays produced from
accelerators with energy about 2.1 keV. By measuring the
angular distribution of scattered photons, the experimen-
tal observations present large deviations with the FEA
results. However, when SM approach is employed and ab
initio numerical calculations are carried out, the exper-
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imental data are consistent with theoretical predictions
[41]. These results indicate that the SM approach is be-
coming an promising tool to duel with Compton scatter-
ing with bound electrons, and it may have great impacts
in this area in the near future.

This paper is organized as follows. Section I gives an
introduction on Compton scattering and the development
of theoretical methods on ab initio calculations of Comp-
ton scattering process. Section II gives a description of
FEA, section III discuss the IA approach, and section
IV is devoted to the ISF. The most advanced SM ap-
proach is presented in section V. Section VI presents the
comparisons between theoretical calculations and exper-
imental measurements. Databases and applications for
Compton scattering are briefly introduced in section VII.
Summaries are presented in section VIII.

II. FREE ELECTRON APPROXIMATION

In the free electron approximation (FEA), the elec-
trons in Compton scattering are treated as free electrons,
all the atomic binding effects and many-body interac-
tions of bound electrons in atomic or molecular systems
are neglected in the scattering process. Further, it is also
assumed that the bound electrons are at rest before the
Compton scattering.

The FEA approach for Compton scattering process
was given by O. Klein and Y. Nishina in 1929 [10]. In this
formulation, the scattered photon energy ωf in Compton
scattering process is totally determined by its scattering
angle θ via equation

ωf = ωC =
ωi

1 + ωi(1− cos θ)/mec2
(6)

Here, me is the mass of electron, and ωC is called as the
Compton energy. When θ = 180o, the energy of scattered
photon ωf reaches its minimum, meanwhile the energy
transfer T = ωi − ωC arrives at its maximum. They can
be expressed in the following

ωmin
C = ωmin

f =
ωi

1 + 2ωi/mec2
(7)

Tmax = ωi − ωmin
C = ωi −

ωi
1 + 2ωi/mec2

(8)

They correspond to the Compton edge of the Compton
scattering spectrum of dσ/dT [42, 43].

In FEA formulation, the angular distribution of Comp-
ton scattering process is given by the Klein-Nishina for-
mula [10, 11](

dσ

dΩf

)
FEA

=
r2
0

2

(
ωC
ωi

)2(
ωi
ωC

+
ωC
ωi
− sin2 θ

)
(9)

and the corresponding DDCS can be expressed as(
d2σ

dωfdΩf

)
FEA

=
r2
0

4

(
ωf
ωi

)2[
ωi
ωf

+
ωf
ωi

+ 4(εi · εf )2 − 2

]
×δ(ωf − ωC) (10)

Here, r0 is the classical radius of electron, εi and εf are
polarization vectors for incoming and outgoing photons,
ωf and Ωf are the energy and solid angle of the outgo-
ing scattered photon, respectively. In the FEA results,
due to the Dirac delta function δ(ωf − ωC) in equation
(10), the spectrum of DDCS is an isolated line located at
Compton energy ωC , which is named as “Compton line”,
as illustrated in figure 2.

In the nonrelativistic limit, where the incoming photon
energy ωi � mec

2, the angular distribution of Compton
scattering reduced to(

dσ

dΩf

)
FEA

=
r2
0

2

(
ωC
ωi

)2(
1 + cos2 θ

)
(11)

In this case, the Compton energy becomes

ωf = ωC =
ωi

1 + ωi(1− cos θ)/mec2

≈ ωi

[
1− ωi

mec2
(1− cos θ)

]
≈ ωi −

K2

2me
(12)

where K is the momentum transfer in the Compton scat-
tering process. Furthermore, in the elastic scattering
limit ωf = ωC → ωi (namely the scattering angle θ → 0),
the equation (11) further reduce to the Thomson formula(

dσ

dΩf

)
Thomson

=
r2
0

2

(
1 + cos2 θ

)
(13)

This is the differential cross section of elastic scattering
process between photon and free electron [11, 24, 27, 44].
It should be mentioned that the Klein-Nishina formula
in equation (9) in FEA works well only in the cases that
atomic binding energies are negligible and the atomic
electrons are approximately free. When the incident
photon energy ωi and energy transfer T are extremely
high, the FEA result is appropriate. However, in many
cases, the incident photon energy is comparable to the
X-ray characteristic energies, in which the atomic bind-
ings and electron many-body interactions cannot be ne-
glected. Then the FEA formulation becomes invalid and
it fails to fit the experimental data [28].

III. IMPULSE APPROXIMATION

In the impulse approximation (IA) method, the atomic
binding effects are effectively considered, and the elec-
tron pre-collision motions around atomic nuclei are also
included. The basic starting point of IA approach can be
shown in the following way. Because of atomic binding
and electrons many-body interactions, the bound elec-
trons in atomic and molecular systems have a momentum
distribution ρ(p) when moving around atomic or molec-
ular nuclei. In principle, the momentum distribution for
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IA Result

FEA 
Result

d2
d f d f

 fC

Compton peak

Compton line

FIG. 2: Schematic plot of the FEA and IA results of DDCS
at scattering angle θ. The horizontal axis labels the finial
photon energy ωf , and the vertical axis labels the DDCS of
Compton scattering process.

bound electrons is determined by ground state wavefunc-
tions in atomic or molecular systems. In the Compton
scattering process, suppose electron in momentum eigen-
state |p〉 scattered with incoming photon γ very rapidly,
like an impulse acting on the electron. This scattering
process is too quick to be disturbed by other electrons.
In this way, electron momentum eigenstate |p〉 scattered
with incident photon γ independently as free electrons.
Many-body interactions and interference terms between
electrons with different momentum eigenstates (|p〉 and
|p′〉) in the dynamical process of Compton scattering
are omitted for simplicity. Therefore, the DDCS of the
Compton scattering process is achieved through a sum-
mation of the scattering probability for all possible mo-
mentum eigenstates(

d2σ

dωfdΩf

)
IA

=

∫∫∫
d3pρ(p)

(
d2σ(p)

dωfdΩf

)
FEA

× δ(Ei + ωi − Ef − ωf ) (14)

In this expression,
(
d2σ(p)/dωfdΩf

)
FEA

is the DDCS of
Compton scattering between photon γ and electron in
momentum eigenstate |p〉, which can be calculated by
FEA. The Ei and Ef are the energies of electron before
and after Compton scattering process. The equation (14)
can be viewed as the basic starting point of IA approach,
and different versions of IA treatments are achieved by
applying different numerical schemes in calculating equa-
tion (14) [42].

The aforementioned atomic binding effects and elec-
tron pre-collision motion make the IA results significantly
different from FEA results. In the FEA results, there is
a one-to-one correspondence between the final state pho-
ton energy ωf and the scattering angle θ (see equation

(6)). While in the IA approach, due to the electron mo-
tion around atomic nuclei, the energy of the scattered
photon ωf can not be totally determined by its scat-
tering angle θ as in FEA. For the same scattering an-
gle θ, the outgoing photon energy ωf has a continuous
distribution. The maximum cross section is located at
the Compton energy ωC , which is given by equation (6),
forming a “Compton peak” in the spectrum of DDCS.
In figure 2, the DDCS of Compton scattering predicted
in FEA and IA approaches are illustrated schematically.
Sometimes, it is more enlightening to interpret the emer-
gence of “Compton peak” as the Doppler broadening ef-
fect of the “Compton line” (located at Compton energy
ωC) [47, 48]. This Doppler effect is due to the bound
electrons’ motion around atomic nuclei.

The nonrelativistic impulse approximation (NRIA)
was first developed by J. W. M. DuMond in the 1930s
[12–14]. In 1970s, P. Eisenberger and P. M. Platzman
re-derived the NRIA formulation based on the more ac-
curate scattering matrix (SM) approach. It is shown that
NRIA can be viewed as the leading order approximation
of SM approach [15–18]. In NRIA, the DDCS of Comp-
ton scattering is given by [14, 15](

d2σ

dωfdΩf

)
NRIA

=
r2
0

2

me

K

ωf
ωi

(1 + cos2 θ)J(pz)

= YNRIA · J(pz) (15)

Here, K is the modulus of the momentum transfer vector
K ≡ kf − ki in Compton scattering process, and pz is
given by

pz =
K

2
− me(ωi − ωf )

K
(16)

In equation (15), the factor YNRIA = r2
0meωf (1 +

cos2 θ)/2Kωi relies on the dynamical and kinematical
properties of Compton scattering process in the nonrel-
ativistic limit. The J(pz) is a factor coming from the
many-body effects in atomic or molecular systems, which
is named as the “Compton profile” [24]

J(pz) ≡
∫∫

ρ(p)dpxdpy (17)

where ρ(p) is the electron momentum density of the
atomic or molecular ground-sataes. The Compton pro-
file is closely related to the electronic properties of the
atomic or molecular systems, and it has been widely stud-
ied in atomic, molecular and condensed matter physics
[6, 7, 9]. Furthermore, for most of the atomic systems,
the momentum distribution is spherical symmetric, then
the Compton profile reduces to

J(pz) = 2π

∞∫
|pz|

pρ(p)dp (18)

In these cases, the Compton profile J(pz) is bell-shaped
and axisymmetric around the pz = 0 axis. However,
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many of the molecular or condensed matter systems do
not have this spherical symmetric property.

The relativistic impulse approximation (RIA) was de-
veloped by R. Ribberfors et al. in 1975-1985 [18–23].
In this formulation, the DDCS of Compton scattering is
given by [21, 22, 45](

d2σ

dωfdΩf

)
RIA

=
r2
0

2

me

K

mec
2

E(pz)

ωf
ωi
X(pz)J(pz)

= YNRIA · J(pz) (19)

The same as in NRIA, YRIA =
r2
0m

2
ec

2ωfX(pz)/2KωiE(pz) is a factor depends on
kinematical and dynamical properties of Compton
scattering. The factor relevant to atomic or molecular
structure is the Compton profile J(pz) defined in
equation (17). In equation (19), K is the modulus of
the momentum transfer vector K ≡ kf − ki and pz is
the projection of the electron’s initial momentum on the
momentum transfer direction

pz =
p ·K
K

=
ωiωf (1− cos θ)− E(pz)(ωi − ωf )

c2K
(20)

Moreover, the function X(pz) is defined to be

X(pz) =
Ki(pz)

Kf (pz)
+
Kf (pz)

Ki(pz)

+2m2
ec

2

(
1

Ki(pz)
− 1

Kf (pz)

)
+m4

ec
4

(
1

Ki(pz)
− 1

Kf (pz)

)2

(21)

with Ki and Kf defined as

Ki(pz) =
ωiE(pz)

c2
+
ωi(ωi − ωf cos θ)pz

c2q
(22)

Kf (pz) = Ki(pz)−
ωiωf (1− cos θ)

c2
(23)

E(pz) =
√
m2
ec

4 + p2
zc

2 (24)

To summarize, combining equations (15) and (19), it
is clearly that the DDCS of Compton scattering process
calculated in IA approach factorizes into two parts(

d2σ

dωfdΩf

)
IA

= YIA · J(pz) (25)

where YIA is a factor dependent on kinematical and dy-
namical properties of Compton scattering process, and
the Compton profile J(pz) is relevant to the electron mo-
mentum distribution of the atomic or molecular ground-
states. It is worth noting that, in the IA approach,
all the many-body effects in atomic and molecular sys-
tems in Compton scattering process are incorporated into
Compton profiles J(pz). The Compton profile can re-
flect electronic structures and properties of target mate-
rials. Therefore, it provide us an opportunity to learn the

electronic structures, electron interactions and properties
of materials from Compton scattering processes. In ac-
tual ab initio calculations, the Compton profile J(pz) can
be calculated by the nonrelativistic Hartree-Fock theory
(HF), the relativistic Dirac-Hartree Fock theory (DHF),
and the density functional theory (DFT) [24, 46, 49–
53]. Interestingly, the FEA result can be simply reduced
from IA result by replacing the Compton profile with the
Dirac delta distribution J(pz) = δ(pz). Considering the
atomic binding effects and electron pre-collision motions,
the IA formulation could overcome the shortcomings in
the FEA method. It is a practical approach to calculate
the Compton scattering of bound electrons with X-rays
and gamma-rays. Later researches shown that the IA
approach could serve as a good approximation in energy
region near the “Compton peak” [29, 42] (see figure 2
and figure 3).

Although the IA formulation effectively takes into con-
sideration the atomic binding effects and electron pre-
collision motions around atomic nuclei, it still has limi-
tations in dealing with Compton scattering. In IA for-
mulation, all the many-body effects in Compton scatter-
ing process are incorporated into Compton profile J(pz),
which is an observable only related to the atomic or
molecular ground-states. The many-body effects com-
ing from the ionized states and the interference terms
among different momentum eigenstates are still insuffi-
cient in the dynamical process of Compton scattering.
In the past few years, several approaches beyond the
IA had already been investigated [28–34]. These re-
searches, which mainly employ the low-energy theorem
(LET) and scattering matrix (SM) approaches, have re-
vealed many nontrivial properties of Compton scattering
and have attracted lots of interests in interdisciplinary
studies. Through comparing IA with these more ad-
vanced approaches, it is clearly that the validity region
for IA approach is just near the Compton peak region.
Further, in the validity region of IA, the momentum
transfer K in Compton scattering is much larger than the
average momentum paverage for bound electrons (namely
paverage/K � 1) [28, 32, 54, 55]. We will specialize in the
SM approach in section V.

IV. INCOHERENT SCATTERING FACTOR /
INCOHERENT SCATTERING FUNCTION

In this section, we give an introduction of the inco-
herent scattering function / incoherent scattering factor
(ISF) approach. First, we can use the IA result as an
example to illustrate the ISF approach. Starting from
the IA result of DDCS in equations (15) and (19), the
angular distribution of Compton scattering can be calcu-
lated by an integration of final state photon energy ωf
over the allowed range

dσ

dΩf
=

∫ ωmax

ωmin

d2σ

dωfdΩf
dωf (26)
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After this integration, the angular distribution dσ/dΩf
can be reduced to the product of Klein-Nishina result in
equation (9) and a correction factor [21, 22].(

dσ

dΩf

)
IA / ISF

=

(
dσ

dΩf

)
FEA

SF (ωi, θ) (27)

The correction factor SF (ωi, θ) is called the scattering
function or scattering factor. Apart from IA, there are
other ways to give the same results in equation (27)
[25, 26]. This kind of approach, in which the angular
distribution of Compton scattering is given by equation
(27) and SF (ωi, θ), is called the ISF approach.

We can use the following way to understand the phys-
ical meaning of scattering function SF (ωi, θ). If the
atomic or molecular system has N electrons, and each
electron scattered with photon independently as free elec-
trons. Then the angular distribution of Compton scat-
tering for the whose system becomes(

dσ

dΩf

)total system

FEA

= N

(
dσ

dΩf

)single electron

FEA

(28)

Therefore, the scatting function SF (ωi, θ), which is de-
fined to be the ratio between the contribution of total
system and that of single electron

SF (ωi, θ) ≡
(
dσ/dΩf

)total system(
dσ/dΩf

)single electron

FEA

(29)

can be view as the number of activated electrons in the
Compton scattering process.

Here, we would present the scatting function SF (ωi, θ)
calculated within the RIA approach, the scatting func-
tion calculated using NRIA can be obtained in a similar
way. To obtain scatting function SF (ωi, θ) from RIA,
we need to substitute the DDCS in equation (19) into
equation (26) and evaluate the integral. After utilizing
some approximations, the factorization results of angu-
lar distribution in equation (27) can be obtained. Fi-
nally, the scattering function SF (ωi, θ) can be expressed
as [21, 45, 102]:

SF (ωi, θ) =
∑
i

ZiΘ(ωi − Ui)ni(pmax
i ) (30)

The Heaviside step function Θ(ωi − Ui) guarantees that
only the activated electrons are included. In Compton
scattering process, the electron becomes activated when
the transferred energy T = ωi − ωf is larger than the
binding energy Ui for i-th subshell. In equation (30), Zi
is the number of electron in i-th subshell, pmax

i denotes
the maximum value of pz for the i-th subshell electron

pmax
i =

ωi(ωi − Ui)(1− cos θ)−mec
2Ui

c
√

2ωi(ωi − Ui)(1− cos θ) + U2
i

(31)

and function ni(p
max
i ) is defined to be an integral for

Compton profile

ni(p
max
i ) =

pmax
i∫
−∞

Ji(pz)dpz (32)

Here, the function Ji(pz) is the single electron Compton
profile for i-th subshell. It can be expressed as

Ji(pz) =

∫∫
ρi(p)dpxdpy (33)

The ρi(pz) is the electron momentum distribution for i-
th subshell, which can be calculated by ground state mo-
mentum wavefunctions. Then the total Compton profile
for atomic or molecular system is give by

J(pz) =
∑
i

ZiJi(pz) (34)

The quantity SF (ωi, θ) in equation (30) is the scat-
tering function in RIA formulation. In principle, it is a
two-variable function depending on initial photon energy
ωi and scattering angle θ. However, in the nonrelativistic
limit, these two variables are related to each other and
they can not be fully separated, which makes the scatter-
ing function SF (ωi, θ) further reduce to a single-variable
function [27, 102]. The interdependence of ωi and θ is
realized via a new variable x used in Hubbell’s work [27]

x[Å
−1

] = sin(
θ

2
)/λ[Å] (35)

λ[Å] =
12.3984

ωi[keV ]
(36)

Actually, in this expression, x is proportional to the mo-
mentum transfer in the elastic scattering between photon
and electron, which is the Rayleigh scattering process, at
scattering angle θ.

It should be mentioned that, although the above ISF
result on angular distribution displayed in equation (27)
is derived from IA approach, the same result can be
derived from other theories. In other words, there are
alternative methods to calculate the scattering function
SF (ωi, θ) in Compton scattering process. For instance,
in the nonrelativistic Waller-Hatree theory, the scattering
function is given by [25]

SF (K,N)WH = N −
N∑
i=1

fii(K)−
N∑
i=1

N∑
j=1

|fij(K)|2 (37)

where N is the number of electrons in atomic or molec-
ular systems, and fij(K,N) is form factor

fij(K) =

∫∫∫
ψ∗i (r)eiK·rψj(r)dr (38)

Here, ψ(r) is the single-electron wavefunction for i-th
electron, and K ≡ kf −ki is momentum transfer vector.
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Later, in a work presented by J. H. Hubbell et al., a more
accurate expression for scattering function was used to
include ionized state effects [27]

SF (K,N) =

〈
Ψ

∣∣∣∣ N∑
i=1

N∑
j=1

eiK·(ri−rj)

∣∣∣∣Ψ〉− [F (K,N)]2

(39)
where the summation is over all electrons in atomic or
molecular systems. In this equation, |Ψ〉 is the ground
state for atomic or molecular systems, ri and rj are
position vectors for i-th and j-th electrons correspond-
ingly, and F (K,N) is the total form factor for atoms or
molecules defined by

F (K,N) =

∫
ρ(r)eiK·rdr (40)

The above results predicted by ISF approach are valid
when variable x and momentum transfer K are large,
which has been confirmed by experiments [36, 39, 56].
However, there are limitations on the ISF approach.
Firstly, the ISF approach based on equation (27) can only
be used to calculate the angular distribution for Comp-
ton scattering process. The information coming from the
more differential quantities, such as DDCS d2σ/dωfdΩf ,
are lost in the integration. Secondly, in the ab initio cal-
culations of scattering function SF (ωi, θ), contributions
from Compton scattering and Raman scattering cannot
be efficiently distinguished [29, 40]. In numerical tabu-
lations, contributions of these two processes are summed
over to give a total result. In the high energy region, it
is lucky the Compton scattering is dominant comparing
with the Raman scattering.

The same as Compton profile J(pz) discussed in section
III, the scattering function SF (ωi, θ) could also reflects
the properties of target materials. Therefore, scattering
function also opens up a bridge between Compton scat-
tering and interdisciplinary studies. It offers opportuni-
ties to learn the electronic structure and properties of tar-
get materials from Compton scattering process [27, 56].

V. SCATTERING MATRIX APPROACH

In this section, we specialize in the scattering matrix
(SM) approach. In this approach, atomic binding effects
and many-body effects in atomic or molecular systems
are taken into account more precisely. It not only pro-
vides us a more complete understanding of the main fea-
tures of Compton scattering with bound electrons, but
also helps us recognize the validity regions for other meth-
ods (such as FEA and IA). With these advantages, the
SM approach has attracted large interests in interdisci-
plinary studies [32, 34].

In the SM approach, the DDCS of Compton scattering
process can be calculated by the scattering matrix of a

many-body theory(
d2σ

dωfdΩf

)
SM

∝|Mif |2 (41)

Therefore, it is named as the scattering matrix (SM)
approach. In this approach, the scattering matrix of
Compton scattering process Mif ∝ 〈Ψf |HI |Ψi〉 can be
calculated through the many-body interaction Hamilto-
nian HI for atomic or molecular systems. The interaction
Hamiltonian HI is determined by electromagnetic inter-
actions between bound electrons and radiation photon
fields, and it is given by the Quantum Electrodynam-
ics (QED) for atomic and molecular systems. There are
two categories of SM approaches: the nonrelativistic and
relativistic theories. In the nonrelativistic theories, the
interaction Hamiltonian HI is expressed as

Hnonrelativistic
I =

N∑
i=1

[
e2

2mec
A2 − e

mec
pi ·A

]
(42)

Here, A is quantized electromagnetic vector potential
which describe radiation field of incoming photon acting
on atomic or molecular system. The pi is the momentum
for i-th electron, and the summation is over all electrons.
In the relativistic theories, the interaction Hamiltonian
is written by

Hrelativistic
I = −

N∑
i=1

cαi ·A (43)

where αi is the conventional Dirac matrices for i-th elec-
trons.

The earlier works on SM approach were carried out
based on the nonrelativistic Hamiltonian HI , and they
were restricted to A2 term (only the first term in the
square bracket of equation (42) was included) [15, 57–59].
The contributions from the second term pi ·A were ac-
complished by M. Gavrila et al. in 1970s [60–63]. The full
relativistic treatment was first attempted by I. B. Whit-
tingham [64, 65] and then developed by P. M. Bergstrom,
T. Surić, R. H. Pratt et al. in 1990s [28, 29, 54, 66, 67].
In these works, the initial and final states (|Ψi〉 and
|Ψf 〉) in atomic or molecular systems were calculated
within the independent particle model (IPM), in which
the single-electron states are solved through the unper-
turbed Hamiltonian

H0 =
p2
i

2me
+ U(ri) (44)

Here, pi and ri are the momentum and position of the
i-th electron. In the IPM method, the potential for i-th
electron U(ri) is given by the mean field of atomic nu-
clear potential and many-body interactions from other
bound electrons. The IPM treatment may not be a per-
fect method in dueling with electron non-local exchange
and correlations, and new treatments to tame electron
non-local exchange in the framework of SM is still in
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FIG. 3: Schematic plot of Compton scattering DDCS in the
SM approach at the scattering angle θ. The horizontal axis
labels the finial photon energy ωf , and the vertical axis labels
the DDCS of Compton scattering process.

development [40]. With the initial and final state wave-
functions |Ψi〉, |Ψf 〉, and interaction HamiltonianHI , the
DDCS of Compton scattering process can be achieved
from equation (41). There are a lot of techniques to cal-
culate the matrix elements Mif in equation (41), which
is beyond the scope of this work. In particular, in the
nonrelativistic theories, the scattering matrix element
Mif ∝ 〈Ψf |HI |Ψi〉 reduces to the Kramers-Heisenberg-
Waller (KHW) matrix element [68–70].

The spectrum of DDCS in Compton scattering ob-
tained from SM approach has three main features.
Firstly, when final state photon energy approach to zero,
namely in the ωf → 0 limit, an infrared rise emerges
in the spectrum [32]. This infrared rise is an example
of infrared divergence behavior, which is a common fea-
ture of QED [11, 71]. The same infrared rise behav-
ior is also predicted in the low-energy theorem (LET)
method [72, 73] [105]. Secondly, some resonant peaks
appear near the characteristic X-rays energies, which are
the transition energies between different atomic or molec-
ular states [106]. This resonant behavior mostly come
from Compton scattering with L and M shell electrons
[29]. At last, the “Compton peak” is reproduced in the
vicinity of Compton energy ωC . In the SM results, the
center of Compton peak ωSM

cen is slightly different from the
Compton energy ωC , and the difference δ = ωSM

cen − ωC
leads to the “Compton defect” or “asymmetry of Comp-
ton profile” [32, 40, 74] [107]. When the modulus of mo-
mentum transfer K in Compton scattering is sufficiently
large such that inequalities paverge/K � 1 and a/K � 1
are satisfied, the “Compton defect” becomes extremely
small and it can be neglected [28, 29, 32, 54, 67, 74]. Here,
paverge is the average momentum in atomic or molecular
systems, a is parameter defined to be a = mecZα, and

α ≈ 1/137 is the fine-structure constant. In these cases,
the RIA result does not present notable deviations from
the SM result in the Compton peak region. The spec-
trum of DDCS predicted by SM result is illustrated in
figure 3. To summarize, in the SM results, DDCS of
Compton scattering exhibit infrared rise, the resonant
peak, and the Compton peak. The three categories of
peaks arise in different energy ranges. When we discuss
the Compton peak, the final photon energy ωf should
near Compton energy ωC , and the incident photon en-
ergy ωi > ωC . When the resonant peak is observed, final
photon energy ωf is just near the X-ray characteristic
energy of atoms or molecules, and initial photon energy
ωi is usually much larger than this characteristic energy.
In order to see the infrared rise, final photon energy ωf
should goes to zero (namely ωf → 0), while the incident
energy ωi is not necessary to be very small.

It should be noted that the SM approach is still in
development now [32–34, 37, 38, 40, 75–77]. In some
studies, new treatments and techniques are pursued to
handle electron non-local exchange and correlation by
methods beyond IPM [37, 38, 75]. Other studies are de-
voted to more complex scattering process, for instance,
A. N. Hopersky et al. investigated the Compton scatter-
ing and Rayleigh scattering of two X-ray photons [76, 77].
Apart from the theoretical explorations, there are several
experiments which have provided evidences to confirm
the SM approach [35–41]. Recently, Max Kircher et al.
conducted a kinematically complete Compton scattering
experiment utilizing X-rays produced from accelerators
with energy about 2.1 keV. By measuring the angular
distribution of the scattered photon, the experimental ob-
servations present large deviations with the FEA results,
but the experimental data are consistent with theoreti-
cal predictions from SM approach [41]. This observation
indicates that the SM approach is becoming a promis-
ing tool to duel with Compton scattering with bound
electrons. Furthermore, the resonant peaks in Comp-
ton spectrum near the characteristic X-rays energies pre-
dicted by SM approach have also been confirmed by ex-
periments [35]. However, despite lots of attempts, the
infrared rise behavior in Compton spectrum predicted by
SM approach (which is also predicted by LET approach)
has not been confirmed in experiments yet.

Although there is still inadequacy in duel with some
many-body effects (such as the electron non-local ex-
change), the SM is the most advanced and accurate ap-
proach in the ab initio calculations of Compton scattering
with bound electrons over the past years. Firstly, in SM
approach, the initial state |Ψi〉, final state |Ψf 〉, and the
dynamical process of Compton scattering are all treated
by many-body QED theory of atomic or molecular sys-
tems. It is a fully quantum many-body approach, not
just making simple corrections to the FEA results, like
RIA and ISF approaches. Secondly, the SM approach can
take the many-body effects in atomic or molecular sys-
tems into account as much as possible. In this approach,
atomic bindings, electron motions around atomic nuclei
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and electron many-body interactions are all considered
in the starting points of theoretical treatments. Thirdly,
SM results can reflect all the main features in Comp-
ton scattering process: the infrared rise at low energy,
the resonant peak at X-ray characteristic energy, and the
broaden “Compton peak” near the Compton energy ωC .
With the aforementioned superiority, SM can make more
accurate predictions in the entire region of the spectrum.
Furthermore, many other approaches, such as FEA and
IA, can be derived from the SM approach by making
appropriate and simplified approximations. Since it was
developed, SM have attracted lots of interests in atomic
and molecular physics, and it may has great impacts in
these areas in the near future.

VI. COMPARISONS BETWEEN
THEORETICAL CALCULATIONS AND
EXPERIMENTAL MEASUREMENTS

In the section, in order to have a better understanding
of characteristics and limitations of the approaches de-
scribed above, the comparisons between theoretical cal-
culations and experimental measurements are provided.
Limited by the scope of this work, only a few represen-
tative examples are presented. For more examples, the
readers can resort to references [28, 36, 56, 78–84].

For the angular distribution of Compton scattering
process, the theoretical and experimental results of Fe
and Cu are presented in figure 4. In this figure, the in-
cident photon energy is ωi = 59.5 keV. We choose Fe
and Cu elements as representative examples of elemen-
tal metal and ferromagnetic metal, respectively. Results
of other elements exhibit a similar behavior, and they
are not displayed in this figure. The readers could find
more examples in references [78–81]. The experimental
measurements from references [79, 80] and the theoret-
ical predictions of FEA and ISF approaches[80, 81] are
plotted in this figure. In reference [81], the scattering
function SF (ωi, θ) is calculated using equation (30) in
RIA framework [80, 81] [108]. The results in figure 4 indi-
cate that ISF is a better approach than FEA in calculat-
ing the angular distribution for Compton scattering pro-
cess. The ISF results successfully reproduce experimen-
tal measurements at all angles, while the FEA results can
bring about large discrepancies in the small angle regions.
In this region, both the energy transfer and momentum
transfer in Compton scattering process are very small,
so that atomic electrons cannot be viewed as free elec-
trons anymore. In the low-energy and low-momentum
transfer region (correspond to small scattering angle θ),
only a small percentage of bound electrons in atomic or
molecular systems are activated in the Compton scat-
tering process. Therefore, the FEA results, in which all
electrons are treated as free and activated, would tremen-
dously overestimate the angular distribution of Compton
scattering process.

For the DDCS of Compton scattering process, the the-
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FIG. 4: Angular distribution for Compton scattering process
at incident photon energy ωi = 59.5 keV for Fe and Cu. In
this figure, the vertical axis labels differential cross sections
dσ/dΩf , and the horizontal axis labels the scattering angle
θ. The experimental measurements from reference [79, 80]
and the theoretical predictions of FEA and ISF approaches
[80, 81] are plotted in this figure.

oretical and experimental results are presented in figure
5. This figure gives the results of Cu, Sn and Pb ele-
ments. It is worth noting that, for the DDCS, the FEA
result becomes singular at the Compton energy ωC , while
it gets zero at other energies. This is due to the Dirac
delta function δ(ωf −ωC) in equation (10). For this rea-
son, it is not that valuable to plot the FEA result, what
we need to focus are the IA and SM predictions. In this
figure, subfigures (a), (b) and (c) correspond to the fol-
lowing cases: (a). Compton scattering for Pb atom at
ωi = 279.2 keV and θ = 135o; (b). Compton scatter-
ing for K-shell electrons of Sn atom at ωi = 279.2 keV
and θ = 115o; (c). Compton scattering for K-shell elec-
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FIG. 5: DDCS of Compton scattering for Cu and Pb elements. In this figure, the vertical axis labels the DDCS dσ/dΩfdωf ,
and the horizontal axis labels the final photon energy ωf . The subfigures (a), (b) and (c) correspond to the following cases: (a).
Compton scattering for Pb atom at ωi = 279.2 keV and θ = 135o; (b). Compton scattering for K-shell electrons of Sn atom
at ωi = 279.2 keV and θ = 115o; (c). Compton scattering for K-shell electrons of Cu atom at ωi = 59.5 keV and θ = 125o.
The experimental measurements are given by references [82–84]. The theoretical predictions from RIA and SM approaches are
given by Qiao et al. and Bergstrom et al. [28, 42, 54].
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trons of Cu atom at ωi = 59.5 keV and θ = 125o. The
subfigures (a) and (b) display the Compton peak region,
while the subfigure (c) presents the spectrum outside the
Compton peak. In the subfigure (a), the SM result is
calculated by Bergstrom et al. [54], the RIA result is
given by Qiao et al. [42], and experimental measure-
ments are given by Rullhusen and Schumacher [82]. In
the subfigures (b) and (c), the theoretical SM results are
given through combined works of Bergstrom et al. and
Gavrila [28, 62], the RIA result is given by Bergstrom et
al. [28], and the experimental measurements are given
by Basavaraju et al. [83] and Manninen et al. [84], re-
spectively. In subfigure (c), the LET results are calcu-
lated by Bergstrom et al. [28]. From these comparisons,
some conclusions can be drawn. Firstly, for the DDCS
of Compton scattering, the FEA approach becomes defi-
cient and inconvenient, because of the singular behavior
in the spectrum. Secondly, the SM and RIA results are
similar in Compton peak region ωf ≈ ωC . Both RIA and
SM results are consistent with experimental observations
in the Compton peak region, when some discrepancies
are included. Thirdly, the SM result is largely different
from the RIA result outside the Compton peak, due to
the infrared rise mentioned in section V (and possible res-
onant peaks near X-ray characteristic energies, which are
not emerged in subfigure (c) [109]). In regions far from
the Compton peak, especially the infrared region where
final photon energy ωf is very small, more experimental
data are required to test the SM results.

Since RIA result is reliable and consistent with ex-
perimental observations in the Compton peak region
ωf ≈ ωC , we can safely use Compton profile J(pz) in
IA approach to tackle Compton scattering in peak re-
gion. In the past decades, many researches emerged to
study Compton profiles using the theoretical IA approach
combined with experimental measurements near Comp-
ton peak [5, 7, 9]. In experiments, the Compton profiles
for atomic or molecular systems can be exacted from ex-
perimental data via equation[

J(pz) =

∫∫
ρ(p)dpxdpy

]
exp

=

(
d2σ

dΩfdωf

)
exp

Y IA
(45)

Here,
(
d2σ/dΩfdωf

)
exp

is the experimental measured

DDCS of Compton scattering. Experimental studies
for Compton profile has attracted huge interests in re-
cent years [5, 53, 85]. Furthermore, there are other
quantities similar to the conventional Compton profile
J(pz) =

∫∫
ρ(p)dpxdpy discussed above. For example,

if the incident photon beams are polarized, the differen-
tial cross-section is connected with the magnetic Comp-
ton profile [J(pz)]mag =

∫∫
[ρ↑(p)−ρ↓(p)]dpxdpy [86–90],

where ρ↑(p) and ρ↓(p) are the spin polarized electron
momentum densities. Other kinds of Compton profiles,
such as the directional Compton profile obtained by set-
ting z axis along different crystallographic axes, are also
widely studied in recent years [5, 91, 92]. Limited to the
scope of the present work, we only focus ourselves on the

conventional Compton profile J(pz) defined in equation
(17). Other kinds of Compton profiles are not discussed
in details. More information on various kinds of Comp-
ton profiles can be found in references [5, 86].

VII. DATABASE AND APPLICATIONS

In the past several decades, Compton scattering had
been extensively applied into many branches of science,
including atomic [29], molecular, condensed matter [5–
9], astrophysical [93], nuclear and elementary particle
physics [45, 94, 95]. A lot of experimental and theoretical
investigations concerning X-rays and gamma-rays cannot
be carried on without the help of Compton scattering
[36, 78, 96]. As discussed in section III and section IV,
Compton scattering is a powerful tool to study momen-
tum distribution for bound electron in atomic, molecular
and condensed matter systems [3–5], both for theoreti-
cal and experimental studies. With the help of Comp-
ton profile and Compton scattering experiments, electron
correlations, Fermi surfaces and band structures in mate-
rials can be investigated [6–9]. The Compton profiles are
also closely related to the positron annihilation angular
correlation spectra [97]. Furthermore, the development
of modern gamma-ray spectrometer and imaging devices
is also benefits a lot from the Compton scattering [98–
101].

In the passed years, many databases on Compton scat-
tering had already been built up. The most common
quantities in tabulations and databases are Compton
profile J(pz), incoherent scattering function SF (ωi, θ),
and total cross section σ [110]. For engineering or in-
dustrial applications, the data of differential cross sec-
tions d2σ/dωfdΩf and dσ/dΩf in Compton scattering
can be easily achieved from the tabulation of Compton
profile and scattering function (using equations (3) and
(4)). The most widely used database on Compton pro-
file J(pz) over past years was given by F. Biggs et al.
in 1975, in which a complete study on atomic Compton
profile for elements (1 ≤ Z ≤ 102) was presented [24].
In Biggs’s work, the nonrelativistic Hartree-Fock theory
was used to calculate Compton profiles for light elements
(1 ≤ Z ≤ 36) and the relativistic Dirac-Hartree-Fock
theory was used to calculate Compton profiles for heavy
elements (36 ≤ Z ≤ 102). On the scattering function
SF (ωi, θ), J. H. Hubbell et al. provided extensive and
widely available tabulations for elements (1 ≤ Z ≤ 100)
based on equation (39) in 1975, with ground state wave-
functions calculated by several methods [27]. Later, S.
Kahane gave refined calculations using RIA approach and
Dirac-Hartree-Fock ground state wavefunctions for all el-
ements (1 ≤ Z ≤ 110) in 1998 [102]. For the total cross
section σ, J. H. Hubbell et al. also gave tabulations for
elements (1 ≤ Z ≤ 100) in their early work in 1975 [27].
The up-to-date tabulations on total cross section σ are
provided by EPDL and NIST databases, which combine
the theoretical and experimental data [103, 104].
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VIII. SUMMARY

Throughout this paper, we give an overview of the the-
oretical approaches on the ab initio calculation for Comp-
ton scattering with bound electrons in atomic or molecu-
lar systems. In this work, we focus on the basic ideas and
main results for several approaches. The advantages, va-
lidity ranges, and applications of each approach are also
briefly explained. These approaches are free electron ap-
proximation (FEA), impulse approximation (IA), inco-
herent scattering factor / incoherent scattering function
approximation (ISF), scattering matrix (SM). Limited to
the scope of this work, other approaches and applications
are not discussed here, and there are many important
works we have not mentioned in this work. We hope
that this work would be helpful to theoreticians and ex-
perimentalists, especially for those who work on interdis-
ciplinary branches of science with the help of Compton
scattering.

ACKNOWLEDGMENTS

The authors should also thank to the great efforts
from all around the world during the pandemic period

of Covid-19. This work was supported by the Scientific
Research Foundation of Chongqing University of Tech-
nology (Grants No. 2020ZDZ027 and No. 2019ZD21),
the Natural Science Foundation of Chongqing (Grant No.
2020CCZ036).

ABBREVIATIONS

The following abbreviations are used in this work:

DDCS Doubly-differential Cross Section
DHF Dirac-Hartree Fork
FEA Free Electron Approximation
HF Hartree Fork
IA Impulse Approximation
NRIA Nonrelativistic Impulse Approximation
RIA Relativistic Impulse Approximation
ISF Incoherent Scattering Function

Incoherent Scattering Factor
SM Scattering Matrix
LET Low Energy Theorem

[1] A. H. Compton, A Quantum Theory of the Scattering
of X-rays by Light Elements, Phys. Rev. 21, 483-502
(1923).

[2] A. H. Compton, The Spectrum of Scattered X-Rays,
Phys. Rev. 22, 409-413 (1923).

[3] M. J. Cooper, Compton scattering and electron momen-
tum distributions, Adv. Phys. 20, 453-491 (1971).

[4] M. J. Cooper, Compton scattering and electron momen-
tum determination, Rep. Prog. Phys. 48(4), 415-481
(1985).

[5] M. J. Cooper, Compton scattering and the study of
electron momentum density distributions, Radiat. Phys.
Chem. 50, 63-76 (1997).

[6] Y. Kubo, Electron correlation effects on Compton pro-
files of copper in the GW approximation, J. Phys. Chem.
Solids 66 2202-2206 (2005).

[7] A. Rathor, V. Sharma, N. L. Heda, Y. Sharma and B.
L. Ahuja, Compton profiles and band structure calcula-
tions of IV-VI layered compounds GeS and GeSe, Ra-
diat. Phys. Chem. 77, 391-400 (2008).

[8] Y. J. Wang, H. Lin, B. Barbiellini, P. E. Mijnarends,
S. Kaprzyk, R. S. Markiewicz and A. Bansil, Pro-
posal to determine the Fermi-surface topology of a doped
iron-based superconductor using bulk-sensitive Fourier-
transform Compton scattering, Phys. Rev. B 81, 092501
(2010).

[9] C. Pisani, M. Itou, Y. Sakurai, R. Yamaki, M. Ito, A.
Erba and L. Maschio, Evidence of instantaneous elec-
tron correlation from Compton profiles of crystalline sil-
icon, Phys. Chem. Chem. Phys. 13, 933-936 (2011).

[10] O. Klein and Y. Nishina, Über die Streuung von
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[66] T. Surić, P. M. Bergstrom, K. Pisk and R. H. Pratt,
Compton scattering of photons by inner-shell electrons,
Phys. Rev. Lett. 67, 189-192 (1991).
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R. H. Pratt, Asymmetry and the shift of the Compton
profile, Nucl. Instrum. Meth. A 580, 22-24 (2007).

[75] A. N. Hopersky, A. M. Nadolinsky and Sergey A.
Novikov, Intershell correlations in Compton photon
scattering by an atom, Phys. Rev. A 82, 042710 (2010).

[76] A. N. Hopersky, A. M. Nadolinsky and S. A. Novikov,
Compton scattering of two x-ray photons by an atom,
Phys. Rev. A 92, 052709 (2015).

[77] A. N. Hopersky, A. M. Nadolinsky and S. A. Novikov,
Rayleigh scattering of two x-ray photons by an atom,
Phys. Rev. A 93, 052701 (2016).

[78] P. P. Kane, Inelastic scattering of X-rays and gamma

rays by inner shell electrons, Phys. Rep. 218, 67-139
(1992).

[79] Y. Kurucu, Incoherent scattering cross-sections for ele-
ments with 23 ≤ Z ≤ 51 at 59.5 keV photon energy, J.
Electron Spectrosc. 142, 39-43 (2005).

[80] P. Yalcin, N. Ekinci and Y. Kurucu, Incoherent scatter-
ing of 241[Am] gamma photons, Spectrochim. Acta. B
57, 791–796 (2002).

[81] X. J. Wang, B. Miguel, J. Seuntjens, and J. M.
Fernández-Varea, On the relativistic impulse approxi-
mation for the calculation of Compton scattering cross
sections and photon interaction coefficients used in kV
dosimetry, Phys. Med. Biol. 65, 125010 (2020).

[82] P. Rullhusen and M. Schumacher, Cross section profiles
for Compton scattering of 279.2 keV photons by copper,
tin and lead, J. Phys. B: Atom. Molec. Phys. 9, 2435-
2446 (1976).

[83] G. Basavaraju, P. P. Kane, and Suju M. George, Comp-
ton scattering of 279.2-keV γ rays by K-shell electrons
Phys. Rev. A 36, 655-664 (1987).
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