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In random quantum magnets, like the random transverse Ising chain, the low energy excitations
are localized in rare regions and there are only weak correlations between them. It is a fascinating
question whether these correlations are completely irrelevant in the sense of the renormalization
group. To answer this question, we calculate the distribution of the excitation energy of the ran-
dom transverse Ising chain in the disordered Griffiths phase with high numerical precision by the
strong disorder renormalization group method and - for shorter chains - by free-fermion techniques.
Asymptotically, the two methods give identical results, which are well fitted by the Fréchet limit
law of the extremes of independent and identically distributed random numbers. Given the finite
size corrections, the two numerical methods give very similar results, but they differ from the cor-
rection term for uncorrelated random variables. This fact shows that the weak correlations between
low-energy excitations in random quantum magnets are not entirely irrelevant.

I. INTRODUCTION

Many-body systems in the presence of quenched disor-
der have unusual dynamical properties due to rare-region
effects. In these systems - due to extreme fluctuations of
strong couplings - domains are formed, which can remain
locally ordered even in the paramagnetic phase. The re-
laxation time, τ , associated with turning the spins in
such domains can be extremely large and it has no upper
limit in the thermodynamic limit. This type of Griffiths
singularities are responsible for non-analytical behaviour
of several physical quantities (susceptibility, specific heat,
auto-correlation function) in the so called Griffiths phase,
which is an extended part of the paramagnetic phase1.
In random quantum systems Griffiths-effects are

stronger than in classical ones, which is manifested in
power-law decay of the auto-correlation function, as well
as power-law singularities of the susceptibility and the
specific heat at low temperatures2,3. In random quantum
magnets with discrete symmetry, such as in the random
transverse Ising model (RTIM) the low-energy excita-
tions are localised and their properties can be successfully
studied by the so called strong disorder renormalization
group (SDRG) method4. As initiated be Ma, Dasgupta
and Hu5 and further developed by Fisher6 the SDRG is
a local renormalization method, in which quantum and
disorder fluctuations are treated at the same time and
degrees of freedom with a large excitation energy are suc-
cessively eliminated. In these random quantum magnets
the SDRG method is expected to provide asymptotically
exact results not only at the critical point, the proper-
ties of which are governed by an infinite disorder fixed
point7, but in the Griffiths phase as well, at least for the
dynamical singularities.
In phenomenological descriptions it is often assumed

that the localized excitations in random quantum mag-
nets are independent8. For example distribution of low-
energy excitations in these systems are well approximated
by the Fréchet distribution9, which represents the limit

law of the extremes of independent and identically dis-
tributed (iid) random numbers. Recently extreme value
statistics (EVS) has been applied to several problems,
we can mention earthquakes, tsunamis, extreme flood-
ing, big wildfire, extremes of climate, stock market risks
in finance, sport records, etc10–15. In a mathematical
point of view complete understanding of extreme value
statistics is known for uncorrelated random numbers, in
which case also the convergence to the limit laws is de-
rived by mathematical16 and renormalization group17–20

(RG) methods. The iid limit distributions also apply
to weakly correlated random numbers, while new types
of limit distributions appear for the strongly correlated
cases21.

It is an intriguing problem to what extent the localised
excitations in random quantum magnets are indepen-
dent? Whether the weak correlations between the rare
regions are completely irrelevant or these are manifested
in some effects, such as in the form of finite-size cor-
rections? In this paper we make an effort to answer this
question and consider the paradigmatic model, the RTIM
in one dimension (1D) and calculate numerically the dis-
tribution of the first energy gap by the asymptotically
exact SDRG method with high accuracy. For moderate
L system sizes, we use also free-fermion techniques22–24

to calculate the gaps of the random samples exactly. The
distribution of the gaps for finite L are compared with
an appropriate Fréchet distribution and their difference is
analysed through finite-size scaling. To check the poten-
tial form of numerical errors the same type of numerical
test is repeated for iid random numbers, too.

The rest of the paper is organised in the following way.
In Sec.II the RTIM model is introduced and in Sec.III the
methods to calculate its excitation energy are described.
In Sec.IV the distributions of gaps of the RTIM are cal-
culated and the finite-size corrections are compared with
the analytical results of uncorrelated variables. To test
the numerical accuracy we repeat this analysis for un-
correlated Kesten variables25. Our paper concludes with

http://arxiv.org/abs/2103.05459v1
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a discussion in the final section. Related results about
the distribution of extremes of uncorrelated variables are
recapitulated in the Appendix.

II. MODEL AND KNOWN RESULTS

Here, we consider the RTIM in 1D defined by the
Hamiltonian

Ĥ = −
L−1
∑

i=1

Jiσ
z
i σ

z
i+1 −

L
∑

i=1

hiσ
x
i , (1)

in terms of the σx,z
i Pauli matrices at site i and the near-

est neighbour couplings, Ji > 0 and the transverse fields,
hi > 0, are taken from the distributions, π1(J) and π2(h),
respectively. Generally we use open boundary conditions
(OBC-s) and work at zero temperature, T = 0.
In the thermodynamic limit, L → ∞, the control-

parameter is defined as6:

δ =
[ln h]av − [ln J ]av
var(h) + var(J)

, (2)

where [· · · ]av denotes averaging over quenched disorder
and var(x) stands for the variance of x. For δ < 0
(δ > 0) the system is in the ordered ferromagnetic (dis-
ordered paramagnetic) phase and at δ = 0 there is a
random quantum critical point. According to SDRG
calculations6,26,27 and numerical results28,29 the critical
behaviour of the system is controlled by an infinite disor-
der fixed point7. For example, the energy scale, defined
by the lowest gap, ε, and the length-scale are related as

ln ε ∼ L1/2, δ = 0 . (3)

In the paramagnetic phase this relation is in a power-law
form

ε ∼ L−z, δ > 0 , (4)

which is due to Griffiths singularities. Here, the dynam-
ical exponent, z = z(δ), depends on the distance from
the critical point and is given by the positive root of the
equation26,27,30:

[

(

J

h

)1/z
]

av

= 1 , (5)

which in the vicinity of the critical point diverges as:
z ≈ 1/(2δ).
The distribution of the first gap has been calculated

analytically through the SDRG method31:

PL(ε; z) =
1

z
u1/z−1 exp

(

−u1/z
)

, (6)

in terms of u = u0ε(L/ξ)
z, ξ being the correlation length

and u0 is a constant, defined by the standardisation. This

relation is valid for L ≫ ξ and for δ ≪ 1, in which limit
ξ ∼ δ−2. We observe that Eq.(6) is just the Fréchet
distribution, see in Eq.(26).
An approximate form of the distribution of the low-

energy excitations can be obtained from the assump-
tion that these excitations are localised and are due to
extreme fluctuations of say n ≪ L consecutive strong
bonds8. The probability to find such a strongly con-
nected cluster in the system is given by: PL(n) ∼
L exp(−an). At the same time the excitation energy due
to such a cluster is exponentially small: ε ∼ exp(−bn).
Combining these expressions we obtain PL(ln ε) ∼ Lε1/z,
with z = b/a being the dynamical exponent in agreement
with Eq.(4). Then, the cumulated distribution of the re-
laxation times, τ ∼ 1/ε is obtained in this approach:

µ(τ) ≈ 1−Aτ−1/z , τ ≫ 1 . (7)

If we assume that the excitations are uncorrelated fol-
lowing the reasoning in the Appendix we arrive at the
distribution in Eq.(6), which is calculated by the SDRG
approach in the given limits.
In this paper, we aim to study this problem in more

detail consider the following points. i) To calculate the
distribution function through numerical iteration of the
SDRG approach and to check if the result in Eq.(6) is
valid in the entire Griffiths phase. ii) To confirm the
results of the SDRG calculation with the exact gaps ob-
tained through free-fermion techniques. iii) To check the
form of the finite-size corrections of the two methods and
to compare with the analytical result for the extremes of
uncorrelated random variables.

III. METHODS TO CALCULATE THE GAP IN

THE RTIM

The energy scale of the model is given by the lowest
excitation energy of the Hamiltonian in Eq.(1). This is
calculated for finite chains by the asymptotically exact
SDRG method through iteration and for shorter chains
by free-fermion techniques.

A. The SDRG method

In the SDRG procedure4 we perform consecutive deci-
mation steps, each time considering the local excitations,
say at position i. These excitations correspond to ei-
ther couplings or sites, having the value of the associated
gaps: 2Ji and 2hi, respectively. These gaps are sorted
in descending order and the largest one, denoted by Ω,
which sets the energy-scale in the problem, is eliminated.
Then, between remaining degrees of freedom, new terms
in the Hamiltonian are generated through perturbation
calculation. This procedure is successively iterated, dur-
ing which Ω monotonously decreases. At the fixed point,
with Ω∗ = 0, one makes an analysis of the distribution of
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the different parameters and calculates the scaling prop-
erties. In the following, we describe the elementary dec-
imation steps.

1. Strong-coupling decimation

In this case, the largest local term in the Hamiltonian
is a coupling, say Ω = Ji, connecting sites i and i+1 and
the two-site Hamiltonian is given by

Ĥcp = −Jiσz
i σ

z
i+1 − hiσ

x
i − hi+1σ

x
i+1 . (8)

The spectrum of Ĥcp contains four levels, the lower two
being separated from higher two by a gap of 2Ji. We omit
the higher two levels, corresponding to merging the two
strongly coupled sites into a spin cluster in the presence
of a (renormalized) transverse field h̃, the value of which
is given by second-order perturbation calculation

h̃ =
hihi+1

Ji
. (9)

2. Strong-transverse-field decimation

In this case, the largest local term is a transverse field,
say hi, and due to its large value this site does not con-
tribute to the longitudinal magnetisation and therefore
it is eliminated. The renormalised coupling between the
remaining sites is given by

J̃ =
Ji−1Ji
hi

, (10)

which is calculated by second order perturbation method.
To calculate the smallest gap of a given sample, ε, we

perform (L−1) decimation steps up to the last spin clus-

ter having an effective transverse field h̃ = ε/2.

B. Free-fermion technique

In this method, Ĥ is expressed in terms of spin-
less free fermions22–24. In the first step the spin op-
erators σx,y,z

i are mapped to fermion creation (annihi-

lation) operators c†i (ci) by using the Jordan-Wigner

transformation22: c†i = a+i exp
[

πı
∑i−1

j=1 a
+
j a

−
j

]

and ci =

exp
[

πı
∑i−1

j=1 a
+
j a

−
j

]

a−i , where a
±
j = (σx

j ± ıσy
j )/2, and

the Ising Hamiltonian in Eq.(1) is written in a quadratic
form

Ĥ = −
L
∑

i=1

hi

(

2c†ici − 1
)

−
L−1
∑

i=1

Ji(c
†
i − ci)(c

†
i+1 + ci+1) .(11)

In the second step, the Hamiltonian in Eq.(11) is diag-
onalized through a canonical transformation23, in terms

of the new fermion creation (annihilation) operators η†k
(ηk)

Ĥ =
L
∑

k=1

ǫk

(

η†kηk − 1

2

)

. (12)

The energies of free fermionic modes, ǫk, are given by the
eigenvalues of a 2L× 2L tridiagonal matrix

T =























0 h1
h1 0 J1
0 J1 0 h2

h2 0
. . .

. . .
. . . JL−1

JL−1 0 hL
hL 0























(13)

and we consider only the ǫk ≥ 0 part of the spectrum32.
The smallest gap of Ĥ in Eq.(1) is given by ε = min|ǫk|.

IV. NUMERICAL RESULTS

In the numerical calculation, the parameters of the
Hamiltonian, Jj and hj are taken from box-like distri-
butions

π1(J) =

{

1 for 0 < J ≤ J0 ,

0 otherwise.

π2(h) =

{

1/h0 for 0 < h ≤ h0 ,

0 otherwise,

(14)

and set the energy-scale with J0 = 1. In this case the
critical point of the RTIM is located at h0 = 1 and in
the disordered phase, h0 > 1, the dynamical exponent
satisfies the equation:

(1− z−2)h
1/z
0 = 1 , (15)

see in Eq.(5). In the vicinity of the critical point z di-
verges as z ≈ 1

lnh0

, h0 → 1+, whereas for large h0 it

approaches 1 as z ≈ 1 + 1
2h0

, h0 → ∞.
In the actual calculations we considered three points of

the paramagnetic phase, h0 = 2 (z = 1.747655), h0 = 3
(z = 1.33542) and h0 = 4 (z = 1.2112289). In the free-
fermion calculation of the gaps the lengths of the systems
were L = 16, 24, 32, 48 and 64, whereas with the SDRG
method larger systems up to L = 512 are treated. In all
cases 1010 independent samples are investigated.

A. SDRG gaps and the Fréchet distribution

We start by analysing the data collected by the SDRG
method and presenting the distributions of the log-gaps
in Fig.1 for different sizes. To test their relation with the
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Fréchet distribution, we calculated in each case the best
fit of the analytical function in Eq.(32), having the dy-
namical exponent, zL ≡ γL and the position of the max-
imum, x0 = x0(L) as fit parameters. These are shown in
Fig.1, too.
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FIG. 1: (Color online) Distribution of the energy gaps cal-
culated by the SDRG algorithm in the Griffiths phase with
h0 = 4 (upper panel), h0 = 3 (middle panel) h0 = 2 (lower
panel) for finite chains of lengths L = 32, 64, 128, 256 and 512,
from left to right. The best fit of the Fréchet distribution is
indicated by full lines.

As seen in Fig.1, the Fréchet distribution describes the

numerical data well and the difference between the nu-
merical points and the fitting curve is decreasing for in-
creasing values of L. At a given value of h0 the fitted
value of the dynamical exponent, zL, has a small varia-
tion with the size, and approaches the exact asymptotic
value, as given in Eq. (15). At the value h0 = 4 this
is illustrated in Table I, where the second column shows
the fitted, finite size values of zL, while the third col-
umn shows the difference from the exact value. As a first
step, we used a power-law form z − zL ∼ L−a to fit the
finite-size corrections, and estimates for the exponent a
are calculated through two-point fit. These are listed in
the fourth column of the table and have a slow conver-
gence, which generally indicates a strong correction to
scaling term. Having this possibility in mind we have
used another functional form:

z − zL ∼ lnω L

L
. (16)

In this case the effective exponents for ω are also calcu-
lated through two-point fit and are presented in the fifth
column of the table. This type of fitting turned out to
be more stable, the effective exponents seem to converge
to ω ≈ 1.33.

L zL z − zL a ω
32 1.102788 0.108441
64 1.142667 0.068562 0.6614 1.4081
128 1.169523 0.041706 0.7172 1.3724
256 1.186572 0.024657 0.7583 1.3405
512 1.196923 0.014306 0.7854 1.3388

TABLE I: Finite-size estimates of the dynamical exponent,
zL, at h0 = 4 calculated by the SDRG algorithm from the
best fit of the Fréchet form in Eq.(32) and its difference from
the asymptotically exact value z = 1.2112288988. Exponent
of a power-law fit, a and that of the logarithmic correction,
ω. (See text.)

We have repeated the same analysis at the other two
points of the Griffiths phase. In both cases the log-
correction form is found to provide the better fit, with the
correction exponents ω ≈ 1.83 at h0 = 2 and ω ≈ 1.50 at
h0 = 3.
Most importantly, at a given value of h0 in Fig.1 the

distributions are shifted with increasing size, and accord-
ing to Eq.(4) the position of the maximum is expected to
follow the rule: x0(L) ≈ const.+ zL lnL. Comparing the
position of the maximum of the distribution at two sizes
one can obtain estimates for the dynamical exponent as:
z(L, 2L) = (x0(2L)− x0(L))/ ln 2. We have checked that
generally zL < z(L, 2L) < z2L and these estimates ap-
proach the asymptotic exact value with the same type of
corrections as noticed for the case of zL in the previous
paragraph.
We note that analysis of the data obtained by free-

fermion calculation of the gap gives similar results, but
due to smaller values of L the asymptotic region of the
effective exponents, zL is more remote.
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B. Finite-size corrections to the gap distributions

We considered the gaps calculated by SDRG iteration
for L = 24, 32, 48, 64, 96 and 128 and for comparison we
calculated those by free-fermion techniques as well, for
shorter chains with L = 16, 24, 32, 48 and 64, except for
h0 = 4, where the corrections are the smallest and we
went up to L = 48. We analysed finite-size scaling of dis-
tributions in two different ways. First, we used the first

standardisation convention in Eq.(23) and calculated the
difference with the Fréchet extreme distribution, with an
effective zL, calculated from the relations below Eq.(32).
This difference is then rescaled by a factor ∆z = z − zL,
and the results for h0 = 2, 3 and 4 are drawn in Fig.2.
In these figures the analytical results calculated for iid
random numbers in Eq.(30) with γ = z and γ′ = −1 are
also presented. Here, the correction to scaling exponent,
γ′ = −1 corresponds to the expected scaling form in
Eq.(16), which is obtained through numerical analysis of
the data in Table I. According to Fig.2, we can draw the
following conclusions. i) The scaled finite-size difference
of the distribution function seems to approach a limiting
curve for large L, which depends on z(h0). ii) At a given
z(h0) the limiting curves are similar (if not identical) for
the SDRG and the free-fermion data. iii) The conver-
gence to this limit curve is slow, much slower than that
of the iid random numbers, see later in Sec.IVC and the
figures in the third column of Fig.2. This slow conver-
gence is probably related to the logarithmic correction to
the scaling of the dynamical exponent. iv) Finally, the
expected limit curve of the numerical distribution dif-
fers from that of the analytical result calculated for iid
random numbers (having identical parameter, z). Even
though the overall shapes of the curves are similar, there
are noticeable differences. In particular, the low-energy
part of the numerical curves are stronger represented in
the numerical curves, which can be interpreted as the re-
duction of the value of the gap due to small, but relevant
correlations between the rare regions.

We have repeated the analysis with the distribution of
the log-gaps and using the second standardisation condi-
tion in Eq.(24). The results about the finite-size correc-
tions of the distributions are shown in Fig.3 together with
the analytical curves for iid random numbers. In Fig.3
the distributions of the log-gaps have a faster finite-size
convergence, than those of the gaps in Fig.2. The curves
in Fig.3 are almost indistinguishable for larger sizes. In
addition, we notice a difference between the shape of the
numerical curves and the analytical results, the former
being somewhat shifted to the right around zero. This
indicates a reduction of the value of the gap due to small,
but relevant correlations between the rare regions.

C. Numerical test for uncorrelated Kesten

variables

In order to test the possible convergence of the finite-
size corrections for uncorrelated variables we have re-
peated the analysis in the previous subsection for a par-
ent distribution generated by Kesten random numbers.
Here, we remark that Kesten-type random variables are
defined as25:

um = 1 +

m
∑

i=1

i
∏

j=1

sj + . . . , (17)

where the sj-s are iid random numbers. It is known,
that in the limit of m → ∞ there is a limit distribution,
ρ∞(u), provided [ln s]av < 0. This limit distribution has
a power-law tail

ρ∞(u) ∼ u−(1+α); u≫ 1 , (18)

where the exponent is the positive root α > 0 of the
equation

[sα]av = 1 . (19)

Note that the relation for α is analogous to the equa-
tion for the dynamical exponent, z of the RTIM, see
in Eq.(5), and so we have the relation α = 1/z. To
have a direct relation with the RTIM calculations we set
sj = Jj/hj where Jj and hj are taken from the dis-
tributions in Eq.(14). In the numerical calculation, we
have m = 64, and considered the maximum of a set of
L = 16, 24, 32, 48 and 64 Kesten numbers, denoted by τ ,
so that we have m ≥ L in each case. We have checked
that at such value of m the truncation of the series in
Eq.(17) has negligible error.
We have analysed the distribution of the maximum

values at the three points h0 = 2, h0 = 3 and h0 = 4
as done previously for the gaps of the RTIM. Using the
first standardisation condition in Eq.(23) the finite-size
corrections are shown in the third column of Fig.2. Here,
the analytical results are obtained with the exponents:
γ = z(h0) and γ′ = −1, the latter follows from the
analytical results in Ref.[33]. It is seen in Fig.2 that
there is an overall good agreement between the numerical
and analytical results. There is some size-dependence of
the corrections, which changes sign between h0 = 2 and
h0 = 3. In comparison to the distribution of the gaps in
the RTIM, the agreement with the analytical results is
much better and the finite-size corrections are smaller.
We have repeated the analyses of the data by consider-

ing log-variables, as given in Eqs.(31) and (32) and using
the second standardisation condition in Eq.(24). Results
of the numerical analysis in this case are given in the
third column of Fig.3. As seen in this figure, there are
some finite-size dependences of the scaled numerical data,
but the expected asymptotic curves agree well with the
analytical results. We note that practically no finite-size
dependence of the correction term is observed for a pure
power parent distribution in Fig.4 in the Appendix.
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FIG. 2: (Color online) Finite-size corrections to the Fréchet distribution for the inverse gaps, τ = 1/ε in the RTIM at different
sizes L calculated through SDRG iterations (left panels), and by the free-fermion method (middle panels) with the first
standardisation in Eq.(23) and compared with the analytical results with γ = z(h0) and γ′ = −1 (dashed lines). In the right
panels the maximum of uncorrelated Kesten random variables are shown, having the same scaling exponents, see text. The
scaling exponents z(h0) correspond to h0 = 4 (first row), h0 = 3 (second row) and h0 = 2 (third row), see in Eq.(15).

V. DISCUSSION

In this paper we have considered a paradigmatic model
of random quantum magnets, the random transverse
Ising model in 1D and studied the distribution of low-
energy excitations in the paramagnetic Griffiths phase,
with extensive numerical methods. We have considered
a large set of random samples (1010) and the calculation
is performed by the approximate, but asymptotically cor-
rect SDRG method (up to L = 512) and for comparison
we also used the free-fermion method for shorter chains
(up to a size L = 64). Analysing the distribution of the
gaps we have demonstrated with high precision that – in
agreement with previous expectations – the limit distri-
bution in the thermodynamic limit is in the Fréchet form.
The Fréchet distribution depends on the value of the dy-
namical exponent, z and we have shown that a powerful
method of calculation is through fitting a Fréchet curve

to the numerical gap distributions. In this way, effec-
tive, finite-size estimates are obtained for the dynamical
exponent zL, which then are extrapolated to L → ∞.
According to the numerical data this convergence is in
the form: z − zL ∼ lnω L/L, where the exponent of the
logarithm, ω, depends on the distance from the critical
point.

More interestingly, we have systematically studied the
finite-size corrections to the limit law and showed that
the difference between the numerical distribution and
the asymptotic Fréchet form scales with z − zL, and this
scaled difference, P1(ε; z) is a unique function of the value
of the gap, ε. We have performed this type of analy-
sis for the gap, using the first standardisation condition
in Eq.(23), as well as for the log-gap, when the second
standardisation condition in Eq.(24) was used. In both
cases the asymptotic form of the scaled finite-size correc-
tion function are found similar (if not identical) for the
data with the free-fermion calculation and that from the
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FIG. 3: (Color online) The same as in Fig.2 for the log-variable and using the second standardisation condition in Eq.(24).

SDRG iteration. We can thus conclude that the SDRG
method provides not only the correct asymptotic form of
the gap distribution function, but the correct finite-size
correction function as well.

The measured finite-size correction functions are also
compared with the analytical results of iid random num-
bers, having the same decay exponent (γ = z for the
gaps and γ = 0 for the log-gaps) and correction to scal-
ing exponent, γ′ = −1. The two curves are found to
have similar shape, but there are also differences in the
asymptotic forms. We have checked that the observed
differences are larger than the statistical error of the cal-
culation. For this purpose, we have analysed with identi-
cal methods the same set of uncorrelated Kesten random
variables having the same characteristic exponent, z. For
these iid random numbers the asymptotic finite-size cor-
rections are found to be well described by the analytical
results.

The observed difference in the finite-size corrections
between the numerical curves and the analytical iid re-
sults indicates that the weak correlations between low-
energy excitations in the RTIM are not completely irrel-

evant. This is probably related to the fact that the linear
extension of rare regions, n, with extreme fluctuations of
the strong couplings, scales as n ∼ lnL, see the reasoning
above Eq.(7). Since n is not limited, the finite-size dy-
namical exponents contain a logarithmic multiplicative
factor as given in Eq.(16).

Our investigations have concluded on the RTIM in
1D, but the observed results are possibly valid for other
random quantum systems as well with localised exci-
tations. For example, we can mention the RTIM in
higher dimensions34–36, the random quantum Potts37

and Ashkin-Teller models38 and generally random quan-
tum magnets with short range interactions and with dis-
crete symmetry. Similar conclusions apply to some non-
equilibrium processes, such as to the random asymmetric
exclusion process39 and the random contact process40 as
well.
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Appendix - Extreme statistics of uncorrelated

variables

Let us have a process of iid random numbers
u1, u2, . . . , uN and consider the maximum value u =
max(u1, u2, . . . , uN). Each random variable is dis-
tributed by the same, so called parent distribution func-
tion ρ(u) and the cumulative (or integrated) parent dis-
tribution is given by µ(u) =

∫ u

−∞
ρ(t)dt. The cumulative

distribution of the maximum value, u is easy to compute

Mmax
N (u) = Prob[u1 ≤ u, u2 ≤ u, . . . , uN ≤ u] = µN (u) .

(20)
According to extreme value statistics (EVS) Mmax

N (u)
has a limit distribution for large N and large x in terms
of the scaling combination v = (u− bN )/aN as

MN (v) =Mmax
N (aNv + bN ) →M(v) , (21)

and similarly for the extreme density PN (v) = dMN/dv

PN (v) = aNP
max
N (aNv + bN ) → P (v) . (22)

Here, the aN and bN are free up to an additive constant,
the value of which is fixed by different standardisation
conditions. For the analytical calculation the condition:

M(0) = P (0) = 1/e , (23)

is convenient to use, whereas for analysing numerical data
it is often better to require

∫ ∞

−∞

vP (v) = 0,

∫ ∞

−∞

v2P (v) = 1 , (24)

provided the second moment of the distribution exists.
In the paper, we refer to Eq.(23) and Eq.(24) as first and
second standardisation condition, respectively.
According to EVS theory, the limit distributions can be

of three forms, depending on the large u tail of the parent
distribution. In a renormalization group treatment17,18

with the first standardisation in Eq.(23), the limit distri-
butions are the fixed-point solutions and are given in the
form

M(v; γ) = exp
[

−(1 + γv)−1/γ
]

, (25)

P (v; γ) = (1 + γv)−1/γ−1 exp
[

−(1 + γv)−1/γ
]

,(26)

for 1 + γv ≥ 0 and the different universality classes de-
pend on the value of γ. For γ > 0 it corresponds to a
parent distribution

µ(u) ≈ 1−Au−1/γ , u≫ 1 , (27)

which represents the Fréchet universality class. For γ = 0
the asymptotic approach of the cumulative parent distri-
bution is faster than a power and represents the Gumbel
universality class. Finally, for γ < 0 the asymptotic value
is approached at a finite upper border with a power −1/γ
and is given as the Weibull distribution.
Finite-size corrections in the RG treatment are given

in the form

MN (v) ≈ M(v; γ) + εNM1(v; γ, γ
′)

= M(v; γ) + εNP (v; γ)ψ(v; γ, γ
′) , (28)

where

εN = γ − γN ∝ Nγ′

, (29)

and

ψ(v; γ, γ′) =
(1 + γv) + γ′v − (1 + γv)γ

′/γ+1

γ′(γ′ + γ)
. (30)

Consequently, the correction term to the cumula-
tive distribution M1(v; γ, γ

′) and that of the density,
P1(v; γ, γ

′) = dM1(v; γ, γ
′)/dv depend on the decay ex-

ponent of the parent distribution γ, as well as the cor-
rection exponent γ′.
In practical analysis of the data with a parent distribu-

tion in Eq.(27), it is convenient to use logarithmic vari-
ables, x = lnu, so that ex−x0 = 1+ γv. Since the parent
distribution of x is exponential, the extreme distribution
is given by the Gumbel form

M̃(x, γ) = exp

(

− exp

(−x+ x0
γ

))

, (31)

and similarly for the probability density

P̃ (x, γ) =
1

γ
exp

(−x+ x0
γ

)

exp

(

− exp

(−x+ x0
γ

))

,

(32)

so that M̃(x0, γ) = 1/e and P̃ (x0, γ) = 1/(eγ). In
this case, the finite-size correction term is given by
P̃1(x; 0, γ

′). In the numerical examples, we have γ = 0
and γ′ = −1, and the correction to the density in the
second standardisation condition is given by41

P̃1(x; 0,−1) = ae−x̃−e−x̃
[

(e−x̃ − 1)(1− x/a− e−x̃)

−a−2 + e−x̃
]

, (33)

with x̃ = ax + b, a = π/
√
6 and b = γE = 0.5772156649

being the Euler-Mascheroni constant. As an illustration,
we consider a pure power parent distribution µ(u) =
1 − u−1/γ , u ≥ 1 and in Fig.4 show the numerically
calculated finite-size corrections to the distributions of
the log-extremes, denoted by ln(τ), for L = 16, 24, 32, 48
and 64 with γ = z(h0 = 3) in the second standardisation
condition. These are to be compared with the analyt-
ical result in Eq.(33), since in this case γ′ = −1. The
agreement is almost perfect.
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tions of the log-extremes for a pure power parent distribution
with the second standardisation condition, see text.
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4 For reviews, see: F. Iglói and C. Monthus, Physics Reports
412, 277, (2005); Eur. Phys. J. B 91, 290 (2018).

5 S.-K. Ma, C. Dasgupta, and C. K. Hu, Phys. Rev. Lett.
43, 1434 (1979); C. Dasgupta and S.-K. Ma, Phys. Rev. B
22, 1305 (1980).

6 D.S. Fisher, Phys. Rev. Lett. 69, 534 (1992); Phys. Rev.
B 51, 6411 (1995).

7 D.S. Fisher, Physica A 263, 222 (1999).
8 M.J. Thill and D.A. Huse, Physica A 15, 321 (1995).
9 R. Juhász, Y.-C. Lin and F. Iglói, Phys. Rev. B 73, 224206
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(2001).
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35 I. A. Kovács and F. Iglói, Phys. Rev. B 80, 214416 (2009),
Phys. Rev. B 82, 054437 (2010).
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