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The traditional theory of magnetic moments for chiral phonons is based on the picture of the
circular motion of the Born effective charge, typically yielding a small fractional value of the nuclear
magneton. Here we investigate the adiabatic evolution of electronic states induced by lattice vibra-
tion of a chiral phonon and obtain an electronic orbital magnetization in the form of a topological
second Chern form. We find that the traditional theory needs to be refined by introducing a k re-
solved Born effective charge, and identify another contribution from the phonon-modified electronic
energy together with the momentum-space Berry curvature. The second Chern form can diverge
when there is a Yang’s monopole near the parameter space of interest as illustrated by considering
a phonon at the Brillouin zone corner in a gaped graphene model. We also find large magnetic
moments for the optical phonon in bulk topological materials where non-topological contribution is
also important. The magnetic moment experiences a sign change when the band inversion happens.

Lattice phonons are commonly known to carry a well-
defined crystal momentum and energy quantum, and can
couple to lights through a time-varying electrical dipole
moment described by the Born effective charge Q∗ [1].
Recently, phonon chirality has attracted much attention
both theoretically [2–9] and experimentally [10–18]. It
can interact with the electronic valley degree of freedom
and affect valley excitons [10, 11]. It can also couple
strongly with electron spins and can be employed to con-
trol magnetism in magnetic materials [13, 14]. In particu-
lar, the experiments reveal the chirality of phonon under
a magnetic field through thermal Hall effect in, e.g., the
pseudogap phase of cuprates [15–18].

One natural way to characterize the coupling of phonon
to a magnetic field is through the phonon magnetic mo-
ment, defined for example by the phonon energy shift un-
der a magnetic field [19, 20]. For a phonon with nonzero
angular momentum L, one would expect a phonon mag-
netic moment in the order of ionic magneton Q∗L

mI
where

Q∗ and L are generally in the order of electron charge [21]
and ~ [2, 8], respectively. The ion mass mI is much larger
than the electron mass [21–24]. However, recent experi-
ments suggest that the phonon magnetic moment can be
three to four orders of magnitude larger [19, 20], which
calls for a deeper understanding of this physical concept.

In this Letter, we formulate the phonon magnetic mo-
ment as electronic magnetization in an adiabatic response
to the underlying ionic circular motion, focusing on the
orbital part. We find that the traditional theory needs to
be refined in terms of a momentum resolved Born effec-
tive charge, and recognize an extra contribution due to
phonon-induced electron energy coupled to the electronic
Berry curvature in momentum space. These contribu-
tions are captured by a topological second Chern form,
which can be very large when there is a Yang’s monopole
near the parameter space of interest as demonstrated by
studying the phonon at the Brillouin zone corner in a
gaped graphene model, where only the newly identified
contribution is nonzero. We also find a large magnetic

moment for the optical phonon in topological materials
where non-topological electronic contributions are also
important.

Adiabatic current pumping by phonon.— The
phonon magnetic moment refers to the variation of the
total magnetic moment when a phonon is created, which
can be contributed by the circular motion of the ions,
phonon pumped electronic magnetization from spin [25]
and orbital effect [21–24, 26–29]. The orbital contribu-
tion can be separated into a non-topological and a topo-
logical part [29]. The former shows a similar form as that
from spin [24, 25, 30]. The latter however involves gauge-
dependent Berry connection [29]. Here, we focus on the
latter and provide an explicitly gauge-independent form
of the topological magnetization induced by phonon.

To have nonzero out-of-plane orbital magnetization,
the time-reversal invariance and the mirror symmetry
about any perpendicular mirror plane need to be broken
in the presence of a phonon. Phonons with chirality typ-
ically satisfy the criteria. We consider a phonon mode
with a known polarization vector. The ions’ motion is
parameterized by u = (ux(t, r), uy(t, r)) where ux,y can
be the displacement of one representative atom that is
periodic temporally. We assume ux,y to be slowly vary-
ing spatially in the following derivations and take it to
be uniform (e.g., optical phonon near the Γ point) in the
final expression of the phonon magnetic moment. When
the electronic band gap is larger than the phonon energy,
the electronic state evolves adiabatically following the ion
governed by the Hamiltonian H(k,u) with k being the
momentum.

We define the magnetization M by employing the con-
stituent equation j = ∂tP +∇×M where P is polariza-
tion and j is bounded current density. By employing the
semiclassical theory of Bloch electrons, the topological
local current following Ref. 26 can be expressed as

j(2)α =
∑

δ

eu̇δ

∫

dk

(2π)2
Ωkαkβrβuδ

(1)
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where e is the elementary charge with a positive sign, kα,
rα, and uα are the momentum, real space coordinate, and
the displacement along the α-th direction. u̇δ represents
the time derivative of uδ with δ being (x, y). By writing
the subscripts in a general form for simplicity, Ωαβγδ =
ΩαβΩγδ + ΩβγΩαδ − ΩαγΩβδ. Ωαβ = ∂αAβ − ∂βAα is
the abelian Berry curvature of the corresponding indices
where Aα = 〈ϕk|i∂α|ϕk〉 is the Berry connection with
|ϕk〉 being the periodic part of the Bloch wavefunction.
Phonon magnetic moment.— In Eq. 1, the Berry

curvatures are evaluated at each k with finite u. As
the displacement u is extremely small compared to the
lattice constant, we thus can perform a Taylor expansion
at u = 0, which is reasonable as long as u does not close
the band gap. To the first order of the expansion, the
current reads

j(2)α =
∑

δ

eu̇δ

∫

dk

(2π)2
Ωkαkβrβuδ

|u=0

+
∑

δγ

eu̇δuγ

∫

dk

(2π)2
∂uγ

Ωkαkβrβuδ
|u=0 (2)

where the Berry curvatures are evaluated at u = 0 that is
the case for all the Berry curvatures hereafter. The first
line is a time derivative term that corresponds to the
current density from electrical polarization. In the sec-
ond line, by symmetrizing the summation with respect
to (δ, γ), one can obtain a second-harmonic polariza-
tion current density that is symmetric about exchanging
(δ, γ) and a magnetization current density that is anti-
symmetric. The latter gives rise to the time-averaged
out-of-plane magnetization [31]

Mz =
e

2mI
LI

∫

dk

(2π)2
Ωkαkβuxuy

(3)

where mI is the mass of the representative ion with aver-

aged angular momentum LI =
mI

T

∫ T

0
(u× u̇)zdt over the

phonon period T . The integral of Mz over the sample
size gives rise to the phonon magnetic moment.
Equation 3 indicates that the linearly polarized phonon

with zero angular momentum shows zero magnetic
moments. The gauge invariant second Chern form
Ωkαkβuxuy

is evaluated at u = 0 that is thus an intrinsic
property of the electronic system. In contrast to Ωkxky

,
time reversal symmetry guarantees that Ωkαkβuxuy

(k) =
Ωkαkβuxuy

(−k). Thus, phonons in nonmagnetic system
can also have magnetic moment.
Here we show an intuitive understanding of the phonon

magnetic moment. The second Chern form reads explic-
itly Ωkxkyuxuy

= Ωkxuy
Ωkyux

−Ωkxux
Ωkyuy

+Ωkxky
Ωuxuy

.
The first two terms depend only on Ωkiuj

, whose average
gives rise to the macroscopic Born effective charge ten-
sor Q∗ with element Q∗

ij = e
∫

dk
(2π)2Ωkiuj

[32–35] that is

related to the macroscopic polarization P = Q∗u. The
electric dipole moment contributed from each wavepacket

(a) (b)

FIG. 1. Physical picture of the phonon magnetic moment.
(a) With a phonon, the trajectory of the center of mass of
a wavepacket (straight line on top panel) is superposed by
a circular orbit in the lower panel. (b) By modifying the
electronic energy, phonon changes the boundary confinement
potential V induced current in the presence of momentum-
space Berry curvature.

is thus eΩu. Therefore, we identify eΩ as the k-resolved
Born effective charge tensor with matrix element eΩkiuj

.
Such a dipole moment suggests that the mass center of
a wavepacket deflects its trajectory by d = −Ωu, which
form a circular orbit as illustrated in Fig. 1(a). The cor-
responding orbital magnetic moment from this orbit is
−e
2 (d×ḋ)z that equals to the first two terms of Ωkxkyuxuy

.
In an atomic crystal, this term cancels the magnetic mo-
ment from charged ion [31]. It is noteworthy that, near
the gap closing points the Berry curvature Ωkiuj

can be
large. In this case, although the integration of Ωkiuj

, i.e.,
Q∗, is usually in the order of ionic charge, the integral
of Ωkiuj

Ωkjui
can be extremely large, which is different

from the phonon magnetic estimated by Q∗ [21, 22].
The contribution shown above can find its position in

the modern theory of the orbital magnetization M of a
two-dimensional system [36–39]. At zero temperature,

M =

∫

dk

(2π)2
[m(k) +

e

~
(µ− E(k))Ωkxky

] (4)

where E(k) identifies the energy bands below the chemi-
cal potential µ and m(k) is the orbital magnetic moment
from the self-rotation of each wavepacket. Our results
suggest that the m(k) term should be refined to include
the magnetic moment from the orbital motion of the cen-
ter of mass of each wavepacket.
The second term in the magnetizationM is topological

that can be interpreted as the boundary current contribu-
tion in the presence of boundary confinement potential V
and nonzero Ωkxky

as illustrated in Fig. 1(b). Phonon can
also carry magnetic moment from the boundary current
by modifying the electronic energy through the geometri-
cal phase. In a period of u, the electronic state will pick
up a phase factor e−iE(k)T/~+iη composed of the dynam-
ical phase and the geometrical one η = Ωuxuy

Su where

Su = 1
2

∫ T

0 (u × u̇)zdt represents the area swept by u in
a period. The total phase can be regarded as the dy-
namical phase from a modified energy E + δE with the
energy correction being δE = −~η/T = −~Ωuxuy

LI

2mI
.

By changing the energy E(k) in Eq. (4) to the corrected
one, i.e., E + δE, one can obtain the term proportional
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to Ωkxky
Ωuxuy

.
Nonabelian formulas.— The above discussions are

restricted to the case of a single occupied band. When
multi-bands are occupied, the topological and nontopo-
logical contributions from each band should be regrouped
to enforce U(N) gauge invariance within the occupied
N -dimensional Hilbert space [40]. As a result, the topo-
logical contribution becomes the nonabelian one

Mz =
e

2mI
LI

∫

dk

(2π)2
TrΩkαkβuxuy

(5)

with nonabelian Berry curvatures Ωαβ = ∂αAβ−∂βAα−
i[Aα, Aβ ]. The Berry connection Aα is a matrix, Amn

α =
〈ϕm|i∂α|ϕn〉, with (m,n) being the indices of the occu-
pied bands. The non-topological contribution for single-
occupied band case [24] should be generalized to

Mnt
z = − e

2mI
LI(∂ux

Fuy
− ∂uy

Fux
) (6)

Fui
= Re

∑

n∈occu

∑

n′,m′∈unoc

∫

dk

(2π)2

× 〈n|∂ui
H |n′〉[(vn′m′ + vnnδn′m′)× vm′n]z

(En − En′)2(En − Em′)

where vmn = 〈m|∇kH |n〉 is a matrix element of the ve-
locity operator and Re means the real part. These re-
sults are consistent with the theory in Ref. 29. One can
see this by applying the latter to the phonon, expanding
to the first order of ux,y, and taking the anti-symmetric
part (the symmetric part vanishes under time aver-
age) [41, 42]. Comparing with the formulas in Ref. 29,
the present results are explicitly gauge-invariant and are
easier to be adopted by first-principles calculations.
Divergence near Yang’s monopole.— The topo-

logical nature of the second Chern form allows the pres-
ence of a large phonon magnetic moment. By integrat-
ing the second Chern form over a four-sphere around a
Yang’s monopole, one can obtain an integer [43]. The
second Chern form can thus become divergently large
close to the monopole similar to the Berry curvature
near a Weyl point [44]. Near the monopole, the effec-
tive Hamiltonian reads H = q · Γ where Γ are Dirac
matrices with Γ1∼5 = (σxτz , σyτz, σzτz , σ0τx, σ0τy),
σ and τ being Pauli matrices. By taking q =
(vF kx, vFky,∆, ζuy,−ζux), this Hamiltonian of H can
be mapped to the effective model of graphene with chiral
phonon at the Brillouin zone corner

Heff = q · Γ =









∆ vFπ
† ζρ†

vFπ −∆ ζρ†

ζρ −∆ −vFπ
†

ζρ −vFπ ∆









(7)

under the basis {|K,B〉, |K,A〉, |K ′, A〉, |K ′, B〉} in spin
up sector. Here, vF = −3t0/2 is the Fermi velocity, ∆
stands for the sublattice potential, and π = kx + iky.

FIG. 2. (a) A sphere enclosing a Yang’s monopole (red pen-
tagram) in the five-dimensional parameter space formed by
(∆, kx, ky, ux, uy). (b) Energy band of a gapped graphene
with K/K′ valleys being folded to the zone center. Inset
shows the polarization vector of the chiral phonon in the Bril-
louin zone corner where B atoms stay still. (c) Berry curva-
ture Ωkxky and Ωuxuy along kx. (d) Contributions to the
magnetization from different terms in the second Chern form.

The chiral phonon leads to the intervalley coupling with
ρ = uy + iux and ζ = −3t0λ/2. Here, u is the displace-
ment of the A atom at the top left corner as shown in
the inset of Fig. 2(b) and the displacements of the other
atoms are expressed as functions of ux,y. Due to finite
momentum of the K-valley chiral phonon, the neighbor-
ing A atoms show displacements with phase differences
of e±2iπ/3 forming a

√
3 ×

√
3 superlattice at nonzero

u. Thus, K/K ′ valleys of graphene electronic bands are
folded to the zone center [45, 46]. The energy bands are
shown in Fig. 2(b) where the bands are doubly degener-
ate and the valley is still a good quantum number in the
u = 0 limit.

The non-topological contribution to the phonon mag-
netic moment vanishes. In the topological contribution,
the wavepacket Born effective charge eΩkiuj

(k) vanishes
whereas the boundary current part is large. As shown in
Fig. 2(c), Ωkxky

are nonzero with opposite signs for oppo-
site valleys. Meanwhile, the Berry curvature Ωuxuy

is also
nonzero and valley polarized. The phonon magnetic mo-

ment is proportional to sign(∆) 1
12π

ζ2

∆2 with sign(∆) = ±1
being the sign of the mass term. The magnetic moment
thus diverges as ∆ goes to zero as plotted in Fig. 2(d)
with λ = 1.

It is noted that, as the adiabatic approximation is em-
ployed, our results break down as the band gap becomes
smaller than the phonon energy. Specific to graphene, the
chiral phonon energies range from 100 ∼ 200 meV, which
corresponds to a ∆ = 0.02 ∼ 0.04 t0 with t0 = 2.6 eV.
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FIG. 3. (a) and (b) Electronic structure and contribution
to the phonon magnetic moment along Γ-Z direction with
∆0 = −0.0205 eV. (c) and (d) Electronic structure and con-
tribution to the phonon magnetic moment along Γ-Z direc-
tion for Cd3As2 with ∆0 = 0.0205 eV. Dashed vertical lines
indicate the position of the Dirac points. In the calculation,
∆1 = 18.77 eVÅ2, ǫ0 = −0.0116 eV, ǫ1 = 10.59 eVÅ2, and
vF = 0.889 eVÅ.

Our results in Fig. 2(d) is shown down to the lower limit.
By considering the other spin sector, the phonon mag-
netic moment doubles. When a more realistic λ = 3 [47]
for graphene is employed, i.e., ζ ≃ 12 eV/Å, the result in-
creases further by one order. Thus, the magnetic moment
for a chiral phonon in graphene can reach 103 times larger
than the atomic magneton, which is in the (sub)order of
the electronic magneton.
Phonon magnetic moment in bulk materials.—

Large phonon magnetic moments have been observed
in Cd3As2 [19] and PbTe [20]. The former is a Dirac
semimetal whereas the latter is a narrow gap semicon-
ductor that is a close relative of SnTe, a topological
crystalline insulator [48]. We propose an effective model
based on Cd3As2 in the presence of atomic displacement,
which can also describe a trivial semiconductor at a dif-
ferent parameter. The effective Hamiltonian reads [31]

HSM(k) = ε0 +









∆ vFπ
† ζρ†

vFπ −∆ −ζρ†

ζρ −∆ −vFπ
†

−ζρ −vFπ ∆









(8)

where ε0(k) = ǫ0+ ǫ1k
2
z and ∆ = ∆0−∆1k

2
z . In contrast

to the model described by Eq. (7), the nontopological
contribution here is three times larger than the topolog-
ical one. We thus include both in following discussion.
For simplicity, we first study the case of ∆0 < 0 that

corresponds to a semiconductor. The energy bands are
plotted in Fig. 3(a) with a band gap of about 40 meV,

which is much larger than the phonon energy in those
experiments (∼ 3 meV). The adiabatic approximation
is thus valid. The phonon induced magnetization from

each kz is eLI

2mI

ζ2

20π
−4
∆2 as plotted in Fig. 3(b). By sum-

ming over these contributions and multiplying NVu (N
and Vu are the number and volume of the unit cell in a
sample respectively), the phonon magnetic moment can

be obtained that is eNLI

2mI

ζ2

80π
4

∆0

√
|∆0∆1|

Vu. By taking

ζ ≃ 10 eV/Å and Vu ≃ 200 Å3, this phonon magnetic
moment can reach 104 times of the atomic magneton
( e~
2mI

∼ eNLI

2mI
).

We then turn to the semimetal case with band in-
version by setting ∆0 > 0. Two Dirac points appear
where ∆(kz) = 0 as denoted by the dashed lines in
Fig. 3(c). The magnetization from different kz is plot-

ted in Fig. 3(d), which increases in the manner of sign(∆)
∆2

as kz approach the Dirac points. Such divergence is due
to the breakdown of the adiabatic approximation. Never-
theless, for such kz that 2|∆(kz)| > Ep with Ep being the
phonon energy, the adiabatic approximation is still valid.
By considering kz that satisfies the energy cutoff condi-
tion 2|∆| > Ep, one can find that the phonon magnetic
moment is larger than the above case by a factor of about
4log4∆0

Ep
with a sign change. By taking Ep = 3 meV

and ζ ≃ 1 ∼ 10 eV/Å, the magnetic moment is about
2× 103∼5 times larger than the atomic magneton e~

2mI
.

One can generalize the model to describe three-
dimensional strong and weak topological insulators [31].
In these systems, one can also find a large phonon mag-
netic moment, which experiences a sign change when a
strong topological insulator changes to a weak one.

Summary.— We have studied the phonon magnetic
moment from the electronic orbital magnetization. We
identified a topological contribution as a gauge-invariant
second Chern form, which calls for the concept of a
momentum-resolved Born effective charge and also con-
tains a term from the phonon modified electronic energy
coupled to the momentum space Berry curvature. For the
chiral phonon in gaped graphene model, the topological
contribution is the only source of the phonon magnetic
moment, which can be large as the second Chern form
corresponds to the gauge field near a Yang’s monopole
in this model. We also study the magnetic moment of
optical phonons in bulk materials. We find large phonon
magnetic moments in semimetal and narrow gap insu-
lators, including weak and strong topological insulator.
The orders of the phonon magnetic moments agree with
recent experiments. In these systems, both topological
and non-topological contributions are important.

Acknowledgements.— This work was supported by
DOE (DE-FG03-02ER45958, Division of Materials Sci-
ence and Engineering). Y.F. would like to thank the
helpful discussion with Di Xiao, Shengying Yue, Haonan
Wang, and Kaifa Luo.



5

[1] M. Born and K. Huang, Dynamical Theory of Crystal
Lattices (Oxford University Press, Amen House, London,
1962).

[2] L. Zhang and Q. Niu, Angular Momentum of Phonons
and the Einstein-de Haas Effect, Phys. Rev. Lett. 112,
085503 (2014).

[3] L. Zhang and Q. Niu, Chiral Phonons at High-Symmetry
Points in Monolayer Hexagonal Lattices, Phys. Rev. Lett.
115, 115502 (2015).

[4] H. Chen, W. Wu, S. A. Yang, X. Li, and L. Zhang, Chiral
phonons in kagome lattices, Phys. Rev. B 100, 094303
(2019).

[5] Y. Liu, C.-S. Lian, Y. Li, Y. Xu, and W. Duan, Pseu-
dospins and Topological Effects of Phonons in a Kekulé
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