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4Research Center for Functional Materials,

National Institute for Materials Science,

1-1 Namiki, Tsukuba 305-0044, Japan

5International Center for Materials Nanoarchitectonics,

National Institute for Materials Science,

1-1 Namiki, Tsukuba 305-0044, Japan

(Dated: January 2, 2022)

Abstract

Understanding how the electron spin is coupled to orbital degrees of freedom, such

as a valley degree of freedom in solid-state systems is central to applications in spin-

based electronics and quantum computation. Recent developments in the preparation

of electrostatically-confined quantum dots in gapped bilayer graphene (BLG) enable

to study the low-energy single-electron spectra in BLG quantum dots, which is crucial

for potential spin and spin-valley qubit operations. Here, we present the observation

of the spin-valley coupling in bilayer graphene quantum dots in the single-electron

regime. By making use of highly-tunable double quantum dot devices we achieve

an energy resolution allowing us to resolve the lifting of the fourfold spin and valley

degeneracy by a Kane-Mele type spin-orbit coupling of ≈ 60 µeV. Furthermore, we

find an upper limit of a potentially disorder-induced mixing of the K and K ′ states

below 20 µeV.
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The valley pseudospin is an inherent property of two-dimensional honeycomb crystals and

- together with the electron spin - makes graphene and bilayer graphene (BLG) interesting

for applications in spin- and valley-based electronics and quantum computation [1, 2]. This

pseudospin arises form the orbital degree of freedom of the independent energy valleys

located at the inequivalent vertices (K and K ′) of the hexagonal Brillouin zone [3]. In

analogy to the real spin, the valley pseudospin exhibits also a valley Zeeman effect [4–6],

where the valley Zeeman splitting – varying linearly with (out-of-plane) magnetic field – is a

result of the orbital magnetic moments originating from the non-vanishing Berry curvature,

Ω, at the K-points of gapped BLG (see Fig. 1a). Since these magnetic moments, which

have opposite signs for the two valleys, crucially depend on the wave function, the valley

g-factor in BLG quantum dots can be tuned by electric fields [7, 8], offering promising

and interesting possibilities for manipulation. However, to fully exploit the potential to

manipulate and control both the valley and spin degrees of freedom in BLG quantum dots

(QDs), a detailed understanding of their interaction is essential. This is as relevant for a

better understanding of spin decoherence processes as it is for exploring ways to electrically

manipulate the spin degree of freedom via spin-orbit interaction and implementing innovative

spin-valley qubits [2]. Indeed, a detailed understanding of the low-energy spectrum of single

particle states within the first electronic orbital (see Fig. 1b) is crucial for finding suitable

working points and manipulation mechanisms for possible qubit operation.

Although the single-particle spectrum in BLG QDs has been intensively studied in recent

years [9–11], the low-energy spin-valley coupling in BLG QDs has remained experimentally

unexplored. This is certainly partly due to the high energy resolution required, as theoretical

studies predict an intrinsic spin-orbit (SO) coupling in graphene and BLG of around ∆SO ∼
24µeV [12–16] and only recently, experiments have – partly indirectly – reported values in

the range between 40 and 80µeV [17, 18]. Moreover, our current knowledge with respect to

a possible mixing of K and K ′ states is very limited. The latter is expressed by ∆KK′ and

could allow to access helical states [19].

In this letter, we report on measurements of the excited state spectrum of single-electron

double quantum dots (DQDs) in BLG providing information on ∆SO as well as on ∆KK′ . By

tuning a DQD to a regime of low interdot tunnel coupling, we are able to resolve the interdot

transitions with remarkably high energy resolution allowing to reconstruct the underlying

single particle spectrum of both quantum dots. We find that the spin and valley degeneracy
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of the single particle spectrum is lifted by a Kane-Mele type SO gap [13] of ∆SO ≈ 60 µeV,

which separates the two Kramer’s pairs – (K ′↑, K↓) and (K ′↓, K↑) – similar (but smaller

in magnitude) to what has been observed in carbon nanotube QDs [20, 21]. The disorder-

induced mixing of K and K ′ states is found to be at least smaller than ∆KK′ < 20 µeV, where

the upper bound is resulting from the energy resolution of our measurements. Fig. 1b depicts

the first four BLG QD states composing the first electronic orbital (”shell”) as a function of

the magnetic fields applied in-plane (B‖) and out-of-plane (B⊥) to the BLG sheet. At zero

magnetic field, the four states are split into two Kramer’s pairs, separated by ∆SO. Applying

an out-of-plane magnetic field linearly shifts the energy of the states according to the spin

and valley Zeeman effects E(B⊥) = 1
2
(±gs ± gv)µBB⊥, where µB is the Bohr magneton and

gv is the valley g-factor, which quantifies the strength of the valley magnetic moment. Note

that gv strongly depends on the QD wave functions and thus on the size of the QD [11]. It is

usually one order of magnitude larger than the spin g-factor, gs = 2. As the valley magnetic

moment is oriented perpendicular to the BLG plane, in-plane B-fields only couple to the

electron spin. However, as the SO coupling acts as an effective out-of-plane magnetic field

close to the K-points, the spin states are polarized perpendicular the BLG plane (see insets

in Fig. 1b) [12]. Applying an in-plane magnetic field therefore shifts the states according to

E(B‖) = ±1
2

√
∆2

SO + (gsµBB‖)2 recovering the linear spin Zeeman effect for high B-fields.

I. RESULTS

A. Device characterization

The devices consist of a BLG flake, which has been encapsulated between two (≈ 25 nm

thick) flakes of hexagonal boron nitride (hBN) and has been placed on a graphite flake, acting

as a back gate (BG), using a dry van-der-Waals stacking technique. Cr/Au split gates (SGs)

are deposited on top, forming a 2 µm long and 130 nm wide channel. Two layers of metallic

Cr/Au finger gates (FGs) with a width of 70 nm and a pitch of 150 nm are fabricated across

the channel. Details on the fabrication process can be found in Ref. [6]. Fig. 2a shows a

scanning electron micrograph of the gate structure, where the gates used as plunger gates

are color coded. Fig. 2b shows a schematic cross section through the heterostructure and the

gate stack highlighting the formation of the QDs and source-drain regions by electrostatic
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soft-confinement. All measurements are performed in a helium dilution refrigerator at a

base temperature of 10 mK, using standard DC measurement techniques.

QDs are created using three layers of top gates, following previous studies of gate-defined

BLG QDs [5, 6, 9, 10, 22, 23]. A band gap is opened by applying an out-of-plane displacement

field [24, 25] with the help of the SG (VSG = 1.73 V) and BG (VBG = −1.56 V), and the

Fermi energy (EF) is tuned into the band gap. This leaves a narrow p-type conducting

channel, connecting source and drain. A single electron DQD can be formed using adjacent

FGs on the lower FG layer (GL and GR), locally overcompensating the BG voltage (see

lower illustration in Fig. 2b and the band edge diagram in Fig. 2c, highlighting the potential

landscape along the narrow channel) [6]. By applying VGC = −4 V to the central FG

between GL and GR, the interdot tunnel coupling is reduced in order to enhance the energy

resolution of the bias spectroscopy measurements. Fig. 2d shows a charge stability diagram

of the first four pairs of triple points (see supplementary information for more details).

Next, we focus on the (0,1)-(1,0) charge transition, where each of the QDs is at most

occupied by a single electron. Importantly, the combined tunneling rate is reduced to Γ <

1 GHz by GC on the upmost gate layer (see Figs. 2a-c). This reduces the tunnel broadening

of the resonance lines and strongly suppresses transport if the states in the two QDs are off

resonance. Figs. 3a-c show finite bias charge stability diagrams of the first triple point pair at

out-of-plane magnetic fields of B⊥ = 0, 0.2 and 0.4 T. In order to describe the configurations

of the DQD, we introduce the orthogonal axes δ and ε, which describe how far the states

in both QDs are tuned into the bias window (δ) and how large their energy detuning (ε)

is, respectively [26]. At zero B-field, two resonances close to zero detuning (resonances (i)

and (ii), (iii)) are visible, while the rest of the triple point shows only suppressed current.

Increasing B⊥ shifts one of the resonances (ii) to higher detuning (compare green arrows in

Figs. 3a-c). Eventually, a third resonance appears (iv), which does not extend as far on the

δ-axis as the other transitions (see Fig. 3c).

The nature of these resonances can be explained in terms of transitions from single-

particle states in the left QD (QDL) to single-particle states in the right QD (QDR). For the

present interdot tunneling times (≈ 10 ns [27]), we assume that the electron spin is entirely

conserved, while phonon assisted valley relaxation may occur on these time scales, as well

as during interdot tunneling [28]. This is supported by the absence of any δ dependence

of the transitions. Fig. 3d shows a line cut through the triple point in Fig. 3a along the
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yellow dashed line. The two transitions (black arrow and green arrows in Fig. 3a) result

in two distinct peaks in the tunneling current. The first resonance, (i) occurs at ε = 0,

where every state in the left QD can tunnel into its equivalent state in the right QD,

highlighted by the black arrow (see left schematic in Fig. 3d). The second resonance occurs

at ε = ∆SO = 68 ± 7µeV, where two processes are possible, both requiring valley flips,

namely transition (ii): (K ′↑)L ⇒ (K↑)R and transition (iii): (K↓)L ⇒ (K ′↓)R, highlighted

by the two green arrows (see right schematic in Fig. 3d).

B. Magneto-transport spectroscopy

When applying an out-of-plane B-field, the energies of the single particle states shift

according to their spin and valley Zeeman effect, as depicted on the right-hand side of

Fig. 1b. Consequently, the detuning energy necessary for the transition (ii) increases linearly

with magnetic field, highlighted by the light green arrow in Fig. 3e. The observed increase

in detuning energy corresponds to a valley g-factor of gv ≈ 15. This observation validates

the assumption that valley flips are allowed, since otherwise interdot transitions should not

shift as function of B⊥. The detuning required for transition (iii), decreases to zero, once

the involved states are equal in energy, which is the case at B⊥ ≈ 0.18 T (see Fig. 3e). At

higher magnetic fields, the reversed process, transition (iv): (K ′↓)L ⇒ (K ↓)R becomes

possible, which also shifts with a valley g-factor of gv ≈ 15. This transition is marked by

the orange arrow in Fig. 3c and offset to the transition (ii) by ∆ε = 2∆SO, which becomes

apparent from Fig. 3e. Since transition (iv) originates from an excited state (ES) in the

QDL, it only becomes accessible as soon as the ES enters the bias window. Therefore, the

transition line (iv) has a shorter extend along the δ-axis, as it only sets in at finite δ, which

is highlighted by the black line in Fig. 3c. The observation of transition (iv) also justifies the

assumption of spin conservation. If the spin lifetime would be shorter than the tunneling

rate, (K ′↓)L would decay into (K ′↑)L, blocking this process and the resonance would not

be visible. Please note that the tunneling current corresponding to transitions (ii)-(iv) is

energy (ε) and δ-dependent as resonant tunneling (in particular with the drain reservoir)

leads to higher tunneling currents (see Figs. 3a-c).

Fig. 4 shows the interdot transitions as function of in-plane (Figs. 4a,b) and out-of-plane

(Figs. 4c,d) B-field highlighting the spin and valley texture of the low energy spectrum.
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In Fig. 4a we show the derivative of the tunneling current I with respect to ε as function

of energy and B‖. Apart from the zero detuning transition (horizontal dashed line), one

additional feature is visible (curved dashed line), which corresponds to the transitions from

the energetically lower Kramer’s pair to the energetically higher Kramer’s pair, namely

(K ′↑)L ⇒ (K↑)R and (K↓)L ⇒ (K ′↓)R, as highlighted by the schematic insets of Fig. 3d.

Increasing the in-plane B-field increases the energy difference between the Kramer’s pairs

due to the spin Zeeman effect and therefore the required detuning shifts according to ε =
√

∆2
SO + (gsµBB)2.

Fitting this equation with a fixed gs = 2, which is in good agreement with earlier mea-

surements [22], incl. electron spin resonance experiments [29], yields ∆SO = 62±6 µeV. This

results in the dashed and solid line in Figs. 4a,b showing good agreement with the exper-

iment. Applying an in-plane magnetic field tilts the spin from an out-of-plane orientation

induced by the SO coupling into the plane of the BLG (see insets in Fig. 4b). This effect

continuously reduces the overlap between the spin states from different Kramer’s pairs, e.g.

the spin state from K ′↑ is not perfectly parallel to K↑ anymore, until for large B‖ they will

eventually be completely orthogonal. This effect becomes visible in the tunneling current of

the ES transition, which decreases with increasing in-plane magnetic field. In the top panel

of Fig. 4b, we show the ratio between the current through the exited and the ground state

(ε = 0) as a function of B‖ highlighting this effect, which is in good agreement with what is

expected from theory (see dashed line and figure caption).

Fig. 4c shows the derivative of the tunneling current with respect to ε, as function of

energy and B⊥. Here, according to Fig. 1b the transition spectra is significantly richer

and all three transitions (ii), (iii) and (iv) discussed in Fig. 3e can be observed (see dashed

lines and labels in Fig. 4d). If we denote the valley g-factor in the left and right QD

with gv,L and gv,R, respectively, then we can express the different transition energies as

a function of B⊥ by εii = ∆SO + 1
2
(gv,R + gv,L)µBB⊥, εiii = ∆SO − 1

2
(gv,R + gv,L)µBB⊥,

εiv = −∆SO + 1
2
(gv,R + gv,L)µBB⊥. Here, the electron spin Zeeman effect has no influence on

the transition energies, as transitions only occur between states of the same electron spin.

Taking ∆SO from the analysis of the in-plane B-field data (Figs. 4a,b) and choosing the

valley g-factors to be gv,L = gv,R = 15 we find – without any additional parameter – good

agreement with the experimental data (see dashed and solid lines in Figs. 4c,d). The values

of gv are similar to those reported in previous studies of similar BLG QDs and compatible
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with theoretical calculations [6, 23]. Considering the same geometry of both QDs and the

similar voltages applied to GL and GR, it is reasonable to assume that both QDs have

very similar valley g-factors. Note that as soon as a transition requires negative detuning,

it becomes Coulomb blockaded, which is the reason why no transition is observed below

ε = 0. The lack of clear signatures of the transition (ii) at low B-field (see Figs. 4c,d) can be

explained by their reduced tunneling current compared to transition (iii) due to the stronger

detuning of the (K ′↑)L ground state from the source chemical potential compared to (K↓)L,

combined with strong resonant tunneling from source to the left QD.

By closely inspecting the transition (iii), especially close to the B-field regime where the

K↓ state is crossing the K ′↓ state (i.e. around ε = 0), we can provide an estimate of the up-

per limit of a possible disorder-induced mixing of the K and K ′ states. The inset of Fig. 4d

shows a close up, where we included the expected transition energies for different values

of ∆KK′ (see also supplementary information). We do not observe any anticrossing within

the margin of the energy resolution of our measurement, neither for the device presented in

Fig. 4d nor for a second single-electron DQD device presented in the supplementary informa-

tion. From this comparison we estimate that ∆KK′ is surely not exceeding a value of 20µeV

in both DQD devices. Note that this upper limit is significantly smaller than for carbon

nanotubes with values on the order of 100 µeV [20, 21]. In carbon nanotubes the present

∆KK′ may also influence the magnitude of the zero-field splitting of the Kramer’s pairs and

thus potentially lead to an overestimation of ∆SO. As the zero field splitting consists of the

quadratic sum of the two effects,
√

∆2
SO + ∆2

KK′ , and our observed splitting is at least a

factor three larger than ∆KK′ , the influence of the intervalley mixing on the observed values

of ∆SO is smaller than 10% and thus lies within the range of our measurement uncertainties.

II. DISCUSSION

Apart from the Kane-Mele SO coupling, which is intrinsically present in graphene and

BLG, extrinsic Bychkov-Rashba SO coupling and pseudospin inversion asymmetry (or prin-

cipal plane asymmetry) SO coupling can in principle also play a role [12–16, 30, 31]. The

latter, which arises for example when placing graphene or BLG on substrates, such as e.g.

hBN, depends on the magnitude of k (measured from the corners of the Brillouin zone)
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and is thus suppressed at the K and K ′-points [16], where our devices are operated. The

Rashba-type SO coupling needs to be discussed in more detail, since in our devices the in-

version symmetry is explicitly broken by the applied out-of-plane displacement field. The

breaking of inversion symmetry and the magnitude of the resulting Bychkov-Rashba SO gaps

have theoretically been investigated by Kane and Mele for single-layer graphene [13] and by

Konschuh et al. for BLG [12] . Both studies conclude that the Rashba type SO coupling is

negligible (≈ 1 µeV) compared to the Kane-Mele coupling term. In addition, the Bychkov-

Rashba SO coupling term is expected to be strongly suppressed in BLG single-electron QDs,

since specifically in BLG this term vanishes for the low energy bands close to the K and

K ′-points [12]. Thus, all this is expected to lead to a displacement-field-independent SO gap

that can be experimentally verified.

In Fig. 5 we show the SO gap as function of displacement field, D. Here, ∆SO has been

extracted from zero B-field data similar to the measurements shown in Figs. 3a,d but with

different back and split gate voltages such that the D-field is tuned from D = 0.24 V/nm

to 0.34 V/nm, also resulting in different band gaps in the BLG as highlighted by the insets

in Fig. 5. From all data presented in Fig. 5 – including data from a second single-electron

DQD device (red triangles) and data from a different single-electron QD device (yellow

square, more details in the supplementary information) – we conclude that the observed

SO gaps are all consistent and within the error bars constant over the investigated D-field

range, with a mean value around ∆SO ≈ 60 µeV. From the absence of any dependency of

∆SO as function of the strength of the potential breaking the inversion symmetry, we con-

clude that the experimentally extracted ∆SO is dominated by the Kane-Mele coupling term.

Interestingly, our ∆SO values are slightly larger than what has been extracted in previous

experiments performed in bulk graphene on trenched SiO2 [18]. Also this value is larger than

theory predicted [12], but might be explained by an enhancement due to phonon-assisted

SO coupling [32]. In our case we expect that the SO coupling is slightly enhanced due to

the proximity effect when encapsulating BLG with hBN crystals [17], very similar to the

proximity enhanced SO coupling when placing BLG on WSe2 [33].

In summary, we studied the low-energy excited state spectrum of a gate-defined single-

electron quantum dot in bilayer graphene. We find a spin-valley coupling dominated by a

Kane-Mele type SO coupling with ∆SO ≈ 60 µeV, giving rise to two Kramer’s pairs with

either parallel or anti-parallel spin-valley orientation. The small value for ∆KK′ (< 20µeV)
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is not entirely unexpected for flat and disorder-free BLG, and raises the hope that the

existing spin-valley coupling – without K −K ′ mixing – will be helpful for a future qubit

operation.
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FIG. 1. a Low energy band schematic of BLG at the K and K ′ points. BLG exhibits a non-trivial

Berry curvature Ω that leads to an effective out-of-plane magnetic moment with opposite sign at

K and K ′. b Energy dispersion of single-particle states in BLG QDs as a function of in-plane (B‖,

left) and out-of-plane (B⊥, right) applied magnetic fields with respect to the BLG plane. The SO

gap, ∆SO, lifts the fourfold degeneracy and polarizes the spins out-of-plane for zero magnetic field

and a potential K-K ′ state mixing (described by ∆KK′) leads to an anticrossing of the K↓ and K ′↓

state.
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FIG. 2. a False-color scanning electron micrograph of the metallic gates. A pair of split gates

defines the conducting channel, which can be modulated by voltages applied to the finger gates.

The gates used in the following are color coded. b Schematic cross-section of the device. The

upper part shows the metallic gates on top of the hBN/BLG/hBN van-der-Waals heterostructure.

The lower part color codes the charge carrier density within the channel and the two quantum dots

(red: holes and blue: electrons). c Schematics of the band edge profile along the narrow channel,

highlighting how the finger gates are used to form a DQD consisting of QDL and QDR connected to

the p-type conducting channel. d Charge stability diagram showing the current through a double

quantum dot as function of the potential applied to the two gate fingers, VGL and VGR. A constant

bias voltage of Vb = 1 mV is applied and the central finger gate voltage is kept at VGC = −4 V.
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FIG. 3. a-c Charge stability diagrams of the first pair of triple points ((1,0)-(0,1) transition)

measured at Vb = 1 mV and a B⊥ = 0 T, b B⊥ = 0.2 T, c B⊥ = 0.4 T. The white arrows in panel

a indicate the orthogonal detuning axis ε and the DQD’s common energy δ. At zero magnetic field

two transition lines are visible (green and black arrows). d Cut along the yellow dashed line in

the first triple point at B = 0 T. Two Lorentzian peaks are fit to the data to extract a splitting

of ∆SO = 68 ± 7µeV. Inset: Schematic energy diagrams of a DQD in the finite bias regime for

different interdot detuning energies ε, illustrating resonant transport through the ground state of

each QD (transition (i); left inset) and resonant transport at ε = ∆SO (transitions (ii) and (iii);

right inset). e Schematic of the single particle energy spectra of the first orbital of each QD as

a function of B⊥. The arrows (color coding as in panels a-c) indicate spin conserving transitions

from single particle states in the left QD (solid lines) to single particle states in the right QD

(dashed lines). The inset shows the transition (iv) at finite magnetic field.
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FIG. 4. a Magnetotransport measurements showing dI/dε as function of detuning energy and

in-plane B-field. The horizontal dashed line marks the ground state (GS) transition (ε = 0) and

the curved line marks the excited state (ES) transition. b The upper panel shows the ratio of

the ES current with respect to the GS current. From a simple projection model we obtain the

dashed line, which describes the expected decay in amplitude of the ES due to the spins tilting

in-plane. c Similar data as in panel a but for out-of-plane B-field. The dashed lines mark all

transitions described in Fig. 3e. d Extracted transition energies as function of B⊥ highlighting

the transitions (ii), (iii) and (iv) (see labels). The inset shows a low-energy close-up around the

transition (iii) highlighting the presence of a finite K −K ′ mixing. The dashed line corresponds

to transition energies including a ∆KK′ = 20µeV. The solid lines below and above correspond to

∆KK′ = 10µeV and 30µeV, respectively.
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FIG. 5. Spin-orbit gap ∆SO as function of applied electric displacement field, D. The black data
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points to the second device (DQD #2) shown in the supplementary information. The yellow data

point is obtained from a single quantum dot (single QD) formed in a third device (see supplementary

information). Over the entire displacement field range, ∆SO ≈ 60 µeV remains constant within the

margin of uncertainty (see gray horizontal line). Note that the VBG-scale (upper horizontal axis)

is valid only for the two double QD devices but slightly off for the single QD. Inset: Schematic

illustration of the band structure of BLG with a small and a large applied out-of-plane displacement

field, which breaks the inversion symmetry and leads to the opening of a band gap (Egap) while

∆SO remains unaffected.
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I. DETAILS ON SAMPLE DESIGN AND TUNING TOWARDS A SINGLE ELEC-

TRON DQD
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FIG. 1. (a) Schematic cross section through the device. BLG is encapsulated between two flakes

of hBN and placed on a graphite gate. Two Cr/Au contacts (S and D) are evaporated onto the

BLG. Two layers of Cr/Au FGs are used to form a DQD. Atomic layer deposited Al2O3 serves as

a gate dielectric. (b) Band alignment of the single QD and DQD regimes. (c) Charge stability

diagram of GL versus GR showing the that the triple point considered in the main text is indeed

the (0,1)-(1,0) charge transition.
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II. MEASUREMENTS ON A SECOND DOUBLE QUANTUM DOT
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FIG. 2. Measurements on a second DQD formed using a different set of gate fingers. a Detuning

line cut at zero magnetic field (similar measurement as in Fig. 3d of the main text). Two resonances,

one corresponding to transition (i) and one corresponding to transitions (ii) and (iii) are observed.

The inset shows the the (0,1)-(1,0) triple point, the scale bars correspond to a difference in gate

voltage of 20 mV. b Magnetotransport measurements showing dI/dε as function of detuning energy

and out-of-plane B-field. The dashed lines mark the observed interdot transitions. c Extracted

transition energies as function of B⊥ highlighting the transitions (ii), (iii) and (iv) (see labels).
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III. ESTIMATION OF ∆KK′
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FIG. 3. Estimation of the intervalley coupling, ∆KK′ for the first (a) and second (b) double

quantum dot measured. The blue lines mark the transition energies, where ∆KK′ = 20 µeV is

assumed, which marks an upper bound for ∆KK′ in both devices.
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IV. REFERENCE MEASUREMENTS PERFOMED ON SINGLE QDS
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FIG. 4. a Finite bias spectroscopy measurement of the single electron spectrum of the left (a) and

right (b) single QD of the device discussed in the main text, recorded at a perpendicular magnetic

field of 0.5 T. The valley splitting due to the perpendicular field can be resolved in the two single

QDs and very similar for both dots. The tunnel broadening of the Coulomb resonances do not

allow to resolve the spin splitting. c Finite bias spectroscopy measurement performed on a different

device on another chip with a design of more opaque tunneling barriers/less tunnel broadening,

recorded at a finite perpendicular magnetic field of B⊥ =0.5 T. Here, the Zeeman spin splitting can

be observed. d From similar measurement as depicted in c, recorded for various magnetic fields we

extract the Zeeman splitting between |K ′ ↑〉 and |K ′ ↓〉. From the data, we extract a spin g-factor

of gs = 2 and ∆SO = 66± 8 µeV.
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