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We consider tunneling of quasiparticles through a rectangular quantum well, subject to periodic
driving. The quasiparticles are the itinerant charges in two-dimensional and three-dimensional
semimetals having a quadratic band-touching (QBT) point in the Brillouin zone. In order to analyze
the time-periodic Hamiltonian, we assume a non-adiabatic limit, where the Floquet theorem is
applicable. By deriving the Floquet scattering matrices, we chalk out the transmission and shot
noise spectra of the QBT semimetals. The spectra show Fano resonances, which we identify with
the (quasi)bound states of the systems.
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I. INTRODUCTION

Time-dependent driving is currently a widely used technique to influence the electronic transport properties of
mesoscopic structures, for instance, a periodically driven rectangular potential well / barrier. It is important to
understand the mechanisms by which the time-varying external fields affect the dynamical transport properties of
these devices. Tunneling through a one-dimensional, time-modulated barrier was first theoretically considered by
Büttiker and Landauer [1], where they provided an analytical framework to tackle the problem. Since then, various
effects related to oscillating potentials have been studied, which rely on the fact that an oscillating potential can
transfer an incoming electron of energy E (sometimes referred to as the central band), with a finite probability, to
sidebands at energies E ± n ~ω, where n ∈ Z (denoting the order of the sideband) and ω is the frequency of the
driving. For strongly driven systems (i.e. in the limit of high driving frequencies), a non-perturbative approach
[2–5] based on Floquet theory can be used, which emphasizes on the existence of sidebands of electrons exiting the
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potential. A sideband corresponds to an electron that has absorbed (n > 0) or emitted (n < 0) one or several
modulation quanta ~ω [1].

The Floquet scattering model consists of the incident electrons being scattered inelastically by the oscillating
potential into Floquet sidebands (channels), giving rise to an infinite number of incoming and outgoing waves /
channels with quasienergies E ± n ~ω. This is due to the energy exchanges in units of ~ω between the incident
electrons and the oscillating field. Constructing the Floquet scattering-matrix (or the S-matrix), we can derive the
transmission probabilities of tunneling through the driven quantum well / barrier. In this paper, we will focus on
a quantum well subject to a harmonic driving with a single frequency ω.

For systems where bound states exist in the absence of a driving field (static case), even a weak driving field
can cause propagating electrons at appropriate values of incident energies to undergo transitions between the
spatially confined (localized) discrete bound states and the extended states in the continuum, by means of emission
/ absorption of photon(s). This results in unique transmission resonances. One of the intriguing features of these
systems is that when the strength of the driving field becomes large enough, Floquet quasibound states can be
created which are absent in the static system. These quasibound states appear as transmission poles in the complex
energy plane [5] and hence can also give rise to transmission resonance 1. The resonant scatterings can be related
to Fano resonances [6, 7], which would appear in the transmission probabilities for both kinds of bound states, and
can be observed in the shot noise spectra.

FIG. 1. Tunneling through a periodically driven potential well in a QBT material. The upper panel shows the schematic
diagrams of the spectrum of quasiparticles about a QBT, with respect to a potential barrier in the x-direction. The lower
panel represents the schematic diagram of the transport across the well. The Fermi level Ef is indicated by dotted lines. The
blue fillings indicate occupied states. For the quantum well, V0 is the depth of the static potential, and V1 is the amplitude
of the time-periodic drive with frequency ω.

In this paper, we will compute the Fano resonances for tunneling through an oscillating electric potential well, in
two-dimensional (2d) [8–10] and three-dimensional (3d) [11–13] Brillouin zones harbouring quadratic band-touching
(QBT) points. These semimetals are examples of multiband fermionic systems which exhibit band-crossing points
in the Brillouin zone, where two or more bands cross. The set-up is schematically depicted in Fig. 1. With an
oscillating potential with a single frequency, both the space-inversion (x → −x) and time-reversal symmetries are
preserved, and thus no d.c. current exists in the system [14].

In nature, 2d QBT semimetals can be realised in checkerboard lattice at half-filling [8], Kagome lattice at one-
third-filling [8], and Lieb lattices [9]. On the other hand, 3d QBT points are hosted by pyrochlore iridates [15, 16]
A2Ir2O7 (A is a lanthanide element). 3d QBT semimetals have also been realised in 3d gapless semiconductors
with a sufficiently strong spin-orbit coupling [17], and hence are relevant for materials like gray tin (α-Sn) and

1 These poles line up along the real axis in the complex energy plane with the Floquet energy spacing of ~ω.
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mercury telluride (HgTe). They are also known as “Luttinger semimetals” [18] because their low-energy fermionic
degrees of freedom are captured by the Luttinger Hamiltonian of inverted band-gap semiconductors. Tunneling of
electrons for various semimetals through barriers with static electric and magnetic potentials have been studied in
some recent works [19–21].

The paper is organized is follows. In Sec. II, we introduce the Hamiltonian and the scattering formalism for
2d QBT semimetals, while Sec. III deals with the 3d QBT case. We show and interpret our numerical results in
Sec. IV. Finally, we end with a summary and outlook in Sec. V. The details of the derivations of the scattering
matrices are provided in Appendices A and B.

II. 2D MODEL

In 2d, a particle-hole symmetric Hamiltonian harbouring a QBT point, and with C6 rotational symmetry, is
captured by [8]:

Hkin2d (px, py) =
~2

2µ

[
2 px py σx +

(
p2y − p2x

)
σz

]
(2.1)

in the momentum space (where µ is an electron’s effective mass), with eigenvalues

ε±2d(px, py) = ±
~2
(
p2x + p2y

)
2µ

. (2.2)

Here the “+” and “−” signs refer to the conduction and valence bands, respectively.

We consider a quantum well of width L having walls of depth V0, where only the quantum well (not the adjoining
regions) is subjected to a harmonic modulation of its potential with frequency ω:

V (x, t) =

{
−V0 + V1 cos(ωt) for − L/2 ≤ x ≤ L/2
0 otherwise

. (2.3)

The oscillating part of the effective potential has an amplitude V1. The well is assumed to be infinite and homo-
geneous along the y-direction (which means, for practical purposes, a sufficiently large width W ), resulting in the
conservation of the ky-component of the momentum. This results in the time-dependent Schrödinger equation:

i ~ ∂tΨ(x, y, t) = − ~2

2µ

[
σx ∂x ∂y + σz

(
∂2y − ∂2x

)]
Ψ(x, y, t) + σ0 V (x, t) Ψ(x, y, t) . (2.4)

The Floquet theorem [2] asserts that Eq. (2.4) admits solutions of the form Ψ(x, y, t) =
∞∑

n=−∞
e−iEnt/~ eikyy ψn(x, t),

where En = Ef +n ~ω is the Floquet quasienergy of the nth order Floquet mode with n ∈ Z, and ψn(x, t) is periodic
in time with periodicity τ = 2π

ω . Since the system is translation-invariant in the y-direction, we have assumed a

plane-wave ansatz eikyy for factoring out the y-dependent part. Plugging this decomposition of Ψ(x, y, t) in Eq. (2.4),
we get:

En ψn(x, t) = −i ~ ∂tψn(x, t)− ~2

2µ

[
i ky σx ∂x − σz

(
k2y + ∂2x

)]
ψn(x, t) + σ0 V (x, t)ψn(x, t) . (2.5)

Here we are looking for Floquet scattering state solutions, i.e., solutions of the Schrödinger equation that are of the
Floquet structure, with an incoming plane wave (corresponding to the conduction band) coming from x = −∞ and
moving along the positive x-axis.

In order to solve Eq. (2.4), we need to find ψn(x, t) piecewise in the three regions: x < −L/2, −L/2 ≤ x ≤ L/2,
and x > L/2, and then impose the condition that the wavefunction must be continuous at the boundaries x = ±L/2.

Following the formalism of Ref. [5, 22], the two-component fermion wavefunction ψn(x, t) = (ψn,1(x, t) ψn,2(x, t))
T
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can be decomposed as:

ψn,1(x, t) =



γ1,n
{
Ain(t) eiknx +Aon(t) e−iknx

}
for x < −L/2

∞∑
m=−∞

[
γ2,m

{
am(t) eiqmx + bm(t) e−iqmx

}
Jn−m

(
V1

~ω
)

Θ(Em + V0)

+ γ3,m
{
am(t) eiqmx + bm(t) e−iqmx

}
Jn−m

(
V1

~ω
)

Θ(−Em − V0)
]

for − L/2 ≤ x ≤ L/2
γ1,n

{
Bin(t) e−iknx +Bon(t) eiknx

}
for x > L/2

,

(2.6)

ψn,2(x, t) =



γ1,n
ky
kn

(
−Ain(t) eiknx +Aon(t) e−iknx

)
for x < −L/2

∞∑
m=−∞

[
γ2,m

ky
qm

{
−am(t) eiqmx + bm(t) e−iqmx

}
Jn−m

(
V1

~ω
)

Θ(Em + V0)

+ γ3,m
qm
ky

{
am(t) eiqmx − bm(t) e−iqmx

}
Jn−m

(
V1

~ω
)

Θ(−Em − V0)
]

for − L/2 ≤ x ≤ L/2
γ1,n

ky
kn

{
Bin(t) e−iknx −Bon(t) eiknx

}
for x > L/2

,

(2.7)

γ1,n =
kn√
k2y + k2n

, γ2,m =
qm√
k2y + q2m

, γ3,m =
ky√

k2y + q2m

, kn =

√
2µEn
~2

− k2y , qm =

√
2µ |Em + V0|

~2
− k2y ,

(2.8)

where Jn(x) is the nth Bessel function of the first kind. Furthermore, Ain and Aon are the amplitudes of the incoming
and outgoing waves from the left, while Bin and Bon are those for the waves from the right, respectively. Finally,
am and bm are the amplitudes of the wavefunction in the well region. We note that for En < 0, kn is imaginary
and represents an evanescent, meaning non-propagating mode. Such modes exist only in the neighborhood of the
oscillating well and do not contribute to the current density, and hence must be omitted while computing the
reflection and transmission coefficients.

The continuity of the wavefunction at the boundaries x = ±L/2 gives us a matrix s(En, Eñ) (see Appendix A
for the calculational details):

s(En, Eñ) =

√
Re(kn)

Re(kñ)
Snñ ,

(
Aon
Bon

)
=

∞∑
ñ=−∞

Snñ
(
Aiñ
Biñ

)
. (2.9)

Each 2×2 matrix Snñ in the above expression encodes the probability amplitude that the electron is scattered from

the nth order Floquet sideband to the ñth order one. The Floquet scattering matrix sαβ(En, Eñ) =
√

Re(kn)
Re(kñ)

[Snñ]αβ
(α, β ∈ (L,R)) encodes the real current flux. For a given pair of quasienergies (En, Eñ), s(En, Eñ) is a square
matrix (whose components we denote as sαβ(En, Eñ)) as shown below:

s(En, Eñ) =

(
sLL(En, Eñ) sLR(En, Eñ)
sRL(En, Eñ) sRR(En, Eñ)

)
=

(
rn,ñ t̃n,ñ
tn,ñ r̃n,ñ

)
. (2.10)

Here rn,ñ and tn,ñ are the reflection and transmission amplitudes, respectively, involving transitions of the electron
from the ñth to the nth order Floquet channels, for modes incident from the left. On the other hand, r̃n,ñ and t̃n,ñ
are the corresponding amplitudes for modes incident from the right. The unitary scattering matrix or S-matrix is
obtained from sαβ(En, Eñ) by eliminating the evanescent modes, i.e. by restricting n and ñ to the range [0,∞) 2.
It represents the quantum mechanical amplitude for an electron with energy Eñ entering the potential through lead
β to leave the well region through lead α, after absorbing (for n − ñ > 0) or emitting (for n − ñ < 0) |n − ñ| ~ω
quanta of energy.

2 Note that the elements t−n,0 and r−n,0, with n > 0, correspond to probability amplitudes describing an electron with incident energy
Ef being scattered into the evanescent mode E−n with energy −n ~ω below Ef .
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For a single electron wave incident from the left with a fixed Fermi energy Ef and momentum k0x, there is only

one element, namely

(
Ai0
Bi0

)
, to consider for the incoming wave. The total transmission and reflection probabilities

are then given by:

T =

∞∑
n=0

|tn,0|2 = |sRL(En, Ef )|2 , R =

∞∑
n=0

|rn,0|2 = |sLL(En, Ef )|2 , (2.11)

respectively.
The components of the zero-frequency nonadiabatic pumped shot noise at low temperatures can be expressed as

[14, 23–27]:

Nαβ(Ef ) =
e2

h

∫ ∞
0

dE
∑

γ,δ=L,R

∞∑
m,n,p=−∞

Mαβγδ(E,Em, En, Ep) [f0(En)− f0(Em)]
2

2
,

Mαβγδ(E,Em, En, Ep) = s∗αγ(E,En) sαδ(E,Em) s∗βδ(Ep, Em) sβγ(Ep, En) , (2.12)

where f0 denotes the Fermi-Dirac distribution function at temperature T . This measures the correlation of the
current fluctuations between quasiparticle beams coming from the α and β electrodes. Due to the current flux
conservation [23], the components Nαβ have the symmetry NLL = −NLR = −NLR = NRR, and hence it is
sufficient to consider one of them. Here, we will pick NLL for futher analysis. We will also consider the differential
shot noise, which is defined as the derivative of NLL with respect to the Fermi energy. We will take the limit T → 0
in our computations.

III. 3D MODEL

We consider a model for 3d QBT semimetals, where the low-energy bands form a four-dimensional representation
of the lattice symmetry group [13]. The standard (k · p) Hamiltonian for the particle-hole symmetric system can
be written by using the five 4× 4 Euclidean Dirac matrices Γa as [28, 29]:

Hkin3d (px, py, pz) =
~2

2µ

5∑
a=1

da(p) Γa , (3.1)

with the anticommutator {Γa, Γb} = 2 δab. The five anticommuting gamma-matrices can always be chosen such
that three are real and two are imaginary [28, 30]. Here, we will use the representation such that (Γ1,Γ2,Γ3) are
real, and (Γ1,Γ3) are imaginary [28]:

Γ1 = σ3 ⊗ σ2 , Γ2 = σ3 ⊗ σ1 , Γ3 = σ2 ⊗ σ0 , Γ4 = σ1 ⊗ σ0 , Γ5 = σ3 ⊗ σ3 . (3.2)

The five functions da(k) are the real ` = 2 spherical harmonics given by:

d1(p) = −
√

3 py pz , d2(k) = −
√

3 px pz , d3(p) = −
√

3 px py,

d4(p) =

√
3
(
p2y − p2x

)
2

, d5(p) = −
2 p2z − p2x − p2y

2
. (3.3)

The energy eigenvalues are

ε±3d(px, py, pz) = ±
~2
(
p2x + p2y + p2z

)
2µ

, (3.4)

where the “+” and “−” signs, as usual, refer to the conduction and valence bands. Each of these bands is doubly
degenerate, and we will label it with the index r or s. For the incident wave, we will take one of the doubly
degenerate conduction bands, and label it by r = 1 or s = 1. The other degenerate band will then be indicated
when r or s takes the value 2.

Following the same procedure as in the 2d case, we assume solutions of the form Ψ(x, y, t) =
∞∑

n=−∞
e−iEnt/~ eikyy eikzz ψn(x, t),

where En = Ef + n ~ω is the Floquet quasienergy of the nth order Floquet mode with n ∈ Z. The wavefunction
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ψn(x, t) is now a three-component spinor which is periodic in time (with periodicity τ = 2π
ω ). Since the system

is translation-invariant in the yz-plane, we have assumed a plane-wave ansatz eikyy eikzz for factoring out the y-
and z-dependent parts. In this case, the piecewise decomposition of ψn(x, t) in the three regions, x < −L/2,
−L/2 ≤ x ≤ L/2, and x > L/2, can be made as:

ψn(x, t) =



Ain,1(t) eiknx


fin11
fin12
fin13
fin14

+Ain,2(t) eiknx


fin21
fin22
fin23
fin24



+Aon,1(t) e−iknx


fon11
fon12
fon13
fon14

+Aon,2(t) e−iknx


fon21
fon22
fon23
fon24

 for x < −L/2

∞∑
m=−∞

[
αm,1(t) eiqmx


f̃im11

f̃im12

f̃im13

f̃im14

+ αm,2(t) eiqmx


f̃im21

f̃im22

f̃im23

f̃im24



+βm,1(t) e−iqmx


f̃om11

f̃om12

f̃om13

f̃om14

+ βm,2(t) e−iqmx


f̃om21

f̃om22

f̃om23

f̃om24


]
Jn−m

(
V1

~ω
)

Θ(Em + V0)

+
∞∑

m=−∞

[
αm,1(t) eiqmx


g̃im11

g̃im12

g̃im13

g̃im14

+ αm,2(t) eiqmx


g̃im21

g̃im22

g̃im23

g̃im24



+βm,1(t) e−iqmx


g̃om11

g̃om12

g̃om13

g̃om14

+ βm,2(t) e−iqmx


g̃om21

g̃om22

g̃om23

g̃om24


]
Jn−m

(
V1

~ω
)

Θ(−Em − V0) for − L/2 ≤ x ≤ L/2

Bin,1(t) eiknx


fin11
fin12
fin13
fin14

+Bin,2(t) eiknx


fin21
fin22
fin23
fin24



+Bon,1(t) e−iknx


fon11
fon12
fon13
fon14

+Bon,2(t) e−iknx


fon21
fon22
fon23
fon24

 for x > L/2

,

(3.5)

where

fin11 = − (kn + iky)(kz + χn)

n1(kn − iky)2
, fin12 =

i (3kz + χn)√
3n1(kn − iky)

, fin13 = −
i
(
k2n + k2y − 2k2z − 2kzχn

)
√

3n1(kn − iky)2
, fin14 =

1

n1
,

fin21 =
(kn + iky)(χn − kz)

n2(kn − iky)2
, fin22 = − i (χn − 3kz)√

3n2(kn − iky)
, fin23 = −

i
(
k2n + k2y − 2k2z + 2kzχn

)
√

3n2(kn − iky)2
, fin24 =

1

n2
,

(3.6)
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fon11 =
(kn − iky)(kz + χn)

n1(kn + iky)2
, fon12 = − i (3kz + χn)√

3n1(kn + iky)
, fon13 = −

i
(
k2n + k2y − 2k2z − 2kzχn

)
√

3n1(kn + iky)2
, fon14 =

1

n1
,

fon21 = − (kn − iky)(χn − kz)
n2(kn + iky)2

, fon22 =
i (χn − 3kz)√
3n2(kn + iky)

, fon23 = −
i
(
k2n + k2y − 2k2z + 2kzχn

)
√

3n2(kn + iky)2
, fon24 =

1

n2
,

(3.7)

f̃im11 = − (qm + iky)(kz + χm)

m1(qm − iky)2
, f̃im12 =

i (3kz + χm)√
3m1(qm − iky)

, f̃im13 = −
i
(
q2m + k2y − 2k2z − 2kzχm

)
√

3m1(qm − iky)2
, f̃im14 =

1

m1
,

f̃im21 =
(qm + iky)(χm − kz)
m2(qm − iky)2

, f̃im22 = − i (χm − 3kz)√
3m2(qm − iky)

, f̃im23 = −
i
(
q2m + k2y − 2k2z + 2kzχm

)
√

3m2(qm − iky)2
, f̃im24 =

1

m2
,

(3.8)

f̃om11 =
(qm − iky)(kz + χm)

m1(qm + iky)2
, f̃om12 = − i (3kz + χm)√

3m1(qm + iky)
, f̃om13 = −

i
(
q2m + k2y − 2k2z − 2kzχm

)
√

3m1(qm + iky)2
, f̃om14 =

1

m1
,

f̃om21 = − (qm − iky)(χm − kz)
m2(qm + iky)2

, f̃om22 =
i (χm − 3kz)√
3m2(qm + iky)

, f̃om23 = −
i
(
q2m + k2y − 2k2z + 2kzχm

)
√

3m2(qm + iky)2
, f̃om24 =

1

m2
,

(3.9)

n1 =
2
√

2χn (χn+kz)
3 χn

k2n + k2y
, n2 =

2
√

2χn (χn−kz)
3 χn

k2n + k2y
, m1 =

2
√

2χm (χm+kz)
3 χm

q2m + k2y
, m2 =

2
√

2χm (χm−kz)
3 χm

q2m + k2y
,

kn =

√
2µEn
~2

− k2y − k2z , qm =

√
2µ |Em + V0|

~2
− k2y − k2z , χn =

2µEn
~2

, χm =
2µ |Em + V0|

~2
. (3.10)

We define the g̃’s in a similar manner as the f ’s and f̃ ’s. However, we will not need their explicit expressions,
because in our numerics we consider Em > −V0.

The continuity of the wavefunction at the boundaries x = ±L/2 now gives us the matrix s(En, Eñ) (see Ap-
pendix B for the calculational details) as follows:

s(En, Eñ) =

√
Re(kn)

Re(kñ)
Snñ ,

A
o
1n

Ao2n
Bo1n
Bo2n

 =

∞∑
ñ=−∞

Snñ


Ai1ñ
Ai2ñ
Bi1ñ
Bi2ñ

 , (3.11)

s(En, Eñ) =

s11(En, Eñ) s12(En, Eñ) s13(En, Eñ) s14(En, Eñ)
s21(En, Eñ) s22(En, Eñ) s23(En, Eñ) s24(En, Eñ)
s31(En, Eñ) s32(EnEñ) s33(En, Eñ) s34(En, Eñ)
s41(En, Eñ) s42(En, Eñ) s43(En, Eñ) s44(En, Eñ)

 =


r11n,ñ r12n,ñ t̃11n,ñ t̃12n,ñ
r21n,ñ r22n,ñ t̃21n,ñ t̃22n,ñ
t11n,ñ t12n,ñ r̃11n,ñ r̃11n,ñ
t21n,ñ t22n,ñ r̃21n,ñ r̃22n,ñ

 , (3.12)

where rrsn,ñ and trsn,ñ (with r, s = 1, 2) are the reflection and transmission amplitudes, respectively, involving

transitions of the electron from the ñth to the nth order Floquet channels, for modes incident from the left. On the
other hand, r̃rsn,ñ and r̃rsn,ñ are the corresponding amplitudes for modes incident from the right. Due to the existence
of doubly degenerate bands for the 3d QBT, we have divided the matrices into 2× 2 blocks. The upper left, upper
right, lower left, and lower right blocks are the analogs of the LL, LR, RL, and RR elements of the 2d case in
Eq. (2.10). Note that the indices r and s distinguish between the doubly degenerate bands that the 3d QBT has.

Finally, the total transmission and reflection probabilities, when the incident wave has index r = 1, are given by:

T =

∞∑
n=0

∑
s=1,2

|t1sn,0|2 = |s31(En, Ef )|2 + |s32(En, Ef )|2 ,

R =

∞∑
n=0

∑
s=1,2

|r1sn,0|2 = |s11(En, Ef )|2 + |s12(En, Ef )|2 . (3.13)
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The components of the zero-frequency nonadiabatic pumped shot noise are captured by:

NLL(Ef ) = N11 +N12 +N21 +N22 , NLR(Ef ) = N13 +N14 +N23 +N24 ,

NRL(Ef ) = N31 +N32 +N41 +N42 , NRR(Ef ) = N33 +N34 +N43 +N44 , (3.14)

where

Nαβ(Ef ) =
e2

h

∫ ∞
0

dE

4∑
γ,δ=1

∞∑
m,n,p=−∞

Mαβγδ(E,Em, En, Ep) [f0(En)− f0(Em)]
2

2
,

Mαβγδ(E,Em, En, Ep) = s∗αγ(E,En) sαδ(E,Em) s∗βδ(Ep, Em) sβγ(Ep, En) . (3.15)

As in the case of 2d case, here also the components Nαβ have the symmetry NLL = −NLR = −NLR = NRR, due
to current flux conservation. Again, we will pick NLL for further analysis. We will also consider the differential
shot noise, which is the derivative of NLL with respect to the Fermi energy. All these will be computed in the limit
T → 0 in our computations.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we first show the numerical plots of the transmission coefficients and shot noise for some repre-
sentative parameter values of the 2d and 3d systems (in Sec. IV A and IV B, respectively), and compare our results
with other systems like graphene and pseudospin-1 Dirac-Weyl semimetals. We derive and discuss the bound state
spectra in Sec. IV C, where we also interpret their physical implications.

The minimum number of Floquet sidebands N that needs to be included in our numerics is determined by the
condition N > V1

~ω , which depends on the strength of the amplitude of the oscillating part of the potential. In our

plots, we set ~ω = 4 meV, L = 3000 Å, V0 = 10 meV, and V1 = 1 meV, if not mentioned otherwise. We also choose
N = 2, as V1 < ~ω.

In our numerical simulations, we have used a representative value of the effective mass, µ = 0.001me, where me

is the mass of a free electron. Since the effective masses are different for different materials, when trying to find
the exact numbers for a given material, we need to use the appropriate value of µ. For a system with µ = mf me,
this amounts to scaling all energy variables by the multiplicative factor

mf

0.001 in our numerics. As an example, µ in

HgTe quantum wells (which realizes 2d QBT) is around 0.03me [31], in which case we need to use the factor 0.001
0.03 .

A. 2d model

First, let us discuss the transport features of the 2d QBT. The numerical results for the transmission coefficient
T as a function of the Ef are shown in Figs. 2a, 3a, 4a, and 4b. Fano resonances are observed when the first
order Floquet sidebands overlap with a bound state within the quantum well. The resonances that we find have
asymmetric patterns, just like the cases for an electron gas and graphene [5, 24]. Analogous to the features for a
free electron gas, the asymmetric pattern has a sharp dip is followed by a peak, which is opposite to the asymmetric
pattern (namely, a perfect transmission followed by a total reflection) found for graphene. We note that this
asymmmetry is in contrast with the symmetric T found in systems like pseudospin-1 Dirac-Weyl systems [32],
which is connected with the parity structure of the components of the wavefunction of the bound states. We also
show the corresponding shot noise (NLL) and its derivative (see Figs. 2b, 2c, 3b, and 3c). Inflection points are
observed in NLL corresponding to the Fano resonances in the T , which can be more easily identified from the plot
of its derivative. We have also included representative contour-plots of T and the derivative of shot noise in the
Ef -ky plane (see Figs. 4c and 4d).

We observe two kinds of trends in the transmission features:

1. Type 1: Fig. 2a shows that the value of Ef at which the Fano resonance occurs (let us call this the Fano
resonance point (FRP)) increase with increasing ky, which is opposite to the trend seen in the results for
graphene [24] (in graphene, the Ef value for FRP decreases with increasing ky). The bandwidth of the
resonance curves are almost constant with ky. We have checked this feature for higher values of ky (up to

0.0015 Å
−1

). Also, in graphene, the asymmetric Fano resonace pattern has a peak followed by a dip. In 2d
QBT, the opposite pattern is observed, namely, a dip is followed a peak. This is also reflected in the shot
noise and its derivative, as shown in Figs. 2b and 2c.
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FIG. 2. 2d QBT: Panels (a), (b), and (c) show the total Floquet transmission coefficient (T ), pumped shot noise (in units
of 10−2 e2 ω), and the differential pumped shot noise (in units of 10−2 e2 h), respectively, as functions of the energy Ef (in

meV) of the incident wave, for different ky values (in units of Å
−1

), as indicated in the plot-legends. The parameters used
for the driven well are: ~ω = 4 meV, L = 3000 Å, V0 = 10 meV, and V1 = 1 meV. Sharp Fano resonances in T can be seen,
which indicate the presence of bound states in the quantum well region. Inflection points are observed in the pumped shot
noise corresponding to the Fano resonances in T , which can be more easily identified from the plot of the derivative of the
shot noise.
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FIG. 3. 2d QBT: Panel (a) shows the total Floquet transmission coefficient (T ) as a function of the energy Ef (in meV)

of the incident wave, for different ky values (in units of Å
−1

), as indicated in the plot-legends. Panels (b) and (c) show the

pumped shot noise (in units of 10−2 e2 ω) and its derivatives (in units of 10−2 e2 h) versus Ef (in meV), for ky = 0.0008 Å
−1

and ky = 0.001 Å
−1

, respectively. The parameters used for the driven well are: ~ω = 4 meV, L = 3000 Å, V0 = 10 meV,
and V1 = 1 meV. Sharp Fano resonances in the plots for T indicate the presence of bound states in the quantum well region.
Inflection points are observed in the pumped shot noise corresponding to the Fano resonances in T , which can be more easily
identified from the plot of the derivative of the shot noise.

2. Type 2: Fig. 3a shows the value of Ef for FRP decrease with increasing ky, which is consistent with the
features seen in graphene [24]. But, the value and sequence of change in the bandwidth of the FRP with

changing ky are not the same as what is seen in graphene. The resonance peak for ky = 0.0008 Å
−1

is very

sharp (small bandwidth) compared to the ky = 0.001 Å
−1

case. The nature of the shot noise and its derivative
in Fig. 3b also differ from the curves in type 1, as the inflection region is extremely narrow and the derivative

has a very sharp peak at FRP for ky = 0.0008 Å
−1

. Fig. 3c depicts a shot noise pattern similar to the curves
in type 1.
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FIG. 4. 2d QBT: Panels (a), and (b) show the change in behaviour of the total Floquet transmission coefficient T as a

function of Ef (in meV), as we gradually tune ky to different values (in units of Å
−1

), as shown in the plot-legends. Panels
(c) and (d) show the contour-plots of T and the derivative of shot noise, respectively, in the Ef -ky plane (with Ef in meV

and ky in 10−3 Å
−1

). The latter is represented by a color code with the unit 10−2e2 h. For these contour-plots, ky is in units

of 10−3 Å
−1

. For all the panels, the parameter values of the driven well are kept fixed at ~ω = 4 meV, L = 3000 Å, V0 = 10
meV, and V1 = 1 meV.

Hence, based on the nature of the curves we conclude that two different types (type 1 and type 2) of Fano
resonances show up depending on the parameter regimes. The gradual change in the nature of the FRPs with

increasing ky as we change its value from 0.00077Å
−1

to 0.00095 Å
−1

is shown in Fig. 4. Firstly, we see that an

FRP with a relatively small peak, but broad bandwidth, appears above ky = 0.00077Å
−1

, and it behaves as a
type 1 peak (as the peak position shifts to higher values of Ef with increasing ky). Its bandwidth decreases as ky

increases. Secondly, a sharp (very narrow bandwidth) type 2 FRP also appears above ky = 0.00077Å
−1

, whose
peak position shifts to lower values of Ef with increasing ky. We note that both types of FRPs disappear in the

limit ky ≤ 0.00077 Å
−1

.

From the relations shown in Appendix A, we find that the matrix components of the M±1s and M±2s matrices

in Eq. (A1) depend on the phase factors e±
i qm L

2 (where qm =
√

2µ |Em+V0|
~2 − k2y). Clearly, for 2µEm

~2 = k2y , the

phase factor becomes ei α, where α =
√

2µV0

~2
L
2 . From our simulations, we find that FRPs are absent if sinα = 0 or

tanα = 1, i.e V0 = ~2

2µ

(
2m3 π
L

)2
or ~2

2µ

(
m4 π
2L

)2
(where m3 = 1, 2, 3, · · · and m4 = 1, 5, 9, · · · ). Hence for L = 3000 Å

and ky = 0.001 Å
−1

, the FRPs are absent at V0 = 1.04, 16.71, 26.11, 66.85, · · · meV, which is shown in Fig. 5a. On

the other hand, FRPs are present if we change L to 5000 Å, as seen in Fig. 5b. Fig. 5c shows that this phenomenon
is completely independent of ky. Although Ref. [24] does not discuss this aspect, our simulations for graphene prove
that same features exist also in graphene. Hence, this seems to be a system-independent feature.

The nature of the FRPs are caused by the bound state spectra of the system. Hence, we will point out the reasons
for the differences in behaviour of the 2d QBT FRPs from those in systems like graphene in Sec. IV C, where we
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FIG. 5. 2d QBT: Panel (a) shows T versus Ef (in meV) for various values of V0 (in meV), as indicated in the plot-legends,

at L = 3000 Å and ky = 0.001 Å
−1

. Panel (b) shows T versus Ef (in meV) at V0 = 16.7 meV and ky = 0.001 Å
−1

, for

L = 3000 Å and L = 5000 Å, respectively. Panel (c) shows T versus Ef (in meV) for various values of ky (in Å
−1

), as
indicated in the plot-legends, at L = 3000 Å and V0 = 16.7 meV. The remaining parameter values are kept fixed at ~ω = 4
meV, and V1 = 1 meV for all the panels.
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FIG. 6. 3d QBT: Panels (a), (b), and (c) show the total Floquet transmission coefficient (T ), pumped shot noise (in units
of 10−2 e2 ω), and the differential pumped shot noise (in units of 10−2 e2 h), respectively, as functions of the energy Ef (in

meV) of the incident wave, for different ky values (in units of Å
−1

), as indicated in the plot-legends. The kz value is kept

fixed at 0.00095 Å
−1

. Sharp Fano resonances in T can be seen, which indicate the presence of bound states in the quantum
well region. Inflection points are observed in the pumped shot noise corresponding to the Fano resonances in T , which can
be more easily identified from the plot of the derivative of the shot noise. Panel (d) shows the contour-plot of T in the Ef -ky

plane (with Ef in meV and ky in 10−3 Å
−1

), for kz = 0.00095 Å
−1

. For all the panels, the parameters used for the driven
well are: ~ω = 4 meV, L = 3000 Å, V0 = 10 meV, and V1 = 1 meV.

plot and discuss the bound state spectra.

B. 3d model

Now, let us discuss the transport features of the 3d QBT, and also discuss their similarities / differences with
the 2d case. The numerical results for the transmission coefficient T , the shot noise, and the derivative of the shot
noise, as functions of the Ef , are shown in Figs. 6 and 7. Similar to the type 1 FRPs of the 2d case, the Ef value of
the FRP increases with ky for a fixed value of kz. Due to the symmetry between the ky and kz momenta, the same
behaviour is expected for increasing value of the momentum along any direction in the yz-plane. We have performed

our calculations over a large interval of momenta, namely varying ky, kz in the interval between 0.0002 Å
−1

and

0.0015 Å
−1

. But, we did not find the type 2 FRPs in this 3d case. The shot noise patterns also differ from that in
the 2d case, as seen in Figs. 6b, 6c, 7b, and 7c.
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FIG. 7. 3d QBT: Panels (a), (b), and (c) show the total Floquet transmission coefficient (T ), pumped shot noise (in units
of 10−2 e2 ω), and the differential pumped shot noise (in units of 10−2 e2 h), respectively, as functions of the energy Ef (in

meV) of the incident wave, for different ky values (in units of Å
−1

), as indicated in the plot-legends. The kz value is kept

fixed at 0.00075 Å
−1

. Sharp Fano resonances in T can be seen, which indicate the presence of bound states in the quantum
well region. Inflection points are observed in the pumped shot noise corresponding to the Fano resonances in T , which can
be more easily identified from the plot of the derivative of the shot noise. Panel (d) shows the contour-plot of T in the Ef -ky

plane (with Ef in meV and ky in 10−3 Å
−1

), for kz = 0.00075 Å
−1

. For all the panels, the parameters used for the driven
well are: ~ω = 4 meV, L = 3000 Å, V0 = 10 meV, and V1 = 1 meV.
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FIG. 8. 3d QBT: Panels (a), (b), (c), and (d) show the total Floquet transmission coefficient T as a function of Ef (in units

of meV), for V0 = 5, 10, 15, 20 meV, respectively. The remaining parameter values are kept fixed at ky = kz = 0.001 Å
−1

,
~ω = 4 meV, L = 3000 Å, and V1 = 1 meV.

Fig. 8 shows how the Fano resonance depends on the static potential V0. The evolution of the FRP (which is
only of type 1) is similar to what is seen for the 2d QBT.

Again, the reasons for the differences in behaviour of the 3d QBT FRPs from those in 2d QBT as well as other
mesoscopic Hamiltonians will be discussed in the next subsection, where the role of the bound state spectra will be
discussed.
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FIG. 9. 2d QBT: The black dots represent the energies of the bound states Eb (in meV) of the static quantum well, as we

vary ky (in units of 10−3 Å
−1

). The red and blue dots represent the values of EFano − ~ω for some of the type 1 and type 2
FRPs, respectively, shown in the earlier plots for 2d QBT.

C. Identifying Fano resonances with (quasi)bound states

We first consider the bound states within the static quantum well for the 2d QBT. The n = m = 0 modes in
Eqs. (2.6) and (2.7) represent this scenario. The roots of E0 obtained from the secular equation

∣∣∣∣∣∣∣∣∣∣∣

γ1,0 e
− k0L

2 −γ2,0 e−
iq0L

2 −γ2,0 e
iq0L

2 0

0 γ2,0 e
iq0L

2 γ2,0 e
− iq0L

2 −γ1,0 e−
k0L
2

γ1,0 e
− k0L

2 ky
i k0

γ2,0 e
− iq0L

2 ky
q0

−γ2,0 e
iq0L

2 ky
q0

0

0 −γ2,0 e
iq0L

2 ky
q0

γ2,0 e
− iq0L

2 ky
q0

γ1,0 e
− k0L

2 ky
i k0

∣∣∣∣∣∣∣∣∣∣∣
= 0

⇒ tan

(
L

√
2µ (Eb + V0)

~2
− k2y

)
=

~2
√
k2y −

2µEb

~2

√
2µ (Eb+V0)

~2 − k2y
2µEb + µV0 − ~2k2y

(4.1)

give the energies Eb of the bound states. We note that
~2k2y
2µ − V0 ≤ Eb ≤

~2k2y
2µ . The black points in Fig. 9 show the

numerically obtained values of the secular equation.

In our plots for 2d QBT, an FRP is observed when the first order Floquet sideband coincides with the shallowest
bound state. Hence, the locations of the FRPs are determined from the relation EFano − ~ω = Eb, which is
equivalent to kx,−1 = kbx, with kbx being the x-component of the wavevector of the quasibound level within the

well. For example, in Fig. 2c, the blue differential shot noise curve for ky = 0.00095Å
−1

has a sharp dip at
EFano = 4.844 meV, which implies that Eb is 0.844 meV (with ~ω = 4 meV). The numerical analysis of Eq. (4.1)
indeed gives a bound state at Eb = 0.844 meV for the static well. This explains the Fano resonance at Ef = 4.844
meV. Fig. 9 shows that there are many static bound states for a given ky. If we increase the driving frequency ω,
the sideband energy interval ~ω will increase, and bound states with higher values of Eb (i.e. deeper bound states)
will then be activated to produce Fano resonances in the transmission spectrum.

Next, let us consider the bound states within the static quantum well for the 3d QBT. The n = m = 0 modes in
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FIG. 10. 3d QBT: The black dots represent the energies of the bound states Eb (in meV) of the static quantum well, as

we vary both ky and kz (in units of 10−3 Å
−1

). The red dots represent the values of EFano − ~ω obtained from the FRPs

in Figs. 6 and 7. Panels (b) and (c) show the bound state energies (in mev) at kz = 0.00075 Å
−1

and kz = 0.00095 Å
−1

,

respectively, as we vary ky (in units of 10−3 Å
−1

). In all the panels, the numerical parameters used for the driven well are:
~ω = 4 meV, L = 3000 Å, V0 = 10 meV, and V1 = 1 meV.

Eq. (3.5) represent this scenario. The roots of E0 obtained from the secular equation∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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(4.2)

give the energies Eb of the bound states. The black points in Figs. 10a, 10b, and 10c show the numerically obtained
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values of the secular equation. The red dots represent the values of EFano − ~ω obtained from the FRPs in Figs. 6
and 7. We have a high density of points for the 3d case (due to the extra dimension kz) in comparison with 2d case.
This certainly affects the lower / upper boundary for the appearance of the type 1 (type 2) FRPs in the momentum
space. Our simulations suggest that the upper boundary for obtaining the type 2 FRPs might be very low, as we

did not find these in the interval 0.0002 Å
−1 − 0.0015 Å

−1
. It might be possible that the type 2 FRPs exist at very

low momenta.

From the above discussions, it is clear that the behaviour of the FRPs is primarily controlled by the bound
state spectra of the corresponding systems. These, in turn, are determined by the structure of the Hamiltonian.
Different Hamiltonians with different dispersions (e.g. linear versus quadratic), dimensionality (2d versus 3d), and
different spinorial structures of the eigenfunctions, give rise to distinct transcendental equations determining the
bound states. Clearly, the transcendental equations in Eqs. (4.1) and (4.2) are different from each other, as well
from those in Ref. [24] (where the cases of 2d electron gas and graphene are discussed). Both the matrix structure
of Hamiltonian, and the powers of momenta appearing in the dispersion, feed into the solutions.

V. SUMMARY AND OUTLOOK

In this paper, we have devised a formalism to chart out the Fano resonance features in the transmission spectra
of the electrons passing through a periodically driven quantum well in 2d and 3d QBT semimetals. We have looked
at the nonadiabatic limit where the Floquet scattering framework can be used. From our detailed analysis, we have
identified the FRPs with the bound states of the systems. The Fano resonance spectra show the presence of various
kinds of FRPs, including those having narrow bandwidths. Extremely narrow bandwidth FRPs can have useful
applications for designing advanced dynamic reconfigurable devices [33]. We have also compared our results with
systems involving free electron gas, graphene, and pseudospin-1 Dirac-Weyl semimetals.

In experiments, the Fano resonances can be captured through the measurement of the pumped shot noise (see, for
example Ref. [34]), which we have have computed in our paper. Although the shot noise for the static case has been
experimentally studied for HgTe quantum wells [35], we are not aware of specific experiments involving harmonic
drives carried out with such materials. We hope our theoretical investigations will stimulate such experimental
work on these very interesting systems.

In future, it will be useful to look at the Floquet scattering properties in the presence of disorder [36] and/or
magnetic fields [20, 21, 37]. Another direction is to examine the effects of anisotropy as well as particle-hole
symmetry-breaking terms in the Hamiltonian. It will also be interesting to investigate the effect of periodic potential
in presence of interactions, which can have drastic effects like destroying quantization of various physical quantities
in the topological phases [38–40], or the emergence of strongly correlated phases [10, 13, 36] where quasiparticle
description of transport breaks down [41–43].
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Appendix A: Floquet scattering matrix for the 2d QBT case

The continuity of the components of the wavefunction, as given in Eqs. (2.6) and (2.7), at the boundaries
x = ±L/2, enables us to derive the values of the unknown coefficients Ain, A

o
n, B

i
n, B

o
n, am, and bm. For simplifying

the equations, we define some matrices whose components are given by:
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From the continuity conditions, we then get:

Mr · (Ai ±Bi) = M1s
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where j = 1, 2. We have to set j = 1 for Em > −V0 and j = 2 for Em < −V0. This finally gives us the matrix
equation: (
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Bo

)
=
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For the nth Floquet band, the above matrix equation reduces to:(
Aon
Bon

)
=

∞∑
m=−∞
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, (A5)

where we can determine Snm from MAA, MAB , MBB , and MBA.
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Appendix B: Floquet scattering matrix for the 3d QBT case

The continuity of the components of the wavefunction, as given in Eq. (3.5), at the boundaries x = ±L/2, enables
us to derive the values of the unknown coefficients Ain,1, A
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and βm,2. For simplifying the equations, we define some matrices whose components are given by:
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2 [kn(kz + χm) + qm(kz − χn)− iky(χn + χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn + iky) (qm + iky)
√
χ3
m(kz + χm)

,

vnm34 = −
(kn − qm) (qm − iky)

√
χ3
n(kz + χn) e−

i(kn+qm)L
2 [kn(χm − kz) + qm(χn − kz) + iky(χn − χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn + iky) (qm + iky)
√
χ3
m(χm − kz)

,

(B3)
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vnm41 =
(kn + qm) (qm + iky)

√
χ3
n(χn − kz) e−

i(kn−qm)L
2 [−kn(kz + χm) + qm(kz + χn)− iky(χn − χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn + iky) (qm − iky)
√
χ3
m(kz + χm)

,

vnm42 =
(kn + qm) (qm + iky)

√
χ3
n(χn − kz) e−

i(kn−qm)L
2 [kn(χm − kz) + qm(kz + χn)− iky(χn + χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn + iky) (qm − iky)
√
χ3
m(χm − kz)

,

vnm43 = −
(kn − qm) (qm − iky)

√
χ3
n(χn − kz) e−

i(kn+qm)L
2 [kn(kz + χm) + qm(kz + χn) + iky(χn − χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn + iky) (qm + iky)
√
χ3
m(kz + χm)

,

vnm44 = −
(kn − qm) (qm − iky)

√
χ3
n(χn − kz) e−

i(kn+qm)L
2 [kn(kz − χm) + qm(kz + χn) + iky(χn + χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn + iky) (qm + iky)
√
χ3
m(χm − kz)

,

(B4)

unm11 =
(kn + qm) (qm + iky) e−

iqmL
2

√
χ3
n(kz + χn) [kn(kz + χm) + qm(χn − kz)− iky(χn + χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn + iky) (qm − iky)
√
χ3
m(kz + χm)

,

unm12 =
(kn + qm) (qm + iky) e−

iqmL
2

√
χ3
n(kz + χn) [kn(kz − χm) + qm(χn − kz)− iky(χn − χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn + iky) (qm − iky)
√
χ3
m(χm − kz)

,

unm13 =
(qm − kn) (qm − iky) e

iqmL
2

√
χ3
n(kz + χn) [−kn(kz + χm) + qm(χn − kz) + iky(χn + χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn + iky) (qm + iky)
√
χ3
m(kz + χm)

,

unm14 =
(qm − kn) (qm − iky) e

iqmL
2

√
χ3
n(kz + χn) [kn(χm − kz) + qm(χn − kz) + iky(χn − χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn + iky) (qm + iky)
√
χ3
m(χm − kz)

, (B5)

unm21 =
(kn + qm) (qm + iky) e−

iqmL
2

√
χ3
n(χn − kz) [−kn(kz + χm) + qm(kz + χn)− iky(χn − χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn + iky) (qm − iky)
√
χ3
m(kz + χm)

,

unm22 =
(kn + qm) (qm + iky) e−

iqmL
2

√
χ3
n(χn − kz) [kn(χm − kz) + qm(kz + χn)− iky(χn + χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn + iky) (qm − iky)
√
χ3
m(χm − kz)

,

unm23 =
(qm − kn) (qm − iky) e

iqmL
2

√
χ3
n(χn − kz) [kn(kz + χm) + qm(kz + χn) + iky(χn − χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn + iky) (qm + iky)
√
χ3
m(kz + χm)

,

unm24 =
(qm − kn) (qm − iky) e

iqmL
2

√
χ3
n(χn − kz)(kn(kz − χm) + qm [kz + χn) + iky(χn + χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn + iky) (qm + iky)
√
χ3
m(χm − kz)

,

(B6)

unm31 =
(qm − kn) (qm + iky) e

iqmL
2

√
χ3
n(kz + χn) [−kn(kz + χm) + qm(χn − kz)− iky(χn + χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn − iky) (qm − iky)
√
χ3
m(kz + χm)

,

unm32 =
(qm − kn) (qm + iky) e

iqmL
2

√
χ3
n(kz + χn) [kn(χm − kz) + qm(χn − kz)− iky(χn − χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn − iky) (qm − iky)
√
χ3
m(χm − kz)

,

unm33 =
(kn + qm) (qm − iky) e−

iqmL
2

√
χ3
n(kz + χn) [kn(kz + χm) + qm(χn − kz) + iky(χn + χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn − iky) (qm + iky)
√
χ3
m(kz + χm)

,

unm34 =
(kn + qm) (qm − iky) e−

iqmL
2

√
χ3
n(kz + χn) [kn(kz − χm) + qm(χn − kz) + iky(χn − χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn − iky) (qm + iky)
√
χ3
m(χm − kz)

,

(B7)
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unm41 =
(qm − kn) (qm + iky) e

iqmL
2

√
χ3
n(χn − kz) [kn(kz + χm) + qm(kz + χn)− iky(χn − χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn − iky) (qm − iky)
√
χ3
m(kz + χm)

,

unm42 =
(qm − kn) (qm + iky) e

iqmL
2

√
χ3
n(χn − kz) [kn(kz − χm) + qm(kz + χn)− iky(χn + χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn − iky) (qm − iky)
√
χ3
m(χm − kz)

,

unm43 =
(kn + qm) (qm − iky) e−

iqmL
2

√
χ3
n(χn − kz) [−kn(kz + χm) + qm(kz + χn) + iky(χn − χm)] Jn−m

(
V1

~ω
)

4 kn χn (kn − iky) (qm + iky)
√
χ3
m(kz + χm)

,

unm44 =
(kn + qm) (qm − iky) e−

iqmL
2

√
χ3
n(χn − kz) [kn(χm − kz) + qm(kz + χn) + iky(χn + χm)[ Jn−m

(
V1

~ω
)

4 kn χn (kn − iky) (qm + iky)
√
χ3
m(χm − kz)

,

(B8)

Mnm
r = e−

iknL
2 δn,m . (B9)

In terms of the above matrices, we can write the wave-function matching relations as:

Ain,1 e
− iknL

2 =
∑
m

(αm,1 u
nm
11 + αm,2 u

nm
12 + βm,1 u

nm
13 + βm,2 u

nm
14 ) ,

Ain,2 e
− iknL

2 =
∑
m

(αm,1 u
nm
21 + αm,2 u

nm
22 + βm,1 u

nm
23 + βm,2 u

nm
24 ) ,

Aon,1 =
∑
m

(αm,1v
nm
11 + αm,2v

nm
12 + βm,1 v

nm
13 + βm,2 v

nm
14 ) ,

Aon,2 =
∑
m

(αm,1 v
nm
21 + αm,2 v

nm
22 + βm,1 v

nm
23 + βm,2 v

nm
24 ) , (B10)

Bin,1 e
− iknL

2 =
∑
m

(αm,1u
nm
31 + αm,2 u

nm
32 + βm,1u

nm
33 + βm,2u

nm
34 ) ,

Bin,2 e
− iknL

2 =
∑
m

(αm,1 u
nm
41 + αm,2u

nm
42 + βm,1 u

nm
43 + βm,2 u

nm
44 ) ,

Bon,1 =
∑
m

(αm,1 v
nm
31 + αm,2 v

nm
32 + βm,1 v

nm
33 + βm,2 v

nm
34 ) ,

Bon,2 =
∑
m

(αm,1 v
nm
41 + αm,2 v

nm
42 + βm,1v

nm
43 + βm,2 v

nm
44 ) . (B11)

In the matrix form, we can rewrite the above as:

Ao1 = v11 · α1 + v12 · α2 + v13 · β1 + v14 · β2 , Ao2 = v21 · α1 + v22 · α2 + v23 · β1 + v24 · β2 ,
Bo1 = v31 · α1 + v32 · α2 + v33 · β1 + v34 · β2 , Bo2 = v41 · α1 + v42 · α2 + v43 · β1 + v44 · β2 , (B12)

and

Ai1 ·Mr = u11 · α1 + u12 · α2 + u13 · β1 + u14 · β2 , Ai2 ·Mr = u21 · α1 + u22 · α2 + u23 · β1 + u24 · β2 ,
Bi1 ·Mr = u31 · α1 + u32 · α2 + u33 · β1 + u34 · β2 , Bi2 ·Mr = u41 · α1 + u42 · α2 + u43 · β1 + u44 · β2 . (B13)

Now, we define a bigger matrix mat as follows:

mat =

u11 u12 u13 u14
u21 u22 u23 u24
u31 u32 u33 u34
u41 u42 u43 u44

 , (B14)

and denote its inverse as:

mat−1 =

γ11 γ12 γ13 γ14
γ21 γ22 γ23 γ24
γ31 γ32 γ33 γ34
γ41 γ42 γ43 γ44

 . (B15)
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Then, we can finally express the amplitudes as:A
o
1

Ao2
Bo1
Bo2

 =

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44



Ai1
Ai2
Bi1
Bi2

 , (B16)

where

Mij =

4∑
l=1

(vil · γlj) ·Mr . (B17)

For the nth Floquet band, the above matrix equation reduces to:A
o
1n

Ao2n
Bo1n
Bo2n

 =

∞∑
m=−∞

Snm


Ai1m
Ai2m
Bi1m
Bi2m

 , (B18)

where we can determine Snm from Mij .
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