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Abstract  

The mechanism of charge carrier interaction in twisted bilayer graphene (TBG) remains an 

unresolved problem, where some researchers proposed the dominance of the electron-phonon 

interaction, while the others showed evidence for electron-electron or electron-magnon 

interactions. Here we propose to resolve this problem by generalizing the Bloch-Grüneisen 

equation and using it for the analysis of the temperature dependent resistivity in TBG. It is a 

well-established theoretical result that the Bloch-Grüneisen equation power-law exponent, n, 

exhibits exact integer values for certain mechanisms. For instance, n=5 implies the electron-

phonon interaction, n=3 is associated with electron-magnon interaction and n=2 applies to the 

electron-electron interaction. Here we interpret the linear temperature-dependent resistance, 

widely observed in TBG, as n1, which implies the quasielastic charge interaction with 

acoustic phonons. Thus, we fitted TBG resistance curves to the Bloch-Grüneisen equation, 

where we propose that n is a free-fitting parameter. We found that TBGs have a smoothly 

varied n-value (ranging from 1.4 to 4.4) depending on the Moiré superlattice constant, , or 

the charge carrier concentration. This implies that different mechanisms smoothly transition 

from one to another. The proposed generalized Bloch-Grüneisen equation is applicable to a 

wide range of problems, including the Earth geology. 
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Quantifying the charge carrier interaction in metallic twisted graphene superlattices  

 

Bilayer graphene with twisted atomic sheets represents a versatile two-dimensional 

material where depends on the rotation angle and change carrier concentration a wide number 

of physical effects can be emerged [1-11]. One of the most interesting subclass of twisted 

bilayer graphene structures is the Moiré superlatices formed at so-called magic angles,  at 

which two layers become more strongly coupled and the Dirac velocity crosses zero [12-14].  

TBG hexagonal two-dimensional superstructures are characterised by the superlattice 

constant,  [13]:  

𝜆 =
𝑎

2⋅𝑠𝑖𝑛(𝜃)
         (1)  

where a = 0.246 nm is the lattice constant of the single layer graphene. It should be noted that 

recently Park et al [15] reported that magic-angle trilayer graphene superlattices have 

correlated electronic states similar to ones observed in its bilayer counterpart.  

One of most interesting problem in understanding of TBG is the mechanism of the charge 

carrier interaction, where some research groups proposed that there is a dominant role of the 

electron-phonon interaction (which is also considered as the emerging mechanism for the 

superconductivity in MATBG by some authors [16-21]), while the other groups showed 

evidences for the dominance of the electron-electron interaction [1,8,15], and, recently, new 

experiments demonstrated the dominance of the electon-magnon interaction [4,7,10]. Such a 

variety of the proposed interaction mechanisms in TBG reflects a large variety of physical 

effects which are simultaneously synergised to form the electronic state in these 2D materials.  

In attempt to quantify these physical effects in metallic TBG superlattices here we 

proposed to generalize the Bloch-Grüneisen (BG) equation [22,23] which describes 

temperature dependent resistance in metallic compounds and which in its classical form can 

be written as:  



3 
 

𝑅(𝑇) = 𝑅0 + 𝐴1 ⋅ 𝑇 + ∑ 𝐴𝑛 ∙ (
𝑇

𝑇𝜃
)
𝑛

∙ ∫
𝑥𝑛

(𝑒𝑥−1)∙(1−𝑒−𝑥)

𝑇𝜃
𝑇
0

∙ 𝑑𝑥2,3,5
𝑛     (2)  

where 𝑅0 is the resistance at T  0 K, T is the Debye temperature, 𝐴𝑛 is weighting 

parameters, and n is the power-law exponent for which has theoretical integer values for 

certain single interaction mechanism [22-25]:  

𝑛 = {

 
2  𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 − 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 
3  𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 − 𝑚𝑎𝑔𝑛𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛
5  𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 − 𝑝ℎ𝑜𝑛𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  

 (3)  

 

However, it should be noted that entire BG integral (Eq. 2) has a linear limit for n  1:  

lim
𝑛→1

(
𝑇

𝑇𝜃
)
𝑛

∙ ∫
𝑥𝑛

(𝑒𝑥−1)∙(1−𝑒−𝑥)

𝑇𝜃
𝑇
0

∙ 𝑑𝑥 → (
𝐵

𝑇𝜃
) ⋅ 𝑇       (4)  

where B is a constant, and from mathematics, the linear term in Eq. 1 can be also represented 

in for of integral part at n  1 with some multiplicative weighting factor A1:  

𝑅(𝑇) = 𝑅0 + 𝐴1 ⋅ 𝑇 + ∑ 𝐴𝑛 ∙ (
𝑇

𝑇𝜃
)
𝑛

∙ ∫
𝑥𝑛

(𝑒𝑥−1)∙(1−𝑒−𝑥)

𝑇𝜃
𝑇
0

∙ 𝑑𝑥
(lim
𝑛→1

),2,3,5

𝑛    (5)  

It should be noted that Eq. 2 in its full form has been never applied for the analysis of 

experimental R(T) data, because the sum of strongly non-linear integrals over-parametrizes 

fitting procedure. Moreover, majority of all published works utilizes Eq. 1 where only 

electron-phonon integrand, i.e. n = 5, is included [26-28].  

One of possible way to use an analytic power of Eq. 2 is to reduce the number of integrals 

to one, but use the power-law exponent n as a free-fitting parameter:  

𝑅(𝑇) = 𝑅0 + 𝐴𝑛 ∙ (
𝑇

𝑇𝜃
)
𝑛

∙ ∫
𝑥𝑛

(𝑒𝑥−1)∙(1−𝑒−𝑥)

𝑇𝜃
𝑇
0

∙ 𝑑𝑥      (6)  

If the fit of R(T) to Eq. 6 will converge, then deduced free-fitting parameter n should indicate 

main charge carrier scattering mechanism in given materials.  

From the best author’s knowledge, the approach to implement Eq. 6 has been reported 

only by Jiang et al [25] for Sr2Cr3As2O2, where the dominant role of the electron-magnon 
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scattering (i.e. n = 3.34 [25]), with insignificant part of the electron-phonon interaction (n = 

5) has been revealed.  

It should be noted that a replacement full integrals in Eq. 2 or the integral in Eq. 6 by 

power law terms, 𝐴𝑛 ∙ 𝑇
𝑛, which has been implemented in several reports [29-31], cannot be 

accepted to be accurate approximation, as we show below herein.  

It should be noted that linear dependence of R(T) (or n  1 in terms of Eq. 6) in TBG has 

been proposed to be related to quasielastic scattering on acoustic phonon in MATBG [19] 

and, thus, deduced n-values in the range of 1 < 𝑛 < 2 have a clear interpretation as a sum of 

the electron-electron and elecrtron-quasielastic acoustic phonon interactions.   

Here we implemented Eq. 6 to fit R(T) data in TBG superlattices. First of all, we test the 

validity of Eq. 6 to be proper fitting tool for classical electron-phonon materials, including 

electron-phonon mediated superconductors, from which we chose ReBe22 [26], as well as 

normal metal copper, and ferromagnetic iron and cobalt (for all pure metals raw R(T) data 

was taken from classical paper by White and Woods [32]), as well as for highly-compressed 

-phase of iron, which exhibits the superconducting state (for which raw R(T) data were 

reported by Shimizu et al [33] and by Jaccard et al [29].  In Fig. 1 we show R(T) data and 

data fits for these materials (it should be noted that fits for superconducting ReBe22 and -Fe 

iron was performed by recently proposed equation [34]:  

𝑅(𝑇) = 𝑅0 + 𝜃(𝑇𝑐
𝑜𝑛𝑠𝑒𝑡 − 𝑇) ⋅

(

 
 𝑅𝑛𝑜𝑟𝑚

(𝐼0(𝐹⋅(1−
𝑇

𝑇𝑐
𝑜𝑛𝑠𝑒𝑡)

3 2⁄

))

2

)

 
 
+ 𝜃(𝑇 − 𝑇𝑐

𝑜𝑛𝑠𝑒𝑡) ⋅ (𝑅𝑛𝑜𝑟𝑚 + 𝐴 ∙

((
𝑇

𝑇𝜃
)
𝑛

∙ ∫
𝑥𝑛

(𝑒𝑥−1)∙(1−𝑒−𝑥)

𝑇𝜃
𝑇
0

∙ 𝑑𝑥 − (
𝑇𝑐
𝑜𝑛𝑠𝑒𝑡

𝑇𝜃
)
𝑛

∙ ∫
𝑥𝑛

(𝑒𝑥−1)∙(1−𝑒−𝑥)

𝑇𝜃

𝑇𝑐
𝑜𝑛𝑠𝑒𝑡

0
∙ 𝑑𝑥))      (7)  
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but where now we changed the n-value to be a free-fitting parameter, and where 𝑇𝑐
𝑜𝑛𝑠𝑒𝑡 is 

free-fitting parameter of the onset of superconducting transition, Rnorm is the sample 

resistance at the onset of the transition, 𝜃(𝑥) is the Heaviside step function, I0(x) is the zero-

order modified Bessel function of the first kind and F is a free-fitting dimensionless 

parameter.   

It can be seen, that expected n = 5 has been revealed for electron-phonon mediated 

ReBe22, and reasonable value of 𝑛 = 4.3 ± 0.3 was revealed for pure copper, where the 

limiting number of raw experimental R(T) was the most likely a reason for slightly lower than 

n = 5 value.  However, we keep the use of R(T) datasets reported by White and Woods [32], 

because they reported R(T) data for -Fe and Co measured by the same experimental routine 

and because the majority of R(T) data reported for MATBG also contain limited (by 

employing a wide temperature step for measurements) R(T) datasets.  

Our analysis by Eq. 6 reveals that -Fe, which should have n = 3 [24,25,32], exhibits 𝑛 =

2.9 ± 0.1 which is an excellent demonstration for the applicability of Eq. 6 to the analysis. 

Ferromagnetic cobalt has 𝑛 = 2.2 ± 0.1, which reflects a well-established fact that electron-

electron interaction in this element plays significant role [32].  

Another interesting result was obtained for hexagonal-close-packed highly-compressed 

iron, -Fe. This -Fe phase plays crucial role in the Earth geology [31], because its electrical 

conductivity, , directly links with the heat transfer in the Earth crust due to the Wiedemann-

Franz law:  

𝑘(𝑇, 𝑃) =
𝐿⋅𝑇

𝜌(𝑇,𝑃)
             (8)  

where k is the thermal conductivity and 𝐿 =  2.44 ⋅ 10−8 WΩK-2 is the Lorenz number, and P 

is the pressure (details can be found in Ref. 31).   
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Figure 1.  (T) data and fits to generalized Bloch-Grüneisen (BG) equation (Eqs. 5,6) for 

pure Cu (a), ReBe22 (b), pure ferromagnetic -Fe (c), pure ferromagnetic Co (d), and pure 

non-ferromagnetic highly-compressed -Fe (e,f). Raw data reported in Refs. 26,29,32,33. Red 

is the fitting curve, and 95% confidence bars are shown by a pink shaded area. Goofiness of 

fit for all datasets are better than R = 0.9990.  
 

From the best knowledge of the author’s, to date, experimental 𝜌(𝑇, 𝑃) data was fitted 

only to an approximant function of Eq. 6 which has a form of a power-law, where  and  are 

free-fitting parameters:  
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𝜌(𝑇) = 𝛽 ⋅ 𝑇𝑛.             (9)  

In result, reported  values are within an extremely wide range of 𝑛 = 1.5 − 5.9, and, 

moreover, we found herein that the approach to use Eq. 9 leads to wrong n-values. Truly, in 

Fig. 1,e we show the fit to Eq. 6, which reveals 𝑛 = 2.22 ± 0.01 for which, by the employing 

the same 𝜌(𝑇) dataset, and the use of Eq. 9, Jaccard et al [29] reported 𝑛 = 1.67.  If our 

value of 𝑛 = 2.22 ± 0.01 shows that electric charge carriers in -Fe phase exhibits two 

scattering mechanisms (i.e., mainly the electron-electron interaction (n = 2) with some 

weighting part of the electron-magnon interaction (n = 3)), the interpretation for 𝑛 = 1.67 

reported by Jaccard et al [29] cannot be founded, because n1 case is only applicable for 

MATBG superlattices [19], and n-value below 2 are simply prohibited for elemental metals, 

because there is no physical interpretation for such values.  

It is important to note, that there is a nice correlation between n-values and 

superconducting transition temperatures, Tc, in -Fe phase too. If for 𝑛 = 2.55 ± 0.05 

(which implied a significant electron-magnon interaction) the full resistive transition does not 

occurs (and where the only 10% drop in resistance observed, with the onset of transition 

temperature, 𝑇𝑐
𝑜𝑛𝑠𝑒𝑡~1 𝐾), for -Fe sample, for which 𝑛 = 2.22 ± 0.01 was revealed the full 

resistive transition was observed with 𝑇𝑐
𝑜𝑛𝑠𝑒𝑡 = 2.37 ± 0.01 𝐾. This result has a clear 

interpretation that the suppression of the electron-magnon interaction causes the formation of 

more robust superconducting condensate.   

Now, we turn to the analysis of TBG superlattices. First we analysed experimental R(T) 

curves for Moiré superlattice in single layer graphene on hBN single crystal (SLG/hBN 

superlattice) reported by Wallbank et al [8], where the Moiré superlattice constant, , has 

been changed in the range of  = 11.2 – 15.1.  Fits to Eq. 6 are shown in Fig. 2 and 

summarized results in Fig. 3. It can be seen that, in overall, our analysis confirms the result 

reported by Wallbank et al [8], that the electron-electron interaction is dominant in these 
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Moiré 2D supelattices. However, our analysis shows a smooth and near-linear dependence of 

n-value and the Debye temperature, T, on the Moiré superlattice constant,  (Fig. 3).    

 

Figure 2.  R(T) data for Moiré SLG/hBN superlattices (raw data reported by Wallbank et al 

[23]) and fit to Eq. 6 for (a)  = 11.2 nm; (b)  = 12.7 nm; (c)  = 13.6 nm, (d) and 15.1 nm. 

Red are the fitting curves, 95% confidence bars are shown by a pink shaded area. Goofiness 

of fit for all plots was better than R = 0.9997.  
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As we mentioned above, the power-law exponent n towards lower than 2 values in 

graphene/hBN superlattices (Fig. 2(e)) has now clear interpretation that n < 2 values represent 

the transition from pure electro-electron interaction (for which the characteristic value is n = 

2) to some intermediate state exhibited a synergetic sum of the electron-electron (e-e) and the 

electron-quasielastic acoustic phonon (e-qaph) interactions.   

 

Figure 3.  Summarized results for Moiré SLG/hBN superlattices (raw data reported by 

Wallbank et al [23]). a – deduced Debye temperature; b – deduced n-value in Eq. 5. 

Characteristic values for the quasielastic electron-acoustic phonon interaction (ne-qaph = 1), the 

electron-electron interaction (ne-e = 2), and the electron-magnon interaction (ne-m = 3) are 

shown. Error bars for n-value are less than the balls size.  
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This mixed state characterized by 1 < n < 2 has been also revealed in the metallic twisted 

bilayer graphene stabilized by WSe2 (for which raw R(T) data was reported by Arora et al 

[9]).  In Fig. 3 we show R(T) data and fits for samples with twisted angles  = 0.87° (filling 

factor ν = +1, deduced 𝑛 = 1.52 ± 0.05, 𝑇𝜃 = 47 ± 9 𝐾) and 0.97° (filling ν = -1, deduced 

𝑛 = 1.75 ± 0.09, 𝑇𝜃 = 13.0 ± 0.8 𝐾).   

 

Figure 4.  R(T) data for metallic bilayer Moiré graphene superlattices (raw data reported by 

Arora et al [9]) and fit to Eq. 5 for  = 0.87° and  = 0.97°. 95% confidence bars are shown 

for both fitting curves. Goodness of fits for both plots was better than R = 0.998.  
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reaching the characteristic values of n = 2, n = 3, as well as a low value of n = 1.4 and the 

highest value of n = 4.7 are shown in Figs. 5,6. We do not perform fit to Eq. 6 for R(T) curves 

measured at very low charge carrier density, where low-temperature upturn in the R(T) curve 

was observed.  

 

 

Figure 5.  R(T) data and data fit to Eq. 5 for metallic TBG superlattice on hole side with  = 

2.02° (raw R(T) data was reported by Polshyn et al [6]). Red are the fitting curves, 95% 

confidence bars are shown by a pink shaded area. Goofiness of fit for both plots was better 

than R = 0.9990.  
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Figure 6.  R(T) data and data fit to Eq. 6 for metallic TBG superlattice on electron side with  

= 2.02° (raw R(T) data was reported by Polshyn et al [6]). Red are the fitting curves, 95% 

confidence bars are shown by a pink shaded area. Goofiness of fit for both plots was better 

than R = 0.9990.  
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 𝑝 < −0.39 ⋅ 1012 𝑐𝑚−2. In this concentration range we where we skipped from the 

analysis several R(T) curves measured at very low p, which exhibit upturn in R(T) at T 

< 20 K.  

2. The dominant role of the electron-magnon interaction (2.5 < n < 3.5) has been 

revealed at low charge carrier concentration, |0.4| ⋅ 1012 𝑐𝑚−2 < 𝑝 < |1.0| ⋅

1012 𝑐𝑚−2.  

 

Figure 7.  Summarized results for MATBG superlattice with  = 2.02°. a – deduced Debye 

temperature; b – deduced n-value. Characteristic values for the quasielastic electron-acoustic 

phonon interaction (ne-qaph = 1), the electron-electron interaction (ne-e = 2), and the electron-

magnon interaction (ne-m = 3), and the electron-phonon interaction (ne-ph = 5) are shown. Raw 

R(T) data was reported by Polshyn et al [6].  
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3. In a wide range of doping, |1.0| ⋅ 1012 ≲ 𝑝 ≲ |6| ⋅ 1012 𝑐𝑚−2, the interaction is 

belonging a sum of the electron-electron and the electron-quasielastic acoustic phonon 

interactions.  

4. And only at high charge carrier density, 𝑝 > |5.5| ⋅ 1012 𝑐𝑚−2, the electron-electron 

interaction overcomes the others interaction mechanisms, and power-law exponent 

towards n = 2, while the doping is increasing.  

 

In summary, in this paper we aim to propose an approach to quantify the charge carrier 

integration in metallic materials by generalizing Bloch-Grüneisen equation, where power-law 

exponent is a free-fitting parameter. In particular case of twisted bilayer graphene 

superlattices we show that the interaction mechanism can be smoothly transformed from one 

to another by a variation of either the Moiré superlattice constant, , or the charge carrier 

concentration. We also show that generalized Bloch-Grüneisen equation can be an instructive 

tool to study different topics in natural science, including the Earth geology.  
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