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Various exotic topological phases of Floquet systems have been shown to arise from crystalline
symmetries. Yet, a general theory for Floquet topology that is applicable to all crystalline symmetry
groups is still in need. In this work, we propose such a theory for (effectively) non-interacting
Floquet crystals. We first introduce quotient winding data to classify the dynamics of the Floquet
crystals with equivalent symmetry data, and then construct dynamical symmetry indicators (DSIs)
to sufficiently indicate the inherently dynamical Floquet crystals. The DSI and quotient winding
data, as well as the symmetry data, are all computationally efficient since they only involve a small
number of Bloch momenta. We demonstrate the high efficiency by computing all elementary DSI
sets for all spinless and spinful plane groups using the mathematical theory of monoid, and find a
large number of different nontrivial classifications, which contain both first-order and higher-order
2+1D anomalous Floquet topological phases. Using the framework, we further find a new 3+1D
anomalous Floquet second-order topological insulator (AFSOTI) phase with anomalous chiral hinge
modes.
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INTRODUCTION

Crystalline symmetries are crucial in the study of static band topology [1–7], because they can protect and can
efficiently indicate exotic topological phases [8–29]. Powerful theories, topological quantum chemistry [30] and sym-
metry indicators [31, 32], have been formulated to systematically characterize the crystalline-symmetry-protected
(and crystalline-symmetry-indicated) topological phases, which enabled the prediction of thousands of topologically
nontrivial materials in a computationally efficient manner [33–36]. The power of the two theories relies on the fol-
lowing two features. First, the two theories can be formally applied to all crystalline symmetry groups. Second, the
topological invariants proposed in the two theories are computationally efficient, as they only involve a small number
of high-symmetry momenta [11, 32, 37–40] instead of the entire first Brillouin zone (1BZ).

Beyond the static paradigm, non-interacting Floquet systems [41–63]—systems with noninteracting time-periodic
Hamiltonian—can host anomalous topological phases [64–72] that have no analogue in any static systems, such as
phases with anomalous chiral edge modes in the absence of nonzero Chern numbers [64, 66, 72]. Recently, researchers
have recognized the important role of crystalline (or space-time) symmetries in protecting driving-induced higher-
order topological phases in Floquet systems [73–97], and predicted exotic physical phenomena like anomalous corner
modes. In particular, Ref. [94] introduces a systematic theoretical framework of classifying and characterizing 2+1D
anomalous Floquet higher-order topological phases protected by point group and chiral symmetries.

In the field of Floquet topological phases, there are two (among others) open questions that are fundamentally and
practically important. The first one is the topological classification for all crystalline symmetry groups, namely how
to efficiently determine whether two generic Floquet crystals with the same crystalline symmetries are topologically
equivalent. The second one is how to efficiently determine whether a generic Floquet crystal is in an anomalous phase
that has no analogue in any static systems. In this work, we refer to such inherently dynamical Floquet crystals as
Floquet crystals with obstruction to static limits, in analog to the Wannier obstruction [22, 30, 31, 98] for topologically
nontrivial phases of static crystals. Then, the second question can be rephrased as how to efficiently diagnose the
obstruction to static limits, which is essential for all the above-mentioned anomalous Floquet topological phenomena.

Unfortunately, there have been few efforts to address the above two open questions in the literature, and the
previous related works focused on either specific models or special types of crystalline symmetry groups. There have
been no general theory that is applicable to all crystalline symmetry groups in all spatial dimensions. Furthermore,
the topological invariants proposed in the previous studies have relatively low computational efficiency, since they
either do not have an accessible mathematical expression or typically require the information over the entire 1BZ
(or a submanifold with nonzero dimensions). Therefore, a general and computationally efficient theory for Floquet
topology that takes crystalline symmetries into account is in need.

In this work, we introduce a general theoretical framework to characterize the topological properties of Floquet
crystals, which is applicable to all crystalline symmetry groups in all spatial dimensions (up to three). As a demon-
stration of our general principle, we focus on non-interacting Floquet crystals in the symmetry class A [3, 70]—in the
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absence of time-reversal, particle-hole and chiral symmetries—because an applied drive can break the time-reversal
symmetry, and exact particle-hole and chiral symmetries hardly appear in normal phases of crystals. The brief logic
is shown in Fig. 1. We introduce quotient winding data, which, together with the symmetry data [30, 31] of the
quasi-energy bands, provides a topological classification of Floquet crystals (Fig. 1(a)). In a two-step manner, the
symmetry data first provides a coarse classification, which omits the essential information of the dynamics, and the
quotient winding data then classifies the dynamics of Floquet crystals with equivalent symmetry data. Based on our
classification scheme, we further introduce the concept of DSIs to indicate the obstruction to static limits (Fig. 1(b)).
A nonzero DSI is a sufficient condition for Floquet crystals to have obstruction to static limits. The DSI constructed
in this work for Floquet crystals is a dynamical generalization of the symmetry indicator proposed in Ref. [31] for
static crystals.

Notably, all indices in our theory—including symmetry data, quotient winding data, and thus the DSI—only involve
a small number of Bloch momenta in 1BZ, indicating that the evaluation of them is highly computationally efficient
or even analytically feasible. As a demonstration of the high efficiency, we provide a table of all elementary DSI
sets for all spinless and spinful plane groups. Using specific models, we show that the resultant DSIs can efficiently
indicate the nontrivial dynamics in both first-order and higher-order 2+1D anomalous Floquet topological phases. We
further apply our framework to the 3+1D inversion-invariant case (space group P1 or #2), and find a 3+1D Floquet
phase with anomalous chiral hinge modes, which is the first 3+1D AFSOTI phase that is solely protected by static
crystalline symmetries. It is both the generality and high computational efficiency that make our theory remarkably
powerful for prediction of new Floquet topological phases.

RESULTS

In the following, we will introduce our framework based on symmetry data, quotient winding data, and DSI. We
will use a 1+1D inversion-invariant example to illustrate the main idea. Then, we will discuss the DSIs for 2+1D
systems. At last, we will introduce the 3+1D AFSOTI phase that we find using DSI. We also briefly describe the
general framework in Methods, and the details can be found in Appendix. B and C.

The 1+1D inversion-invariant example that we will use is constructed on a 1D lattice with lattice constant being 1,
and each lattice site consists of two orbitals at the same position: one spinless s orbital and one spinless p orbital. As
we consider the noninteracting cases, we only care about the single-particle Hilbert space, and the symmetry group
G of interest is spanned by the 1D lattice translations and the inversion symmetry. With bases |ψk〉 = (|ψk,s〉, |ψk,p〉),
the single-particle Floquet Hamiltonian is represented as H(k, t), where H(k, t + T ) = H(k, t) with T > 0 the time
period, and k is the Bloch momentum. The corresponding unitary time-evolution matrix U(k, t) can be given by
Dyson series. (See Appendix. A for detailed forms of H and U for this 1+1D example.) Furthermore, the inversion
symmetry P is represented as P|ψk〉 = |ψ−k〉uP(k) with uP(k) = σz, where σ’s are the Pauli matrices. The inversion
invariance of the system leads to

uP(k)U(k, t)u†P(k) = U(−k, t) . (1)

The quasi-energy spectrum of U(k, t), derived from diagonalizing U(k, T ), is important for our later discussion. We
plot the quasi-energy spectrum for U(k, t) in Fig. 2(a) for one set of parameter values, showing two quasi-energy bands
in the phase Brillouin zone (PBZ) [Φk,Φk + 2π), which are separated by two quasi-energy gaps. (See Appendix. A for
details.) The parameter values used in Fig. 2 give us one specific Floquet system; if we change the parameter values,
we would get a new time-evolution matrix U ′(k, t), featuring another Floquet system. For this 1+1D example, two
Floquet systems are considered to be topologically equivalent if and only if (iff) they are connected by a continuous
deformation that preserves the symmetry group G and both quasi-energy gaps.

In terms of the general terminology discussed in the Methods, we choose both quasi-energy gaps to be the topolog-
ically relevant gaps [70, 71] for this 1+1D example, and after choosing the relevant gaps, U(k, t) (or U ′(k, t)) becomes
a Floquet gapped unitary (FGU). In general, the relevant gaps for a generic FGU are chosen based on the physics
of interest, and one common choice is to choose all quasi-energy gaps to be relevant, as done in this 1+1D example.
Topological properties of FGUs are the focus of this work.

Symmetry Data

As the first step of our topological classification, let us describe the symmetry data for the quasi-energy band
structure of the 1+1D FGU U(k, t). Owing to the inversion invariance, the eigenvectors for the quasi-energy bands at
an inversion-invariant momentum k0 = Γ/X have definite parities α = ±, as shown in Fig. 2(a). For each quasi-energy
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band Em,k (m = 1, 2), we can count the number of eigenvectors carrying parity α at each k0, denoted by nmk0,α. As a
result, we have a four-component vector for the m-th quasi-energy band as

Am = (nmΓ,+, n
m
Γ,−, n

m
X,+, n

m
X,−)T , (2)

of which the values can be read out from Fig. 2(a) as

A1 = (1, 0, 1, 0)T , A2 = (0, 1, 0, 1)T . (3)

The symmetry data is the matrix A that has A1 and A2 as its two columns

A = (A1 A2) , (4)

which clearly only involves two momenta in the 1D 1BZ. The four components of Am in Eq. (2) are not independent,
as they satisfy the following compatibility relation [30, 31] nmΓ,+ + nmΓ,− = nmX,+ + nmX,− or equivalently

CAm = 0 (5)

with the compatibility matrix C being

C =
(

1 1 −1 −1
)
. (6)

The above derivation of symmetry data for the quasi-energy band structure is for a given choice of PBZ (as in
Fig. 2(a)), which is exactly the same as that for a static crystalline system [30, 31]. However, the freedom of choosing
PBZ for Floquet crystals leads to an additional subtlety in determining the symmetry data, which is absent in dealing
with static crystals. As shown in Fig. 2(b), we can legitimately shift the PBZ lower bound to Φk = π/4, which relabels

the quasi-energy bands as 1→ 2 and 2→ 1, resulting in a new symmetry data Ã

Ã = A

0 1

1 0

 for Φk = π/4 . (7)

Therefore, the symmetry data of a Floquet crystal depends on the artificial choice of PBZ, which is in contrast to the
static case where the symmetry data of a given static crystal is uniquely determined by the Fermi energy.

We remove this artificial PBZ-dependent ambiguity by defining an equivalence among symmetry data of different
FGUs. We define two FGUs U ′(k, t) and U(k, t) to have equivalent symmetry data iff we can find PBZs to make
their symmetry data exactly the same. In practice, we can first pick a PBZ lower bound Φ′k for U ′(k, t) and get its

symmetry data A′. Then we check whether A′ = A (Eq. (4)) or A′ = Ã (Eq. (7)); if one of them is true, U ′(k, t)
and U(k, t) have equivalent symmetry data, otherwise inequivalent. Despite the ambiguity of the symmetry data,
whether two FGUs have equivalent symmetry data or not is independent of the artificial PBZ choice. In particular,
inequivalent symmetry data infers topological distinction. Therefore, we can perform a topological classification for
FGUs solely based on the symmetry data, similar to what we did for static crystals.

Winding Data

The above symmetry-data-based classification only involves the time-evolution matrix at t = T , missing essential
information about the quantum dynamics. To classify the dynamics of Floquet crystals with equivalent symmetry
data, we will construct the winding data, which contains the dynamical information on the entire time period. A
direct visualization of the quantum dynamics for the 1+1D FGU U(k, t) is its phase band spectrum φm,k(t) given
by directly diagonalizing U(k, t), and we plot the phase bands at two inversion-invariant momenta in Fig. 2(c-d).
However, for the construction of the winding data, it turns out to be inconvenient to directly use U(k, t) or phase
bands in Fig. 2(c-d), since they are not time-periodic.

It is much more convenient to use the time-periodic return map [68, 71] Uε(k, t) defined as

Uε(k, t) = U(k, t) [U(k, T )]
−t/T
ε , (8)

where εk is the branch cut for the logrithm used in the return map, and throughout this work, we always set the
branch cut to be equal to the PBZ lower bound (i.e., ε = Φ) unless specified otherwise. (See the Methods for more
details.) As we want to make winding data computationally efficient, we only care about the return map at two
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inversion-invariant momenta Γ and X. Since the return map preserves inversion, its eigenvectors at k0 = Γ/X have
definite parities, as shown in Fig. 2(e) for Φk = −π. Then, we can count the total winding (along t) of the phase
bands of Uε=Φ(k0, t) with parity α, resulting in an integer-valued winding number νk0,α. We can read out all four
quantized winding numbers from Fig. 2(e) and further group them into a vector

V = (νΓ,+, νΓ,−, νX,+, νX,−)T = (1,−1, 0, 0)T , (9)

which we refer to as the winding data of the FGU U(k, t) for Φk = −π. (See more details in the Methods.) Clearly,
the winding data only involves two momenta in the 1D 1BZ.

As exemplified by Eq. (9), the four components of the winding data satisfy a compatibility relation

νΓ,+ + νΓ,− = νX,+ + νX,− , (10)

since the total winding of all phase bands at each momentum is the same. As a result, the winding data share the
same compatibility relation as that of the symmetry data (Eq. (5))

CV = 0 , (11)

meaning that the winding data takes value in the following set

{V } = Z4 ∩ ker C
= {(q1, q2, q3, q1 + q2 − q3)T |q1, q2, q3 ∈ Z} ≈ Z3 .

(12)

Shifting the PBZ changes the winding data. In this 1+1D example, if we shift the PBZ lower bound from Φk = −π
to Φk = π/4, the phase bands of return map become Fig. 2(f), and from Fig. 2(f), we know the winding data becomes

Ṽ = (0,−1,−1, 0)T = V −A1 . (13)

Unlike the symmetry data, a 2π-shift of the PBZ Φk → Φk + 2π can also change the winding data

V → V − (1, 1, 1, 1)T , (14)

suggesting that the 1+1D FGU U(k, t) can have an infinite number of different winding data, which explicitly depend
on the artificial choice of PBZ.

The infinite PBZ dependence of the winding data makes it hard to directly generalize the equivalence among
symmetry data (which only has a finite number of variants for a single FGU) to define an equivalence among the
winding data, since finding a single proper PBZ among an infinite number of possible choices is not straightforward.
Nevertheless, the infinitely many winding data are related by the symmetry data, as shown in Eq. (13) and Eq. (14).
This relation inspires us to define the quotient winding data below, in order to resolve the infinity problem.

Quotient Winding Data

In this part, we define the quotient winding data to resolve the infinity issue of the winding data. To have a
finite number of different quotient winding data, we define the quotient winding data to be invariant under all PBZ
shifts that keep the symmetry data. For the 1+1D FGU U(k, t), all PBZ shifts that keep the symmetry data are (or
equivalent to) the 2πn-shifts of the PBZ, where n labels an arbitrary integer. Then, we define the quotient winding
data VQ as

VQ = V mod Ā , (15)

where

Ā = A1 +A2 = (1, 1, 1, 1)T . (16)

As 2πn-shifts of the PBZ can only change V by multiples of Ā according to Eq. (14), VQ defined in Eq. (15) is indeed
invariant under 2πn-shifts of the PBZ, just like the symmetry data. As a result, the 1+1D FGU U(k, t) only has two
different quotient winding data derived from the two winding data in Eq. (9) and Eq. (13) as

VQ = V mod Ā = (0,−2,−1,−1)T for Φk = −π ,

ṼQ = Ṽ mod Ā = (0,−1,−1, 0)T for Φk = π/4 ,
(17)
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which are related by

ṼQ = VQ −A1 mod Ā . (18)

(See more details in the Methods.)
To further remove the remaining PBZ-dependent ambiguity, we define an equivalence among quotient winding data

of different FGUs. Recall that the quotient winding data is introduced for a classification of FGUs with equivalent
symmetry data, since inequivalent symmetry data already infers topological distinction. Let us suppose that the two
different 1+1D FGUs U(k, t) and U ′(k, t) have equivalent symmetry data, meaning that we can always pick PBZ
choices Φ′k and Φk for U ′(k, t) and U(k, t), respectively, such that they have exactly the same symmetry data A′ = A.
Then, we check whether the quotient winding data of U ′(k, t) for Φ′k is the same as that of U(k, t) for Φk; if so, U ′(k, t)
and U(k, t) are defined to have equivalent quotient winding data.

Given two FGUs with equivalent symmetry data, the artificial PBZ choice has no influence on whether they have
equivalent quotient winding data or not. In particular, they must have equivalent quotient winding data if they are
topologically equivalent, meaning that inequivalent quotient winding data infers topological distinction. Then, as
long as the comparison of VQ is done for the PBZ choices that yield the same symmetry data, quotient winding data
provides a topological classification for all FGUs that have equivalent symmetry data to the 1+1D U(k, t). Specifically,
the classification is given by {V } in Eq. (12) and Ā in Eq. (16) as

{VQ} = {(0, q2, q3, q2 − q3)T |q2, q3 ∈ Z} ≈ {V }
ĀZ

≈ Z2 , (19)

where ĀZ = {qĀ = (q, q, q, q)T |q ∈ Z}.
Up to now, we have discussed the relative topological classification based on the symmetry data and the quotient

winding data, shown in Fig. 1(a). Nevertheless, the (A, VQ)-based classification fails to tell which FGU has obstruction
to static limits, i.e., topologically distinct from all static FGUs with the same symmetries. (See the Methods for general
definitions.) Yet, determining obstruction to static limits is crucial, because it tells whether the Floquet phase of
interest has no static analogue or equivalently whether it is allowed to have any anomalous dynamical phenomena.
For this purpose, we construct the DSI below.

DSI

In this part, we construct the DSI for the 1+1D example to efficiently indicate its obstruction to static limits.
To determine the obstruction to static limits for the 1+1D FGU U(k, t) with G spanned by inversion and lattice
translation, we only need to consider the G-invariant static FGUs that have symmetry data equivalent to U(k, t),
since U(k, t) must be topologically distinct from all other G-invariant static FGUs. Then, we can check whether any
winding data of U(k, t) is forbidden in all static FGUs with symmetry data equivalent to U(k, t); if so, then U(k, t)
must have obstruction to static limits. Therefore, although we need to use the quotient winding data to give the
relative classification, we can directly use winding data to determine the obstruction. (See Appendix. A for details.)

The DSI is constructed by formalizing the above criterion. To do so, we first derive a set {VSL} by winding each
quasi-energy band of the 1+1D U(k, t) along time, which reads

{VSL} = {q1A1 + q2A2 = (q1, q2, q1, q2)T |q1, q2 ∈ Z} , (20)

where A1 and A2 are two columns of A in Eq. (4). {VSL} is invariant under the relabelling of the quasi-energy bands
(i.e. 1 ↔ 2) due to a PBZ shift, and it contains all winding data of all G-invariant static FGUs that have symmetry
data equivalent to U(k, t). (See details in Appendix. A.) Then, according to Eq. (9), the wind data V of U(k, t) for
Φk = −π satisfies V /∈ {VSL}, since νΓ,+ − νX,+ = 1 for V while νΓ,+ − νX,+ = 0 for all elements in {VSL}. It means
that V cannot exist in any of the static FGUs that have symmetry data equivalent to U(k, t), and thus U(k, t) must
have obstruction to static limits.

It turns out that we are allowed to adopt any PBZ choice for U(k, t) to check the above formalized criterion, and we
will always get the same result that U(k, t) has the obstruction to static limits, because Eq. (13) and Eq. (14) suggests
U(k, t) always has νΓ,+ − νX,+ = 1 regardless of the PBZ choice. We refer to the PBZ-independent (νΓ,+ − νX,+) as
the DSI for U(k, t)—as well as for all other FGUs that have symmetry data equivalent to U(k, t). Formally, the DSI
is defined to take values from the following set X

X =
{V }
{VSL}

≈ {νΓ,+ − νX,+ ∈ Z} , (21)
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where we have used Eq. (12) and Eq. (20). As shown above, the DSI only involves two momenta in the 1BZ, and
nonzero DSI means all winding data of U(k, t) are not in {VSL}, thus sufficiently indicating the obstruction to static
limit.

The idea of using quotient group to mod out the trivial systems (though not exclusively), which is used above,
was previously used to construct the static symmetry indicator in Ref. [31]. The difference between Ref. [31] and our
work is that the quotient is taken for the symmetry contents (like columns of symmetry data) in the construction of
the static symmetry indicator in Ref. [31] to characterize the static band topology, while the quotient is taken for the
winding data in the construction of the DSI to characterize the periodic quantum dynamics here.

Now we discuss the DSIs for all possible 1+1D inversion-invariant FGUs. To do so, we need to use the Hilbert
bases [27, 99], which intuitively speaking, are irreducible bases of the symmetry data. (See Methods and Appendix. C
for more details.) For 1+1D inversion-invariant FGUs, there are four Hilbert bases given by four ways of assigning ±
parities to Γ/X, which read

a1 = (1, 0, 1, 0)T ,

a2 = (0, 1, 1, 0)T ,

a3 = (1, 0, 0, 1)T ,

a4 = (0, 1, 0, 1)T .

(22)

Then, any column of any symmetry data of any 1+1D inversion-invariant FGU is the linear combination of the four
Hilbert bases with non-negative integer coefficients.

Based on the Hilbert bases, symmetry data of FGUs can be split into two types, irreducible and reducible. Specifi-
cally, we define a symmetry data of a FGU to be irreducible iff all its columns are Hilbert bases; otherwise reducible.
According to the general framework presented in Methods, DSI sets for reducible symmetry data can be constructed
from those for irreducible symmetry data. Therefore, in the following, we focus on the DSI sets for irreducible
symmetry data.

For a 1+1D inversion-invariant FGU with irreducible symmetry data, all its symmetry data are spanned by a
unique set of the Hilbert bases {aj} with j taking J ≤ 4 different values in {1, 2, 3, 4}. According to the general
framework discussed in the Methods, we can directly obtain the DSI set for the FGU solely based on the set {aj} and
the compatibility matrix C in Eq. (6). For the above 1+1D example U(k, t), the two columns of any symmetry data
(Eq. (4) or Eq. (7)) are the Hilbert bases a1 and a4 in Eq. (22), and thus are irreducible. Then, the unique set of the
Hilbert bases that span the symmetry data is {a1, a4}, and the DSI set Eq. (21) can be directly derived from {a1, a4}
and C based on the general framework.

In particular, even if two 1+1D inversion-invariant FGUs have inequivalent symmetry data, they have the same X ,
as long as their irreducible symmetry data are spanned by the same set of Hilbert bases. This simplification allows
us to enumerate all possible DSI sets for irreducible symmetry data by considering all 24 − 1 nontrivial combinations
of Hilbert bases. As a result, we obtain two nontrivial DSI sets. One is for the Hilbert basis set {a1, a4}, which is
just the above 1+1D example U(k, t), and the DSI is shown in Eq. (21). The other one is for the Hilbert basis set
{a2, a3}, and the DSI set reads

X ≈ {νΓ,+ − νX,− ∈ Z} . (23)

Besides indicating obstruction to static limit, DSI is also a topological invariant—its different values infer topological
distinction for FGUs with equivalent symmetry data. Although the classification given by DSIs is a subset of that given
by quotient winding data (like for the above 1+1D example), DSIs have the advantage of being PBZ-independent.

2+1D DSI

The above discussion focused on the 1+1D inversion-invariant case. We, in this part, discuss the DSIs for 2+1D
systems. Based on the general framework in Methods, we derive the DSI sets for all nontrivial combinations of Hilbert
bases for all spinless and spinful 2D plane groups, and list the numbers of nontrivial DSI sets in Tab. 1-2. These DSI
sets are for 2+1D FGUs with irreducible symmetry data, and serve as the building blocks for all 2+1D DSI sets
for plane groups. The nontrivial DSIs in Tab. 1-2 can indicate both first-order and higher-order anomalous Floquet
topological phases, as discussed below.

For the first-order phase, we focus on the Z3 set for spinless plane group p2, which is spanned by the 2D lattice
translations and the two-fold rotation C2. We explicitly construct a 2+1D p2-invariant spinless model that has
nonzero Z3 DSI (the construction of the model is inspired by the quantum-anomalous-Hall-effect model in Ref. [2]);
we find that the model has anomalous chiral edge modes in the absence of nonzero Chern numbers, similar as the



7

first-order anomalous Floquet topological phase in Ref. [64]. (See Appendix. D for details.) Therefore, the Z3 DSI
can indicate first-order anomalous Floquet topological phases. In particular, all components of the DSI take the
same values as the winding number W defined in Ref. [64] in our specific p2-invariant model, but the evaluation of
the former is much more efficient than the latter, since the former only involves four C2-invariant momenta while
the latter needs the whole 2D 1BZ. Then, although the winding number W defined in Ref. [64] does not rely on any
crystalline symmetries other than lattice translations, our model suggests that in the presence of nontrivial crystalline
symmetries, DSIs might efficiently indicate the nontrivial dynamics of the first-order anomalous Floquet topological
phases characterized by the W winding number.

For the higher-order phase, we find that the 2+1D anomalous Floquet higher-order topological insulator phase
proposed in Ref. [86] can be indicated by the Z DSI of spinful p4mm in Tab. 2. (See Appendix. E for details.) In
particular, to determine the nontrivial dynamics in the model, the DSI only requires three momenta in the 1BZ, saving
us from evaluating the quantized dynamical quadrupole momoent proposed in Ref. [86], which involves all momenta
in the entire 2D 1BZ.

3+1D AFSOTI Phase

In this part, we apply our framework to the 3+1D inversion-invariant case (P1 space group), and predict a new
3+1D AFSOTI phase. We will only present a brief discussion here, and details can be found in Appendix. F.

For P1, we only need to care about the eight inversion-invariant momenta—Γ(0, 0, 0), X(π, 0, 0), Y (0, π, 0),
Z(0, 0, π), V (π, π, 0), U(π, 0, π), T (0, π, π), and R(π, π, π) [30]—and we have parities ± at each inversion-invariant
momentum. Then, we choose the winding data to have the form

(νK1,+, νK1,−, ..., νK8,+, νK8,−)T (24)

with Ki = (Γ, X,Y,Z, V, U, T,R)i, and ν is the winding number. Replacing ν by the number of irreducible represen-
tations (irreps) labeled by parities in the above expression gives columns of the symmetry data.

P1 has 256 Hilbert bases, given by assigning ± to the eight inversion-invariant momenta in the 3D 1BZ, and thus
the number of nontrivial combinations of the Hilbert bases is 2256 − 1, which is very large. For simplicity, we only
compute the DSI sets for the 32896 combinations that only include one or two Hilbert bases, resulting in Z (3584),
Z2 (7168), Z3 (8960), Z4 (7168), Z5 (3584), Z6 (1024), and, Z7 (128), where Zn labels the DSI set and the number
in the bracket labels how many nontrivial combinations of Hilbert bases lead to the DSI set. For concreteness, we in
the following focus on the Z7 DSI set that corresponds to the combination of the following two Hilbert bases

ã1 = (1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0)T

ã2 = (0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1)T ,
(25)

and the DSI is a seven-component vector that reads

(νΓ,+ − νX,−, νΓ,+ − νY,−, νΓ,+ − νZ,−, νΓ,+ − νV,−, νΓ,+ − νU,−, νΓ,+ − νT,−, νR,− − νΓ,−) . (26)

To demonstrate the dynamical phase indicated by the Z7 DSI, we explicitly construct a 3+1D dynamical tight-
binding model with P1 space group on a cubic lattice with the lattice constant being 1. It has four bulk quasi-energy
bands, which are split into two isolated sets by two relevant gaps, one 0-gap and one π-gap. (See Fig. 3(a,b).)
According to the Methods, each isolated set (that consists of two bands) corresponds to one column in the symmetry
data, resulting in a two-column symmetry data A = (A1 A2). Direct calculation shows that A1 = 2ã1 and A2 = 2ã2,
meaning that the symmetry data is reducible. Nevertheless, the Hilbert basis set that spans the symmetry data is
uniquely {ã1, ã2}, and thus the model is characterized by the DSI in Eq. (26), which is evaluated to (2, 2, 2, 2, 2, 2, 2).
As a result of the nontrivial dynamics characterized by the nonzero DSI, the system has chiral hinge modes in each
bulk relevant gap, as shown in Fig. 3. The chiral hinge modes are anomalous, because the static topological invariant,
axion angle, for the inversion-protected chiral hinge modes [100] is zero for both isolated sets of quasi-energy bands
according to the symmetry data [11, 12].

We emphasize that although hinge modes in 3+1D Floquet insulators were discussed in Ref. [77] and Ref. [97],
our model is fundamentally different from theirs. First, the hinge modes originate from the time glide symmetry in
Ref. [77] and from the effective spectral symmetry in Ref. [97], both of which are not static crystalline symmetries,
while our model is protected by static inversion symmetry. Second, trivial static topology has not been explicitly
confirmed for the bulk quasi-energy bands in Ref. [77] and Ref. [97], while the relevant static topological invariants
in our model are confirmed to be trivial. Therefore, our model, which is constructed based on the DSI, is the first
AFSOTI solely protected by the static crystalline symmetries.
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DISCUSSION

To summarize, we have established a general and efficient theoretical framework for classifying and characterizing
the topological properties of Floquet crystals in the symmetry class A, which is applicable to all crystalline symmetry
groups in all spatial dimensions (up to three).

One direct physical implication of the obstruction to static limits is that symmetry breaking or relevant gap closing
must appear during any continuous deformation that makes static a Floquet crystal with obstruction. Here the relevant
gap closing refers to the closing of the topologically relevant bulk quasi-energy gaps, according to the definition of the
topological equivalence discussed in Methods. If all relevant symmetries are preserved during the deformation, the
gap closing will occur in at least one of the relevant gaps in the bulk quasi-energy spectrum, and is not required to
appear in any irrelevant gaps. Therefore, an experimental test of nonzero DSIs (though not conclusively) would be to
observe the quasi-energy gap closing or symmetry breaking as continuously decreasing the driving amplitude to zero
while fixing the driving period. Gap closing in quasi-energy spectrum has been observed in experiments like Ref. [72].

As for more experimental signatures of our theory, it is worth studying the link between nonzero DSIs and nontrivial
boundary signature in the future. A promising direction is p2 plane group, for which the DSI is very likely to contain
the information of chiral edge modes. The intuition is based on the fact that the difference in winding data for
different PBZ choices consists of the symmetry contents of quasi-energy bands, which have a mod-2 relation to the
Chern number [11, 12]. The 2+1D p2-invariant model presented above also suggests a relation between the DSI and
the winding number defined in Ref. [64], where the latter has a correspondence to the chiral edge modes. Furthermore,
the 3+1D AFSOTI presented above suggests that the 3+1D DSI might indicate the anomalous chiral hinge modes
in certain space groups, perhaps related to a dynamical generalization of the static bulk-boundary correspondence
between the axion angle and the static chiral hinge modes [100].

As the symmetry-representation theories for static crystals inspired the proposal of fragile topology [22, 23] that is
beyond the K-theory classification [101], another interesting direction is to generalize the concept of fragile topology to
Floquet crystals [102]. Besides, generalizing our theoretical frame work to Floquet crystals with time-reversal, particle-
hole, or chiral symmetries is another interesting direction, since it would help identify exotic physical phenomena like
anomalous boundary Majorana modes protected by particle-hole symmetries [46, 103–106]. As our framework focuses
on operators, it is interesting to ask whether it is possible to formalize an equivalent state-based formalism [63]. Similar
to the symmetry-representation theories [30, 31] for static crystals, our classification is not necessarily complete, since
two Floquet crystals with equivalent symmetry and quotient winding data might still be topologically distinct, and
the obstruction to static limits might still occur for zero DSI (Fig. 1). Thereby, the complete topological classification
for static and Floquet crystals is a meaningful future direction.

Note added : Recently, we noticed Ref. [107], which proposed to classify Floquet topological phases by using dynam-
ical symmetry inversion points.

METHODS

Basic Definitions

In this part, we list the basic definitions used in this work. Details can be found in Appendix. B.
A Floquet crystal is defined to be a time-evolution operator Û(t) equipped with a time period T , a relevant gap

choice, and a crystalline symmetry group G, which is in short denoted by Û(t). In the definition of a Floquet crystal,

we have implied that Û(t) is unitary and its matrix representation for any bases is continuous. A FGU is defined
to be a time-evolution matrix U(k, t) equipped with a time period T , a relevant gap choice, a crystalline symmetry
group G, and a symmetry representation ug(k), which is in short denoted by U(k, t). Here k is the momentum. In the
definition of a FGU, we have implied that U(k, t) and ug(k) are unitary, continuous (smooth for ug(k)), and invariant
under the shift of k by reciprocal lattice vectors. By choosing bases for a Floquet crystal, we naturally get a FGU
with the same time period, relevant gaps and crystalline symmetry group as the Floquet crystal. FGUs given by the
same Floquet crystal with different choices of bases are related by gauge transformations.

Suppose we have two FGUs U(k, t) (with T , relevant gaps, G, and ug(k)) and U ′(k, t) (with T ′, relevant gaps, G, and
u′g(k)). The two FGUs U(k, t) and U ′(k, t) are defined to be topologically equivalent under the crystalline symmetry
group G iff there exists a continuous deformation that connects them, preserves G and preserves all relevant gaps. As
long as the crystalline symmetry group G for the topological equivalence is specified, we may refer to “topologically
equivalent under G” as “topologically equivalent” in short. Suppose we have two Floquet crystals Û(t) (with T , a

relevant gap choice, and G) and Û ′(t) (with T ′, a relevant gap choice, and G). The two Floquet crystals Û(t) and

Û ′(t) are defined to be topologically equivalent iff there exists a continuous deformation that connects them, preserves
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G and preserves all relevant gaps. If two Floquet crystals are topologically equivalent, they must have topologically
equivalent FGUs for any bases choices. Therefore, the topological distinction among FGUs must infer the topological
distinction among the underlying Floquet crystals, and all topological invariants of FGUs can be applied to Floquet
crystals. For this reason, we focus on the FGUs in this work.

The defined topological equivalence for FGUs is similar to the definition in Sec. 2 of Ref. [68], except the following
two differences. First, the definition in this work allows the deformation to deviate from the topologically equivalent
FGUs by gauge transformations so that the defined topological equivalence is gauge invariant. Second, the definition
in this work allows the symmetry representation and time period to vary along the deformation, and also allows the
symmetry representation to depend on momenta. Furthermore, the topological classification based on the definition
in this work may be different from the classification in Ref. [69–71]. The topological equivalence defined in this work
is immune to any global energy shift, while the same global energy shift may change value of the topological invariant
in Ref. [69–71].

Last but not least, a static limit is a Floquet crystal with static Hamiltonian; a static FGU is a FGU with static
matrix Hamiltonian. A Floquet crystal (a FGU) with G is defined to have obstruction to static limits iff it is
topologically distinct from all static limits (static FGUs) with G.

Return Map

The return map for the 1+1D U(k, t) is constructed as follows. We first expand U(k, T ) as

U(k, T ) =

2∑
m=1

e−iEm,kTPk,m(T ) , (27)

where Pk,m(T ) is the projection matrix given by the eigenvector of U(k, T ) for e−iEm,kT . With the above expression,
the return map reads

Uε(k, t) = U(k, t) [U(k, T )]
−t/T
ε , (28)

where

[U(k, T )]
−t/T
ε =

2∑
m=1

exp

[
− t

T
logεk(e−iEm,kT )

]
Pk,m(T ). (29)

Here εk serves as the branch cut of the logarithm [69] by requiring i logεk(x) ∈ [εk, εk + 2π) for all x ∈ U(1). As we
always set the branch cut to be equal to the PBZ lower bound (i.e., ε = Φ), we have

i logεk=Φk
(e−iEm,kT ) = Em,kT. (30)

For the general situation, we just need to generalize the expression of the return map from the 1+1D two-band case
to a N -band FGU U(k, t) with T . Specifically, we replace k by k and replace 2 bands by N bands in Eq. (27)-(29) to
get the return map

Uε(k, t) = U(k, t) [U(k, T )]
−t/T
ε , (31)

where

[U(k, T )]
−t/T
ε =

N∑
m=1

exp

[
− t

T
logεk(e−iEm,kT )

]
Pk,m(T ) , (32)

and Pk,m(T ) is the projection matrix given by the eigenvector of U(k, T ) for e−iEm,kT .

Winding Data and Modulo Operation

The winding data of the 1+1D example is mathematically constructed as the follows. The return map commutes
with the inversion symmetry representation at k0 = Γ/X

uP(k0)Uε=Φ(k0, t)u
†
P(k0) = Uε=Φ(k0, t) . (33)
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Combined with the representation of inversion symmetry in Eq. (1), the return map at k0 has two blocks with opposite
parties

Uε=Φ(k0, t) =

Uε=Φ,k0,+(t)

Uε=Φ,k0,−(t)

 . (34)

Then we can define the following U(1) winding number for each block

νk0,α =
i

2π

∫ T

0

dtTr
[
U†ε=Φ,k0,α

(t)∂tUε=Φ,k0,α(t)
]
∈ Z (35)

with α = ± again labelling the parity. In particular, the integer-valued nature of νk0,α directly comes from time-
periodic nature of the return map.

From the winding data V , a modulo operation V mod Ā is required to give the quotient winding data, as shown
in Eq. (15). In practice, the modulo operation can be taken for the first nonzero component of Ā as discussed in the
following. Eq. (16) shows that the first nonzero element of Ā is the its first element ĀΓ,+ = 1, and then VQ = V + jĀ
with integer j satisfying

VQ,Γ,+ = vΓ,+ + jĀΓ,+ = vΓ,+ mod ĀΓ,+ = 0 . (36)

The generalization from the 1+1D example to a generic FGU is discussed in Appendix. C.

General Framework

In this part, we briefly introduce the general framework. Details can be found in Appendix. C.
We consider a generic FGU with a generic crystalline symmetry group G, and discuss its symmetry data first.

The quasi-energy bands of the FGU are separated by relevant gaps into isolated sets of quasi-energy bands, and
certain sets may contain more than one bands. Then, the symmetry contents, columns of the symmetry data, are
defined for the isolated sets of quasi-energy bands. Each component of a symmetry content is the copy number of
the corresponding irrep (like parity in the 1+1D example) of the little group at the corresponding high-symmetry
momentum (like the inversion-invariant momentum in the 1+1D example). Nevertheless, the compatibility relation of
all symmetry contents can always be expressed in terms of a compatibility matrix C as Eq. (5), and all the symmetry
contents belong to

{BS} ≡ NK ∩ ker C , (37)

where N is the set of non-negative integers. Here K is the number of components of each symmetry content (which
is 4 for the 1+1D example), and both K and the compatibility matrix C can be determined solely based on G. The
PBZ-dependence of the symmetry data can still be removed by the equivalence among symmetry data defined in
Results, and inequivalent symmetry data still infers topological distinction. Therefore, we can perform a topological
classification for FGUs—also for Floquet crystals—solely based on the symmetry data, similar to what we did for
static crystals.

Now we discuss the winding data of the generic FGU. The winding data is still a vector that consists of the winding
numbers resolved by the high-symmetry momenta and irreps. We demonstrate that we can always choose the same set
of high-symmetry momenta and irreps for the winding data and symmetry data, and the winding data always obeys
the same compatibility relation as the symmetry content. In addition, if an irrep at certain momentum is missing,
the corresponding winding number must be zero, which is an extra constraint imposed on the winding data by the
symmetry data. We can always express this extra constraint in terms of a diagonal matrix D as

DV = 0 . (38)

Then, the winding data takes value from the following group {V }

{V } ≡ ZK ∩ ker C ∩ kerD . (39)

In the 1 + 1D example (Eq. (4)), all inequivalent irreps appear at all high-symmetry momenta, resulting in D = 0 and
Eq. (12). Similar to the 1 + 1D example, a generic FGU also has an infinite number of winding data, given by varying
PBZ.



11

To solve the infinity issue, we construct the quotient winding data. For the generic FGU, the quotient winding data
is still defined as Eq. (15), but Ā needs to be chosen carefully as discussed below. In the 1+1D example, Ā is the sum
of all columns of the symmetry data just because all PBZ shifts that keep the symmetry data are (or equivalent to)
the 2πn-shifts of the PBZ. For the generic FGU with in total L isolated sets of quasi-energy bands, 2π-shift of the
PBZ is equivalent to shifting the PBZ lower bound through L isolated sets, which certainly leaves the symmetry data
invariant. Nevertheless, in certain cases, the symmetry data is kept invariant even if we shift the PBZ lower bound

through 0 < L̃ < L isolated sets, and then we should choose Ā =
∑LKSD
l=1 Al for the construction of the quotient

winding data, where LKSD is the smallest L̃ and Al’s are columns of the symmetry data. After choosing proper Ā,
the equivalence between quotient winding data defined in Results still holds in the general framework.

Now let us turn to the DSI for the generic FGU. As mentioned in Results, we need to use Hilbert bases, which will
be discussed with more details below. As shown in Eq. (37), the symmetry contents compatible with G always take
value from the set {BS}. Mathematically speaking, {BS} is a monoid rather than a group, since the components
of a symmetry content are always non-negative, preventing nonzero elements in {BS} from having inverse. We
call a nonzero element in {BS} irreducible [99] if it cannot be expressed as the sum of any two other elements in
{BS}; otherwise, it is called reducible. In particular, the irreducible symmetry contents form a unique set of bases of
{BS} [27, 99], called the Hilbert bases, which we label as ai with i = 1, 2, ..., I.

As discussed in Results, the symmetry data can be classified as irreducible or reducible. We first discuss the DSI set
for generic FGUs with irreducible symmetry data. When the symmetry data is irreducible (like the 1+1D example),
the symmetry data is spanned by a unique set of Hilbert bases {aj} with j taking J different values in {1, 2, ..., I}.
In this case, the static winding data set {VSL} for constructing the DSI set X simply reads

{VSL} = {
∑
j

ajqj |qj ∈ Z} . (40)

From {aj}, we can also determine the K (as the number of components of aj) and D (as shown in Appendix. C)
in Eq. (39). Then, combined with compatibility matrix C, X can be directly derived based on Eq. (39) and the first
equality in Eq. (21), meaning that X is uniquely determined by {aj} and C. In particular, if two FGUs have the
same G and have irreducible symmetry data that involve the same set of Hilbert bases, they have the same X , no
matter whether the two FGUs have equivalent symmetry data. As mentioned in Results, this simplification allows us
to enumerate all possible DSI sets for irreducible symmetry data by considering all 2I − 1 nontrivial combinations of
Hilbert bases of a given crystalline symmetry group G.

When the symmetry data is reducible, then it is possible that more than one sets of Hilbert bases can span the
symmetry data. Nevertheless, the DSI set in this case can be constructed from the tensor product of the DSI sets for
irreducible symmetry data. Therefore, the DSI sets for irreducible symmetry data serve as the elementary building
blocks for all DSI sets.
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FIG. 1. Brief summary of main results. a is the flowchart for topologically classifying Floquet crystals based on symmetry
data and quotient winding data. b is the flowchart for using DSI to indicate obstruction to static limits.
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FIG. 2. Plots of phase and quasi-energy bands for the two-band 1+1D inversion-invariant example. We choose
the PBZ lower bound as Φk = −π in a,c,e and as Φk = π/4 in b,d,f . In all plots, the orange dashed lines mark the boundary
of the PBZ, and ± stands for the parity of the eigenvectors at Γ (k = 0) or X (k = π). In a and b, we plot the quasi-energy
bands (blue lines) given by U(k, T ) in the PBZ, while all gray lines are redundant 2π-copies outside the PBZ. All quasi-energy
gaps are relevant for the topological equivalence, and thereby are relevant gaps (labelled by R.G. in the plots). In c and d, we
plot the phase bands at Γ and X for the time-evolution matrix U(k, t). In e and f, we plot the phase bands at Γ and X for the
return maps Uε=Φ(k, t).
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FIG. 3. The 3+1D AFSOTI with anomalous chiral hinge modes. In a, we show an inversion-preserving configuration
of the 3+1D AFSOTI that is finite along x, y and infinite along z. The purple and red lines indicate the hinges that host
anomalous chiral hinge modes. In b, we plot the quasi-energy band structure of the 3+1D AFSOTI for the configuration in
a. E and T label the quasi-energy and time period, respectively. The gray lines are the bulk bands (as well as the dangling
surface bands). “I.S.” labels isolated set of bulk quasi-energy bands, and each isolated set contains two bulk quasi-energy
bands. “R.G.” stands for the bulk relevant gap, and there are two relevant gaps, one at ET = 0 (called 0-gap) and the other at
ET = π (called π-gap). The purple and red lines mark the anomalous chiral hinge modes localized at the purple and red hinges
in a, respectively. The orange dashed lines mark the boundary of PBZ. In c, we consider an inversion-preserving configuration
of the 3+1D AFSOTI that is finite along all three spatial directions, and plot total probability density of the two eigenmodes
with quasi-energies closest to 0 or π ( mod 2π). Details on the parameter values can be found in Appendix. F.
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P.G. H.B.N. Nontrivial DSI Sets

p1 1 None

p2 16 Z (2980), Z2 (268), Z3 (8), Z2 (666), Z2 × Z (24), Z3 (16)

pm 4 Z (2)

pg 1 None

cm 2 None

p2mm 24

Z (1657492), Z2 (372286), Z3 (78060), Z4 (11904), Z5 (1200), Z6 (94), Z7 (4), Z2 (354594),

Z2 × Z (63296), Z2 × Z2 (10320), Z2 × Z3 (1264), Z2 × Z4 (65), Z3 (10392), Z3 × Z (1024),

Z3 × Z2 (112), Z3 × Z3 (8), Z4 (3424), Z4 × Z (16), Z5 (16), Z6 (64)

p2mg 6 Z (15), Z2 (3)

p2gg 4 Z (2)

c2mm 14 Z (3113), Z2 (686), Z3 (99), Z4 (7), Z2 (476), Z2 × Z (168), Z2 × Z2 (56), Z2 × Z3 (7), Z3 (12), Z4 (2)

p4 32
Z(17587274), Z2(491020), Z3(20760), Z4(336), Z2(2175362), Z2 × Z(56952),

Z2 × Z2(576), Z3(27120), Z3 × Z(384), Z4(144)

p4mm 26

Z (6044617), Z2 (859049), Z3 (116266), Z4 (11202), Z5 (597), Z6 (14), Z2 (422534), Z2 × Z (81467),

Z2 × Z2 (11010), Z2 × Z3 (869), Z2 × Z4 (22), Z3 (3200), Z3 × Z (480), Z3 × Z2 (56), Z3 × Z3 (4),

Z4 (2400), Z4 × Z (450), Z4 × Z2 (42), Z8 (8), Z8 × Z (1)

p4gm 11 Z (615), Z2 (99), Z3 (7), Z2 (1)

p3 27 Z (973458), Z2 (48762), Z3 (2376), Z4 (36), Z2 (201690), Z2 × Z (4968), Z2 × Z2 (54), Z3 (2604), Z4 (324)

p3m1 12 Z (378), Z2 (27), Z2 (360), Z2 × Z (21), Z4 (16)

p31m 9 Z (148), Z2 (33), Z3 (3), Z2 (3), Z2 × Z (1)

p6 36 Z (110427458), Z2 (2196588), Z3 (68760), Z2 (16472556), Z2 × Z (254520), Z3 (148920)

p6mm 20 Z (189005), Z2 (32809), Z3 (3301), Z4 (168), Z2 (6509), Z2 × Z (1691), Z2 × Z2 (172), Z3 (22)

TABLE 1. Numbers of Hilbert bases and nontrivial DSIs for all spinless 2D plane groups. Here we only consider the DSIs for
FGUs with irreducible symmetry data. P.G. means plane group, and H.B.N. means the number of Hilbert bases for each plane
group. In the column for nontrivial DSI sets, None means there are no combinations of Hilbert bases that give nontrivial DSIs,
and the number in the bracket is the number of Hilbert-bases combinations that give the DSI set in front of the bracket.



17

P.G. H.B.N. Nontrivial DSI Sets

p1 1 None

p2 16 Z (2980), Z2 (268), Z3 (8), Z2 (666), Z2 × Z (24), Z3 (16)

pm 4 Z (2)

pg 1 None

cm 2 None

p2mm 1 None

p2mg 6 Z (15), Z2 (3)

p2gg 4 Z (2)

c2mm 3 Z (1), Z2 (1)

p4 32
Z(17587274), Z2(491020), Z3(20760), Z4(336), Z2(2175362), Z2 × Z(56952),

Z2 × Z2(576), Z3(27120), Z3 × Z(384), Z4(144)

p4mm 4 Z (2)

p4gm 8 Z (50), Z2 (4), Z2 (2)

p3 27 Z (973458), Z2 (48762), Z3 (2376), Z4 (36), Z2 (201690), Z2 × Z (4968), Z2 × Z2 (54), Z3 (2604), Z4 (324)

p3m1 12 Z (378), Z2 (27), Z2 (360), Z2 × Z (21), Z4 (16)

p31m 9 Z (148), Z2 (33), Z3 (3), Z2 (3), Z2 × Z (1)

p6 36 Z (110427458), Z2 (2196588), Z3 (68760), Z2 (16472556), Z2 × Z (254520), Z3 (148920)

p6mm 6 Z (12)

TABLE 2. Numbers of Hilbert bases and nontrivial DSIs for all spinful 2D plane groups. Here we only consider the DSIs for
FGUs with irreducible symmetry data. P.G. means plane group, and H.B.N. means the number of Hilbert bases for each plane
group. In the column for nontrivial DSI sets, None means there are no combinations of Hilbert bases that give nontrivial DSIs,
and the number in the bracket is the number of Hilbert-bases combinations that give the DSI set in front of the bracket.
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Appendix A: More Details on the 1+1D Inversion-invariant Example

In this part, we show more details on the 1+1D two-band inversion-invariant example.

1. Model Hamiltonian

We consider a 1D lattice with lattice constant being 1, and each lattice site consists of two orbitals at the same
position: one spinless s orbital and one spinless p orbital. As we consider the noninteracting cases, we only care about
the single-particle Hilbert space, which is spanned by localized states |R, a〉 with a = s,p and R the lattice vector.
The symmetry group G of interest is spanned by the 1D lattice translations and the inversion symmetry. Owing to
1D lattice translations, it is convenient to use the Fourier transformation of |R, a〉 as the bases

|ψk,a〉 =
1√
N

∑
R

|R, a〉eikR , (A1)

where ~ = 1 is chosen henceforth, k is the momentum, N is the total number of lattice sites. Throughout this section,
k ∈ 1BZ is always implied, unless k ∈ R is explicitly specified. The bases |ψk〉 = (|ψk,s〉, |ψk,p〉) have three key
properties: (i) they are orthonormal 〈ψk,a|ψk′,a′〉 = δkk′δaa′ , (ii) |ψk+G〉 = |ψk〉 for all reciprocal lattice vectors G,

and (iii) the periodic parts e−ir̂k|ψk,a〉 = (1/
√
N )
∑
R |R, a〉 are smooth functions of k ∈ R. Here we have chosen the

localized |R, a〉 to realize r̂|R, a〉 = R|R, a〉.
The bases allow us to express the single-particle Hamiltonian as

Ĥ(t) =
∑
k

|ψk〉H(k, t)〈ψk| , (A2)

where t is time. Since we care about the Floquet crystals, we set

H(k, t+ T ) = H(k, t) (A3)
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with T > 0 the time period. Within one period, we choose H(k, t) as the following

H(k, t) =

 M1(k) sin(2π t
T ) , 0 ≤ t < T

2

M2(k) sin(2π t
T − π) , T

2 ≤ t < T
(A4)

where M1(k) = d(k) + t1 sin(k)σx, M2(k) = d(k)/2 + t2 sin(k)σy, d(k) = E1 + B1 cos(k) + (E2 + B2 cos(k))σz, and
σx,y,z are the 2× 2 Pauli matrices.

Furthermore, the inversion symmetry P is represented as

P|ψk〉 = |ψ−k〉uP(k) (A5)

with

uP(k) = σz . (A6)

The inversion invariance of the system, [Ĥ(t),P] = 0, is then represented as

uP(k)H(k, t)u†P(k) = H(−k, t) . (A7)

2. Time-evolution Matrix and Quasi-energy Band

The corresponding unitary time-evolution operator

Û(t) =
∑
k

|ψk〉U(k, t)〈ψk| , (A8)

where U(k, t) is the time-evolution matrix given by Dyson series

U(k, t) = T exp

[
−i

∫ t

0

dt′H(k, t′)

]
, (A9)

and T is the time-ordering operator. Throughout this work, the initial time is set to zero without loss of generality
(Appendix. G). Owing to the time-periodic nature of H(k, t), U(k, t+ T ) is related to U(k, t) via

U(k, t+ T ) = U(k, t)U(k, T ) , (A10)

meaning that all essential information of the dynamics is embedded in one period. For concreteness, we in the rest of
this section choose the following parameter values for U(k, t)

T = 2π, E1 = 0.05, E2 = 0.65, B1 = 0.2,

B2 = 1.2, t1 = −0.5, t2 = 0.6 .
(A11)

The eigenspectrum of the unitary U(k, t) is important for our later discussion. Diagonalizing U(k, t) results in
two eigenvalues exp[−iφm,k(t)] with m = 1, 2, and the real phase φm,k(t) is known as the phase band [68] of U(k, t),
which by definition has a 2π ambiguity. Thereby, we can always fix the phase bands in a time-independent 2π range:
φm,k(t) ∈ [Φk,Φk + 2π), where [Φk,Φk + 2π) is called the phase Brillouin zone (PBZ) and we call Φk the PBZ lower
bound. In this work, we restrict the PBZ to be time-independent, which is different from the time-dependent PBZ
in Ref. [68]. In particular, the quasi-energy bands Em,k, also known as the Floquet bands, are derived from the phase
bands at the end of a driving period

Em,k =
φm,k(T )

T
. (A12)

We plot the quasi-energy spectrum for U(k, t) in Fig. 2(a), where the PBZ lower bound is chosen as Φk = −π.
The band index m is assigned to the two quasi-energy bands within the PBZ always following an ascending order:
E1,k < E2,k. The quasi-energy bands are separated by two quasi-energy gaps in the PBZ, which are essential for
defining topological equivalence for Floquet crystals [68].

The parameter values in Eq. (A11) give us one specific Floquet system; if we change the parameter values or even
add more symmetry-preserving terms to the two-band Hamiltonian, we would get a different G-invariant Floquet
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system with a new time-evolution operator Û ′(t) and a new time-evolution matrix U ′(k, t). Throughout this section,
two Floquet systems are considered to be topologically equivalent if and only if (iff) they are connected by a continuous
deformation that preserves the symmetry group G and both quasi-energy gaps.

In terms of the terminology adopted in Appendix. B, we choose both quasi-energy gaps to be relevant gaps [70, 71]
that must be preserved during any topologically equivalent deformation (Fig. 2(a)). Then, the time-evolution matrix
U(k, t) in Eq. (A9)—equipped with the time period T , the relevant gap choice in Fig. 2(a), the symmetry group G, and
the symmetry representation of G like Eq. (1)—is called a Floquet gapped unitary (FGU), which is in short denoted by
U(k, t). U ′(k, t) stands for another FGU that has the same G as U(k, t). On the other hand, the time-evolution operator

Û(t) in Eq. (A8)—equipped with T , the relevant gap choice in Fig. 2(a), and G—is called a Floquet crystal, which is

in short denoted by Û(t). Û ′(t) stands for another G-invariant Floquet crystal. The above topological equivalence
can be defined for both FGUs and Floquet crystals, while the difference is that since a Floquet crystal consists of
a FGU and the corresponding bases, topological equivalence among Floquet crystals requires both equivalent FGUs
and equivalent bases. It means that topologically distinction among FGUs must infer topologically distinction among
the underlying Floquet crystals, and thereby all topological invariants of FGUs apply to Floquet crystals. Therefore,
to avoid dealing with the deformation of bases, we will focus on the FGUs, unless Floquet crystals are explicitly
specified. (See Appendix. B for details.)

3. Symmetry Data of Quasi-energy Band Structure

As the first step of our topological classification, let us describe the symmetry data for the quasi-energy band
structure of the FGU U(k, t).

First, owing to the inversion invariance, U(k, t) commutes with uP(k) at an inversion-invariant momentum k0 as

uP(k0)U(k0, t)u
†
P(k0) = U(k0, t), (A13)

where k0 is Γ (k = 0) or X (k = π). Then, the eigenvectors for the quasi-energy bands at k0 (or equivalently
the eigenvectors of U(k0, T )) have definite parities α = ±, as shown in Fig. 2(a). For each quasi-energy band Em,k,
we can count the number of eigenvectors carrying parity α at each k0, denoted by nmk0,α. As a result, we have a
four-component vector for the m-th quasi-energy band as

Am = (nmΓ,+, n
m
Γ,−, n

m
X,+, n

m
X,−)T , (A14)

of which the values can be read out from Fig. 2(a) as

A1 = (1, 0, 1, 0)T , A2 = (0, 1, 0, 1)T . (A15)

The symmetry data is the matrix A that has A1 and A2 as its two columns

A = (A1 A2) . (A16)

We emphasize that the four components of Am in Eq. (2) are not independent, as they satisfy the following com-
patibility relation [30, 31]

nmΓ,+ + nmΓ,− = nmX,+ + nmX,− , (A17)

or equivalently

CAm = 0 (A18)

with the compatibility matrix C as

C =
(

1 1 −1 −1
)
. (A19)

For a given choice of PBZ (as in Fig. 2(a)), the derivation of symmetry data for the quasi-energy band structure is
exactly the same as that for a static crystalline system [30, 31]. However, the freedom of choosing PBZ for Floquet
crystals leads to an additional subtlety in determining the symmetry data, which is absent in dealing with static
crystals. As shown in Fig. 2(b), we can legitimately shift the PBZ lower bound to Φk = π/4, which relabels the
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quasi-energy bands as 1→ 2 and 2→ 1. As a result, the new Ãm for Φk = π/4 is related to Eq. (3) as Ã1 = A2 and

Ã2 = A1, and the new symmetry data Ã is related to Eq. (4) by a cyclic permutation

Ã = A

0 1

1 0

 for Φk = π/4 . (A20)

Therefore, the symmetry data of a Floquet crystal depends on the artificial choice of PBZ. This is in contrast to the
static case where the symmetry data of a given static crystal is uniquely determined by the Fermi energy.

We remove this artificial PBZ-dependent ambiguity by defining an equivalence among symmetry data of different
FGUs. Recall that we use U ′(k, t) to label another G-invariant two-band FGU. We define U ′(k, t) and U(k, t) to have
equivalent symmetry data iff we can find PBZs to make their symmetry data exactly the same. In practice, we can
first pick a PBZ lower bound Φ′k for U ′(k, t) and get its symmetry data A′. Then we check whether A′ = A (Eq. (4))

or A′ = Ã (Eq. (7)); if one of them is true, U ′(k, t) and U(k, t) have equivalent symmetry data, otherwise inequivalent.
Here we use the fact that Eq. (4) and Eq. (7) are the only two possible symmetry data for U(k, t), since the symmetry
data is invariant under 2πn-shift of the PBZ lower bound (n is any integer).

Despite the ambiguity of the symmetry data, whether two FGUs have equivalent symmetry data or not is inde-
pendent of the artificial PBZ choice. The equivalence reflects the inherent topological property of FGUs. If two
FGUs U ′(k, t) and U(k, t) have inequivalent symmetry data, they must be topologically inequivalent. Therefore,
we can perform a topological classification for FGUs—therefore for Floquet crystals—solely based on the symmetry
data, similar to what we did for static crystals. However, such symmetry-data-based classification only involves the
time-evolution matrix at t = T , missing essential information about the quantum dynamics. In other words, even if
U ′(k, t) and U(k, t) have equivalent symmetry data, different quantum dynamics can still make them topologically
distinct [64, 68]. Thus, we require the dynamical information on the entire time period to classify the dynamics of
Floquet crystals with equivalent symmetry data.

4. Winding Data

A direct visualization of the quantum dynamics for the given FGU U(k, t) is its phase band spectrum φm,k(t) of
the time-evolution matrix (Eq. (A9)). In particular, we focus on the phase bands at two inversion-invariant momenta,
which we plot in Fig. 2(c) for Φk = −π. Owing to Eq. (A13), the eigenvectors for the phase bands at Γ/X can
have definite parties. We plan to construct a quantized index that can capture the key information of the quantum
dynamics at Γ/X. For this purpose, it turns out to be inconvenient to directly use U(k, t) in Eq. (A9) or phase bands
in Fig. 2(c), which are not time-periodic. We need a periodized version of them.

The time-periodic return map [68, 71] Uε(k, t) is what we seek. To construct it, we first expand U(k, T ) as

U(k, T ) =

2∑
m=1

e−iEm,kTPk,m(T ) , (A21)

where Pk,m(T ) is the projection matrix given by the eigenvector of U(k, T ) for e−iEm,kT . With the above expression,
the return map reads

Uε(k, t) = U(k, t) [U(k, T )]
−t/T
ε , (A22)

where

[U(k, T )]
−t/T
ε =

2∑
m=1

exp

[
− t

T
logεk(e−iEm,kT )

]
Pk,m(T ). (A23)

Here εk serves as the branch cut of the logarithm [69] by requiring i logεk(x) ∈ [εk, εk+2π) for all x ∈ U(1). Throughout
this work, we always set the branch cut to be equal to the PBZ lower bound (i.e., ε = Φ) unless specified otherwise.
Then we have

i logεk=Φk
(e−iEm,kT ) = Em,kT. (A24)

Furthermore, Eq. (8) shows that Uε=Φ(k, t + T ) = Uε=Φ(k, t), Uε=Φ(k + G, t) = Uε=Φ(k, t) for all reciprocal lattice
vectors G, and Uε=Φ(k, t) is a continuous function of (k, t) ∈ R× R.



25

The return map also commutes with the inversion symmetry representation at k0 = Γ/X

uP(k0)Uε=Φ(k0, t)u
†
P(k0) = Uε=Φ(k0, t) . (A25)

Combined with the representation of inversion symmetry in Eq. (1), the return map at k0 has two blocks with opposite
parties

Uε=Φ(k0, t) =

Uε=Φ,k0,+(t)

Uε=Φ,k0,−(t)

 . (A26)

Then we can define the following U(1) winding number for each block

νk0,α =
i

2π

∫ T

0

dtTr
[
U†ε=Φ,k0,α

(t)∂tUε=Φ,k0,α(t)
]
∈ Z (A27)

with α = ± again labelling the parity. In particular, the integer-valued nature of νk0,α directly comes from time-
periodic nature of the return map. Similar to the symmetry data, we can calculate all four quantized winding numbers
for our model (k0 = Γ/X and α = ±) and further group them into a vector

V = (νΓ,+, νΓ,−, νX,+, νX,−)T = (1,−1, 0, 0)T . (A28)

Here we used Φk = −π for the second equality. We call V the winding data of the given FGU U(k, t) for Φk = −π.
Pictorially, the winding number νk0,α can be understood in the following way. Similar to the time-evolution unitary,

the return map Uε(k, t) is also unitary. Thereby, its eigenvalues are U(1) numbers exp[−iφε,m,k(t)] with m = 1, 2,
and φε,m,k(t) are the phase bands of the return map. Eq. (33) suggests that the eigenvectors for the phase bands of
the return map at k0 also have definite parities, as shown in Fig. 2(e) for Φk = −π. Compared with phase bands in
Fig. 2(c), the time-periodic phase bands in Fig. 2(e) can be naively viewed as pushing the quasi-energies in Fig. 2(c)
to zero. The pictorial meaning of νk0,α is simply the total winding (along t) of the phase bands of Uε=Φ(k0, t) with
parity α. Then the calculated values of νk0,α in Eq. (9) can be directly read out from Fig. 2(e).

Furthermore, as exemplified by Eq. (9), the four winding numbers satisfy a compatibility relation

νΓ,+ + νΓ,− = νX,+ + νX,− , (A29)

since the total winding of all phase bands at each momentum is the same. As a result, the winding data share the
same compatibility relation as that of the symmetry data (see Eq. (5))

CV = 0 , (A30)

indicating that the winding data takes value in the following set

{V } = Z4 ∩ ker C
= {(q1, q2, q3, q1 + q2 − q3)T |q1, q2, q3 ∈ Z} ≈ Z3 .

(A31)

The same compatibility relation for the winding data and the symmetry data holds for all crystalline symmetry groups
in all spatial dimensions (up to three), which is discussed in Appendix. C and Appendix. H.

Shifting the PBZ changes the winding data. For example, if we shift the PBZ lower bound from Φk = −π to
Φk = π/4, the phase bands of time-evolution unitary and return map become Fig. 2(d-f), and from Fig. 2(f), we know
the winding data becomes

Ṽ = (0,−1,−1, 0)T = V −A1 . (A32)

Unlike the symmetry data, a 2π-shift of the PBZ Φk → Φk + 2π can also change the winding data

V → V − (1, 1, 1, 1)T = V − Ā (A33)

where

Ā = A1 +A2 = (1, 1, 1, 1)T . (A34)

Eq. (14) suggests that the given FGU U(k, t) can have an infinite number of different winding data, which explicitly
depend on the artificial choice of PBZ. This is different from the fact that U(k, t) only has two (which is finite)
different symmetry data. Such difference makes it hard to directly generalize the equivalence among symmetry data
to define an equivalence among the winding data, since finding a single proper PBZ among an infinite number of
possible choices is not straightforward. Nevertheless, Eq. (13) and Eq. (14) indicate that the infinitely many winding
data are related by the symmetry data (which will also be generally demonstrated in Appendix. C). This relation
inspires us to define the quotient winding data below, in order to resolve the infinity problem.
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5. Quotient Winding Data

For the given FGU U(k, t), the number of different symmetry data is finite because the symmetry data is invariant
under 2πn-shifts of the PBZ. Then, in order to have a finite number of different quotient winding data, we can define
the quotient winding data to be invariant under all PBZ shifts that keep the symmetry data. Specifically, we define
the quotient winding data VQ by modding out Ā (Eq. (16)) from the winding data,

VQ = V mod Ā (A35)

In practice, the modulo operation can be taken for the first nonzero component of Ā as discussed in the following.
Eq. (16) shows that the first nonzero element of Ā is the its first element ĀΓ,+ = 1, and then VQ = V + jĀ with
integer j satisfying

VQ,Γ,+ = vΓ,+ + jĀΓ,+ = vΓ,+ mod ĀΓ,+ = 0 . (A36)

For the two winding data in Eq. (9) and Eq. (13) given by two PBZ lower bounds, we have

VQ = V mod Ā = (0,−2,−1,−1)T for Φk = −π ,

ṼQ = Ṽ mod Ā = (0,−1,−1, 0)T for Φk = π/4 .
(A37)

As 2πn-shifts of the PBZ can only change V by multiples of Ā according to Eq. (14), VQ defined in Eq. (15) is indeed
invariant under 2πn-shifts of the PBZ, just like the symmetry data. As a result, the FGU U(k, t) only has two different
quotient winding data in Eq. (17), which are related by

ṼQ = VQ −A1 mod Ā . (A38)

We emphasize that although Ā used in Eq. (15) happens to be the sum of all columns of A in this specific 1 + 1D
example, Ā in general might only involve a portion of columns of the symmetry data since sometimes PBZ shifts
other than 2πn-shifts also leave the symmetry data invariant, as discussed in Appendix. C.

We have shown that U(k, t) has only two different quotient winding data given by changing the PBZ, and next we
show how to remove the remaining PBZ-dependent ambiguity by defining an equivalence among quotient winding data
of different FGUs. Recall that the quotient winding data is introduced for a classification of FGUs with equivalent
symmetry data, since inequivalent symmetry data already infers topological distinction. Then, let us suppose that the
two different FGUs U(k, t) and U ′(k, t) have equivalent symmetry data. According to Appendix. A 3, we can always
pick PBZ choices Φ′k and Φk for U ′(k, t) and U(k, t), respectively, such that they have exactly the same symmetry data
A′ = A. Then, we check whether the quotient winding data of U ′(k, t) for Φ′k is the same as that of U(k, t) for Φk;
if so (not), we call U ′(k, t) and U(k, t) have equivalent (inequivalent) quotient winding data. The above equivalence
among quotient winding data is defined only for FGUs with equivalent symmetry data, and we will not attempt to
compare the quotient winding data when the PBZ choices for U ′(k, t) and U(k, t) yield different symmetry data, since
the quotient winding data can be changed by the PBZ shift that changes symmetry data.

Given two FGUs with equivalent symmetry data, the artificial PBZ choice has no influence on whether they have
equivalent quotient winding data or not. In particular, they must have equivalent quotient winding data if they are
topologically equivalent, meaning that inequivalent quotient winding data provide a topological classification of FGUs
(and thereby of Floquet crystals) with equivalent symmetry data.

To illustrate the classification, let us consider all FGUs that have symmetry data equivalent to the given FGU

U(k, t), indicating that the symmetry data of each FGU is either A in Eq. (4) or Ã in Eq. (7) depending on the PBZ
choice. Based on the winding data set {V } in Eq. (12) and Ā in Eq. (16), the quotient winding data of those FGUs
take values in the following set

{VQ} = {(0, q2, q3, q2 − q3)T |q2, q3 ∈ Z} ≈ {V }
ĀZ

≈ Z2 , (A39)

where ĀZ = {qĀ = (q, q, q, q)T |q ∈ Z}. To compare the quotient winding data, we always choose the PBZs to yield
the same symmetry data for all those FGUs. With this requirement, we still have two inequivalent types of PBZ

choices: (i) the PBZ choices that yield A in Eq. (4) for all those FGUs, and (ii) the PBZ choices that yield Ã in
Eq. (7). For the type-A PBZ choices, the quotient winding data of each FGU would take a unique value in {VQ},
since the quotient winding data is invariant under the PBZ change that keeps the symmetry data. In this case, if two
FGUs have different quotient winding data, they must be topologically inequivalent according to the above discussion,

meaning that {VQ} serves as a topological classification for those FGUs. Similarly, for the type-Ã PBZ choices, {VQ}
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also serves as a topological classification. Since the quotient winding data for the two types are related according to
Eq. (18), the two topological classifications for two types are equivalent, i.e., the quotient winding data of two FGUs

are the same for the type-A PBZ choices iff they are the same for the type-Ã PBZ choices. As a result, {VQ} provides
a topological classification for all FGUs (and thus for all Floquet crystals) that have equivalent symmetry data to the
given FGU U(k, t), as long as the comparison of VQ is done for the PBZ choices that yield the same symmetry data
for all those FGUs.

Up to now, we have shown the scheme shown in Fig. 1(a), which suggests that the symmetry data and the quotient
winding data together provide a classification of FGU and thereby of Floquet crystals. We emphasize that in general,
it is possible that two FGUs with equivalent symmetry and quotient winding data are topologically distinct, indicating
that the corresponding classification is not necessarily complete.

6. DSI

While the (A, VQ)-based classification can tell the relative topological distinction between two FGUs, it fails to tell
which FGU is essentially static and which has obstruction to static limits. Here static limits are Floquet crystals that
have time-independent Hamiltonians, and picking bases for a static limit can give a static FGU. (See more details in
Appendix. B 4.) The obstruction to static limits means the given Floquet crystal (FGU) with crystalline symmetry
group G is topologically distinct from the all G-invariant static limits (static FGUs). If picking bases for a G-invariant
Floquet crystal gives a FGU that has obstruction to static limits, the Floquet crystal must be topologically distinct
from all G-invariant static limits and thereby must have obstruction to static limits. Thereby, we can focus on the
obstruction for FGUs to derive sufficient indices. In this part, we will define DSI that can sufficiently indicate the
obstruction for the FGU U(k, t) (and thereby for the underlying Floquet crystal Û(t)).

To determine the obstruction to static limits for our example, we only need to consider the G-invariant static FGUs
that have symmetry data equivalent to U(k, t), since U(k, t) must be topologically distinct from all other G-invariant
static FGUs. We then check whether U(k, t) has quotient winding data equivalent to any of those static FGUs; if not,
U(k, t) must have obstruction to static limits.

To be more specific, recall that we compare quotient winding data by choosing PBZs to yield the same symmetry
data. Let us focus on the PBZ choice Φk = −π for U(k, t), which yields symmetry data A in Eq. (4), winding data
V in Eq. (9), and quotient winding data VQ in Eq. (17). In the following, we will try to find the set {VQ,SL} of all
quotient winding data of all static FGUs that have equivalent symmetry data to U(k, t), under the constraint that
their PBZ choices yield symmetry data equal to A. Then, we can check whether VQ is in {VQ,SL} or not; if not, the
given FGU U(k, t) must have obstruction to static limits.

To achieve this, let us first consider a subset of those static FGUs, which satisfy USL(k, t) = exp[−ihSL(k)t] with

hSL(k) =

2∑
m=1

(Em,k + qm
2π

T
)Pk,m(T ) , (A40)

where q1, q2 ∈ Z, and Em,k and Pk,m(T ) are shown in Eq. (27). The above equation suggests USL(k, T ) = U(k, T ),
meaning that USL(k, t) has the same quasi-energy band structure as U(k, t). By choosing the PBZ lower bound for
USL(k, t) to be the same as Φk = −π for U(k, t), the symmetry data of USL(k, t) become equal to A in Eq. (4). The
return map of USL(k, t) with the PBZ lower bound Φk = −π reads

USL,ε=Φ(k, t) =

2∑
m=1

e−iqm
2π
T tPk,m(T ) , (A41)

As a result, the winding data of static FGUs in the chosen subset with Φk = −π must take the form

VSL = q1A1 + q2A2 = (q1, q2, q1, q2)T , (A42)

and the static winding data set reads

{VSL} = {q1A1 + q2A2|q1, q2 ∈ Z} , (A43)

where A1 and A2 are two columns of A in Eq. (4). We can see that {VSL} only depends on the symmetry data,
and thus {VSL} stays invariant even if we include all static FGUs that have equivalent symmetry data to U(k, t), as
long as we choose their PBZs to yield symmetry data equal to A. (See a more general and rigorous derivation in
Appendix. C 4 and Appendix. I.)
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Based on {VSL}, we can further derive the desired set of quotient winding data as

{VQ,SL} = {(0, q, 0, q)T |q ∈ Z} . (A44)

Then, we can check whether the quotient winding data VQ of U(k, t) for Φk = −π (Eq. (17)) is an element of {VQ,SL},
and we find that the answer is no, meaning that U(k, t) must have the obstruction to static limits. Eq. (20) suggests
that {VSL} is invariant under the relabelling of the quasi-energy bands (i.e. 1 ↔ 2) due to a shift of Φk, indicating
that {VQ,SL} does not depend on the PBZ choice Φk. Therefore, we are allowed to adopt any PBZ choice for U(k, t)

to check the above criterion, i.e., allowed to use either VQ or ṼQ in Eq. (17), and we will get the same result that
U(k, t) has the obstruction to static limits.

The above procedure can be greatly simplified by noting that VQ /∈ {VQ,SL} is equivalent to V /∈ {VSL}. Here we
use V and VQ to respectively label the winding data and quotient winding data of the 1+1D U(k, t) for a generic
PBZ choice Φk, and the equivalence can be derived from Eq. (12), Eq. (19), Eq. (20) and Eq. (A44). In fact, the
Φk-independent nature of {VSL} suggests that {VSL} contains all winding data of all G-invariant static FGUs that
have symmetry data equivalent to U(k, t), regardless of the PBZ choices for those static FGUs; then V /∈ {VSL} means
that V cannot exist in any of those static FGUs, and thus sufficiently indicates that U(k, t) has obstruction to static
limits. To exploit this fact, we define the DSI to take values from the following set X

X =
{V }
{VSL}

≈ {νΓ,+ − νX,+ ∈ Z} , (A45)

where the last step uses Eq. (12) and Eq. (20). Specifically, the DSI for U(k, t)—as well as all other FGUs that have
symmetry data equivalent to U(k, t)—is (νΓ,+−νX,+). Nonzero DSI means V /∈ {VSL} and thus infers the obstruction
to static limit, which is equivalent to the above procedure of comparing quotient winding data. According to Eq. (9),
Eq. (13) and Eq. (14), U(k, t) has PBZ-independent νΓ,+−νX,+ = 1, coinciding with the above conclusion that U(k, t)
has obstruction to static limits.

It turns out that even for a generic FGU, the evaluation of DSI is independent of PBZ as discussed in Appendix. C 4.
We emphasize that a zero DSI does not rule out possible obstruction for a FGU, as shown in Fig. 1(b), meaning that
DSI is a possibly-incomplete topological invariant. Different DSI values infer topological distinction for FGUs with
the same crystalline symmetry group and equivalent symmetry data. Although the classification given by DSIs is a
subset of that given by quotient winding data (like this 1+1D inversion-invariant case), DSIs have the advantage of
being PBZ-independent.

At the end of this part, we would like to compare our proposed formalism of DSIs for FGUs (and thus for Floquet
crystals) to that of the symmetry indicator [31] for static crystals. To construct the symmetry indicator, Ref. [31]
focused on two sets: the set of all possible symmetry contents for a given crystalline symmetry group, and its subset
that is given by the atomic limits. Ref. [31] first extended the two sets to two groups by artificially adding negative
numbers of bands, and then took the quotient between the two resultant groups to derive the symmetry indicator,
which indicates the Wannier obstruction (or equivalently obstruction to atomic limits). In this work, the quotient in
the construction of DSIs is taken between the winding data set Eq. (12) and its subset given by static limits Eq. (20),
in order to indicate the obstruction to static limits. As the winding number can naturally take negative values,
Eq. (12) and Eq. (20) themselves are groups, and thereby we do not need to extend them. In short, although both
Ref. [31] and our work used the mathematical concept of quotient group, the quotient is taken for completely different
physical quantities and the resultant indicators have completely different physical meanings: the symmetry indicator
in Ref. [31] is for static band topology while our DSI is for periodic quantum dynamics.

7. Section Summary

The key concepts introduced in this section are summarized in Fig. 4. We start by defining a set of bases Eq. (A1)

for the time-evolution operator Û(t), which gives us the time-evolution matrix U(k, t) in Eq. (A9) and the symmetry
representation of the crystalline symmetry group G like Eq. (1). We choose both the quasi-energy band gaps to be

relevant for the topologically equivalent deformation, resulting in the Floquet crystal Û(t) and the FGU U(k, t).
On one hand, we combine U(k, T ) with the inversion representation Eq. (1) to derive the symmetry data A in

Eq. (4) for a PBZ lower bound Φk = −π. On the other hand, we combine the return map Uε=Φ(k, t) in Eq. (8) with
the inversion representation Eq. (1) to obtain the winding data V in Eq. (9). To resolve the infinite ambiguity of the
winding data, we construct Ā from A and mod Ā out of the winding data V , resulting in the quotient winding data
VQ in Eq. (17). We can use the symmetry and quotient winding data to distinguish U(k, t) (Û(t)) from other FGUs
(Floquet crystals) with the same crystalline symmetry group according to Fig. 1(a).
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Floquet Crystal ෡𝑈(𝑡) or FGU 𝑈(𝒌, 𝑡)
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Representation 𝑢𝑔(𝒌)
Return Map 
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Data Set 𝑉𝑆𝐿
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Data 𝑉𝑄

FIG. 4. Relations among the key concepts.

From the symmetry data, we further derive the static winding data set {VSL} in Eq. (20), and we combine {VSL} with
the winding data V to obtain the DSI. The nonzero value of the DSI indicates the obstruction to static limits (Fig. 1(b)).
The evaluation of all indices—including symmetry data, quotient winding data, and DSI—is computationally efficient
as they only involve two inversion-invariant momenta in 1BZ.

Appendix B: More Details on General Definitions

In Appendix. A, we use a two-band inversion-invariant example in 1+1D to illustrate the main idea of the topological
classification and DSI. In this and next section, we will describe the general framework for the topological classification
and DSI, which is applicable to Floquet crystals living in arbitrary spatial dimensions (up to three) with an arbitrary
crystalline symmetry group. We start with the basic definitions in this section. Although most of the concepts have
been introduced in Appendix. A, we, in this section, will re-discuss them in a general and detailed manner.

We are interested in noninteracting Floquet crystals described by single-particle Hamiltonians Ĥ(t) that satisfy

Ĥ(t) = Ĥ(t+ T ) (B1)

with the time period T > 0 (always chosen to be positive throughout the work), and their unitary time-evolution
operators have the form

Û(t) = T exp

[
−i

∫ t

0

dt′Ĥ(t′)

]
, (B2)

where this time-ordered form should be replaced by the more general Dyson series when t < 0. For convenience,
we throughout this work imply that all expressions hold for all values of unspecified parameters, e.g., the above two
expressions are implied to hold for all t ∈ R. Owing to Eq. (B1), Û(t+ T ) is related to Û(t) as

Û(t+ T ) = Û(t)Û(T ) . (B3)

Thus, as mentioned in Appendix. A, all essential information of the dynamics is included in one time period t ∈ [0, T ].

We set the underlying single-particle Hilbert space, in which the operators Ĥ(t) and Û(t) are defined, to be time-
independent.
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Ĥ(t) may have various types of symmetries, such as space-time symmetries [73], crystalline symmetries, and internal
symmetries that define the ten-fold way [68–71]. In this work, we only consider the time-independent crystalline

symmetries of Ĥ(t), which form a time-independent crystalline symmetry group G, and allow all other symmetries
to be freely broken while preserving the particle number and keeping the underlying single-particle Hilbert space
well-defined. In terms of the ten-fold way [68–71], we only consider the symmetry class A. Then, for any element g
in G, g can always be expressed as a combination of a point group operation R and a translation by τ , denoted by
g = {R|τ} [108]. The time-evolution operator Û(t) is also invariant under G, i.e.,

[g, Û(t)] = 0 (B4)

for all g ∈ G, and again we only care about the symmetries of Û(t) within G. G contains a lattice translation subgroup,
and we denote the number of primitive lattice vectors by d. d is no larger than the spatial dimension of system, and
together with the extra time dimension, we call the system d + 1D. In this work, we require the spatial dimension
of the system to be no larger than 3, thus d ≤ 3; examples of G include spatially-three-dimensional space groups,
spatially-two-dimensional plane groups, and spatially-one-dimensional line groups.

Owing to the lattice translation symmetry, the Bloch momentum k ∈ 1BZ is a good quantum number. Then, we
can choose the orthonormal bases of the underlying Hilbert space as |ψk,a〉 with a taking N different values for all
other degrees of freedom like spin, orbital, and so on. In this work, we require N to be a finite number, and we always
imply k ∈ 1BZ unless k ∈ Rd is explicitly specified. As the underlying Hilbert space is time-independent, we always
choose |ψk,a〉 to be independent of time. We further choose |ψk,a〉 = |ψk+G,a〉 to hold for all reciprocal lattice vectors
G. To study the topology, we require the periodic parts of |ψk,a〉, exp[−ik · r̂]|ψk,a〉, to be smooth functions of k ∈ Rd.
Such smooth choice always exists in one spatial dimension; in two and three spatial dimensions, the smooth choice
exists when the total Chern numbers of all bands are vanishing [109]. The above requirements for bases can always be
satisfied by a proper Fourier transformation of the real-space bases of any tight-binding model, just like Eq. (A1) in
Appendix. A. Nevertheless, our discussion includes the case where the bases cannot be reproduced by physical atomic
orbitals or equivalently do not form a band representation [30]. Owing to the smoothness requirement, |ψk,a〉 may not

be the eigenstates of Ĥ(t) or Û(t), and thus they are in general called quasi-Bloch states [109, 110]. For convenience,
we define a row vector |ψk〉 = (..., |ψk,a〉, ...).

With |ψk〉 as bases, Û(t) can be represented as

Û(t) =
∑
k

|ψk〉U(k, t)〈ψk| (B5)

with [U(k, t)]aa′ = 〈ψk,a|Û(t)|ψk,a′〉. We extend the domain of k in U(k, t) from 1BZ to Rd by U(k + G, t) = U(k, t),
and the same convention is implied for all other matrix representations furnished by |ψk〉 in this work. We require
U(k, t) to be a continuous (not necessarily smooth) function of (k, t) ∈ Rd × R, though the matrix representation of
the Hamiltonian can be discontinuous along time [64]. Eq. (B3) suggests

U(k, t+ T ) = U(k, t)U(k, T ) . (B6)

The time-evolution matrix U(k, t) for the 1+1D example in Appendix. A is shown in Eq. (A9).
For any g = {R|τ} ∈ G, g is represented as

g|ψk〉 = |ψkg 〉ug(k) , (B7)

where kg = Rk and ug(k) is unitary. In the remaining of this work, all symmetry representations (like ug(k) above)
are implied to be unitary. Owing to the periodicity in reciprocal lattice vectors and the smoothness requirement of
the bases, ug(k+G) = ug(k), and ug(k) is a smooth function of k ∈ Rd. As a representation of G, ug(k) also satisfies

ug1g2(k) = ug1(kg2)ug2(k) ∀g1, g2 ∈ G . (B8)

Furthermore, Eq. (B4) infers

ug(k)U(k, t)u†g(k) = U(kg, t) . (B9)

For the 1+1D example in Appendix. A, we only show the symmetry representation for g = P in Eq. (1), as the
representations of other symmetry operations in G can be derived from it using Eq. (B8).
|ψk〉 has a U(N) gauge freedom:

|ψk〉 → |ψk〉W (k) , (B10)
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FIG. 5. Schematic quasi-energy band structures for a 1+1D 4-band model, where the blue solid lines are the quasi-energy
bands within the PBZ and the numbers on the blue solid lines stand for the m index. In (a), the lower and upper dashed lines
are Φk and Φk + 2π, respectively, and the orange-shaded region is the PBZ. The gray solid lines are their redundant copies
shifted by multiples of 2π. In (b), we only show the quasi-energy bands in the PBZ, and the dashed lines mark the boundary
of the PBZ. “R.G.”, “I.G.”, and “I.S.” stand for relevant gap, irrelevant gap, and isolated set, respectively.

where the U(N) gauge transformation matrix W (k) is a time-independent U(N) matrix that satisfies W (k + G) =

W (k) and is a smooth function of k ∈ Rd. To make sure that Û(t) and g are invariant under the gauge transformation
Eq. (B10), U(k, t) and ug(k) should simultaneously transform as

U(k, t)→W †(k)U(k, t)W (k)

ug(k)→W †(kg)ug(k)W (k) .
(B11)

Any physical or topological property of the system should be gauge-invariant.

1. Phase Band and Quasi-energy Gap

We label the eigenvalues of the unitary U(k, t) as e−iφm,k(t) with m = 1, 2, ..., N , and the quasi-energy bands
are Em,k = φm,k(T )/T . By definition, e−iEm,kT are the eigenvalues of U(k, T ). Throughout this work, we only
consider U(k, t) with at least one quasi-energy gap, i.e., there exists Φk such that (i) Φk is a real continuous function
of k ∈ Rd, (ii) Φk+G = Φk, (iii) Φkg = Φk, and (iv) e−iΦk 6= e−iEm,kT for all m and for all k (or equivalently

det[e−iΦk − U(k, T )] 6= 0 for all k). The 2π redundancy of phase bands, as well as the 2π/T redundancy of quasi-
energy bands, can be removed by requiring φm,k(t) to take values only in the PBZ [Φk,Φk + 2π). Two k-independent
examples of Φk have been shown in Fig. 2(a-b), and here we show a schematic k-dependent Φk for a 1 + 1D 4-band
U(k, t) in Fig. 5(a).

As exemplified by Fig. 5(a), we can always order the band index m according to the values of Em,k in the PBZ as
Em+1,k ≥ Em,k. With this convention, we would have Em,k+G = Em,k, Em,kg = Em,k, and Em,k is continuous in Rd.
Furthermore, a quasi-energy gap exists between two quasi-energy bands Em,k and Em−1,k iff Em,k > Em−1,k for all k,
where E0,k = EN,k − 2π/T . In general, U(k, t) can have more than one quasi-energy gaps in the PBZ, and Φk can
be chosen to lie in any of them. For example, Fig. 5(a) shows three quasi-energy gaps: one at the PBZ lower bound,
one between the bands 1 and 2, and one between the bands 3 and 4. While the choice of the PBZ should have no
influence on any physical and topological properties of the system, a good choice would simplify the derivation, and
thus we, in this work, always set the PBZ lower bound in one of the relevant gaps as carefully discussed below.

2. Topological Equivalence

The topology in Floquet crystals is related to the topology in static crystals [1, 2], and thereby let us start with a
brief review on the latter. The static crystals are governed by Bloch Hamiltonian, and we care about the symmetry-
preserving continuous deformation of the Bloch Hamiltonian. The deformation may close certain Bloch band gaps,
and the key question is whether such a deformation drives a static insulator to a new phase with the same symmetry
but different band topology. The answer lies in a special band gap, which is the gap between the valence (highest
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occupied) band and conduction (lowest unoccupied) band. Only this gap is relevant, while all other gaps, either
between two occupied bands or between two unoccupied bands, are irrelevant. As long as the symmetry-preserving
continuous deformation of the Bloch Hamiltonian does not close the relevant band gap, the band topology must stay
unchanged no matter how many irrelevant gaps are closed [111].

a. Floquet Crystal and FGU

Based on the above brief review, we can see the relevant gaps play a crucial role in the topological equivalence. So
to define the topological equivalence for Floquet crystals, we need to first define the relevant gaps for them. In Floquet
crystals, we care about the deformation of time-evolution operator/matrix instead of the Hamiltonian. Unlike the
static case, it is unintuitive to define the occupied quasi-energy bands for a Floquet crystal that is not in equilibrium.
In this case, we may choose certain number L of the quasi-energy gaps in a PBZ to be the relevant gaps [70, 71],
and the rest of the quasi-energy gaps are irrelevant. In the schematic example Fig. 5(b), we choose two of the three
quasi-energy gaps to be relevant, resulting in L = 2. For the two-band 1+1D example in Appendix. A, we choose
both quasi-energy gaps in Fig. 2(a,b) to be relevant, also resulting in L = 2. If we know the relevant gaps for one
PBZ and then change the PBZ choice, the new quasi-energy gaps in the new PBZ must be unique 2πn-shifted copies
(for n ∈ Z with n = 0 corresponding the unshifted case) of those in the original PBZ, and then a new quasi-energy
gap is relevant iff the corresponding original one is relevant. As a result, the number of relevant gaps is always L for
any PBZ choice.

The L relevant gaps in a PBZ separate the quasi-energy bands into L isolated sets, labeled by l = 1, 2, ..., L.
Throughout the work, when we talk about a set of bands, we strictly mean a multiset of bands since two degenerate
bands are counted as two instead of one. We emphasize that the quasi-energy bands in each isolated set might not be
fully connected due to the possible existence of irrelevant gaps, but quasi-energy bands in different isolated sets must
be disconnected owing to the relevant gaps. As mentioned above, we always set the PBZ lower-bound in one of the
relevant gaps in this work. With this convention, the L isolated sets can be ranked such that the l + 1th set always
has higher quasi-energies than the lth set at the same k, and the lth relevant gap is right beneath the lth isolated
set. In the schematic example Fig. 5(b), the first and second isolated sets contain m = 1 and m = 2, 3, 4 quasi-energy
bands, respectively, and the first (second) relevant gap is right beneath the first (second) isolated set of quasi-energy
bands. For the two-band 1+1D example in Appendix. A, either of the two isolated sets in Fig. 2(a,b) contain only one
quasi-energy band. By definition, an irrelevant gap can only exist between two quasi-energy bands within the same
isolated set.

After picking the relevant gaps, we now are ready to provide explicit definitions for the Floquet crystal and the
FGU.

Definition 1 (Floquet Crystals). A Floquet crystal is defined to be a time-evolution operator Û(t) (Eq. (B2)) equipped
with a time period T (Eq. (B3)), a relevant gap choice, and a crystalline symmetry group G (Eq. (B4)), which is in

short denoted by Û(t).

In the definition of a Floquet crystal, we have implied (and will always imply) that Û(t) is unitary and its matrix
representation for any bases is continuous.

Definition 2 (FGUs). A FGU is defined to be a time-evolution matrix U(k, t) (Eq. (B5)) equipped with a time period
T (Eq. (B6)), a relevant gap choice, a crystalline symmetry group G, and a symmetry representation ug(k) (Eq. (B8)
and Eq. (B9)), which is in short denoted by U(k, t).

In the definition of a FGU, we have implied (and will always imply) that U(k, t) and ug(k) are unitary, continuous
(smooth for ug(k)), and invariant under the shift of k by reciprocal lattice vectors. By choosing bases for a Floquet
crystal, we naturally get a FGU with the same time period, relevant gaps and crystalline symmetry group as the
Floquet crystal. When referring to the gauge transformation of FGU, we mean the simultaneous gauge transformation
in Eq. (B11). So FGUs given by the same Floquet crystal with different choices of bases are related by gauge
transformations.

We emphasize that changing the relevant gap choice would give a different Floquet crystal or FGU, even if we keep
all other parts (including time-evolution operator/matrix) invariant, since it would dramatically change the topological
properties as discussed in Appendix. B 2 b. Moreover, the specified G does not need to include all crystalline symmetries
of a Floquet crystal or a FGU, meaning that the crystalline symmetries outside G are allowed to be broken for the
study of topology. The choice of G depends on the physics of interest.
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FIG. 6. A schematic plot of topologically equivalent continuous deformation Us(k, t) for U(k, t) and U ′(k, t) having three
relevant gaps (R.G.). The orange dashed lines are Φk,s and Φk,s + 2π. In (a), we schematically plot the quasi-energy bands
given by Us(k, Ts) at a fixed s with three deformed relevant gaps (D.R.G.). Here we assume that all gaps are indirect at each
s, while in general direct gaps are enough. In (b), we show the quasi-energy range of the quasi-energy bands in (a) by the
purple region. The nonzero width of the purple region is given by the dispersion of the quasi-energy bands with respect to k,
while the white parts indicate the deformed relevant gaps. We group the (b)-type plots for all values of s to get (c). In (c), the
three purple regions show how three isolated sets of quasi-energy bands evolve along s, and the white regions stand for three
deformed relevant gaps which are not closed during the entire deformation. The indirect gaps allow us to always make Φk,s

independent of k (thus of zero width in the quasi-energy).

b. Topological Equivalence Among FGUs

With the definition of relevant gaps and FGUs, we next discuss the topological equivalence. Before addressing
the topological equivalence among Floquet crystals, let us first focus on the topological equivalence among FGUs.
Suppose we have two FGUs U(k, t) (with T , relevant gaps, G, and ug(k)) and U ′(k, t) (with T ′, relevant gaps, G, and
u′g(k)). Note that the two FGUs are invariant under the same crystalline symmetry group G. In analogy to the static
case, we can operationally define the topological equivalence for FGUs as the following.

Definition 3 (Topological Equivalence for FGUs). The two FGUs U(k, t) and U ′(k, t) are defined to be topologically
equivalent under the crystalline symmetry group G iff there exists a continuous deformation that connects them,
preserves G and preserves all relevant gaps.

As long as the crystalline symmetry group G for the topological equivalence is specified, we may refer to “topolog-
ically equivalent under G” as “topologically equivalent” in short. The topological equivalence defined in Def. 3 is an
equivalence relation. Specifically, a FGU is always topologically equivalent to itself; if a FGU U(k, t) is equivalent
to another FGU U ′(k, t), then U ′(k, t) is equivalent to U(k, t); if U(k, t) is equivalent to U ′(k, t) and U ′(k, t) is
equivalent to U ′′(k, t), then U(k, t) is equivalent to U ′′(k, t). The relation between Def. 3 and the related previous
literature [68–71] will be addressed in Appendix. B 2 d. In the rest of this part, we elaborate on each part of Def. 3.

A continuous deformation between U(k, t) and U ′(k, t) is a unitary matrix function Us(k, t) with s ∈ [0, 1] such
that (i) Us(k+G, t) = Us(k, t) and Us(k, t+Ts) = Us(k, t)Us(k, Ts), (ii) Us(k, t) is a continuous function of (k, t, s) ∈
Rd × R × [0, 1] and Ts > 0 is continuous in [0, 1], and (iii) Ts=0 = T , Ts=1 = T ′, and there exist U(N) gauge
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transformation matrices W0,1(k) such that

Us=0(k, t) = W †0 (k)U(k, t)W0(k)

Us=1(k, t) = W †1 (k)U ′(k, t)W1(k) .
(B12)

The existence of Us infers that U(k, t) and U ′(k, t) must have the same matrix dimension.
Preserving G means that there exist unitary us,g(k) such that (i) us,g(k) is a continuous function of (k, s) ∈ Rd×[0, 1]

and us,g(k + G) = us,g(k), (ii) us,g(k) satisfies Eq. (B8) for each value of s, (iii)

us,g(k)Us(k, t)u
†
s,g(k) = Us(kg, t) , (B13)

and (iv)

us=0,g(k) = W †0 (kg)ug(k)W0(k)

us=1,g(k) = W †1 (kg)u
′
g(k)W1(k) .

(B14)

Owing to Eq. (B12) and Eq. (B14), the topological equivalence between FGUs is U(N) gauge invariant.
Preserving all relevant gaps first requires that there exist a proper Φk,s that allows us to plot the quasi-energy

bands given by Us(k, Ts) within (Φk,s,Φk,s + 2π). Then, preserving all relevant gaps further requires that if we track
the relevant gaps of U(k, t) as varying s from 0 to 1, (i) none of the relevant gaps close and (ii) the deformed relevant
gaps of U(k, t) would exactly coincide with the relevant gaps of U ′(k, t) as s reaches 1. To be more specific, a proper
Φk,s is required to satisfy that Φk+G,s = Φk,s, it is a real continuous function of (k, s) ∈ Rd × [0, 1], Φkg,s = Φk,s,

det(e−iΦk,s − Us(k, Ts)) 6= 0, and Φk,s=0 is a PBZ lower bound of U(k, t). If the relevant gaps are preserved, Φk,s=1

must lie in a relevant gap of U ′(k, t). Owing to this requirement, two topologically equivalent FGUs must have the
same number of relevant gaps. Fig. 6 schematically shows an example of the topologically continuous deformation for
the case with three indirect relevant gaps, though in general direct gaps are enough. In particular, the three white
regions in Fig. 6(c) show that the three relevant gaps of U(k, t) keep open as s continuously increases and eventually
become the three relevant gaps of U ′(k, t). A more mathematical but equivalent way to express this requirement
is that U(k, t) and U ′(k, t) have L relevant gaps, and for any PBZ lower bound Φk of U(k, t), there exists Φl,k,s
with l = 1, 2, ..., L such that (i) Φl,k,s is a continuous function of (k, s) ∈ Rd × [0, 1] and satisfies Φl,k+G,s = Φl,k,s
and Φl,kg,s = Φl,k,s, (ii) Φl,k,s=0 lies in the lth relevant gap of U(k, t) and Φ1,k,s=0 = Φk, (iii) Φl,k,s=1 (l = 1, ..., L)

respectively lie in all L relevant gaps of U ′(k, t), and (iv) det
(
e−iΦl,k,s − Us(k, Ts)

)
6= 0. Another equivalent statement

can be obtained by replacing “for any PBZ lower bound Φk of U(k, t)” by “for at least one PBZ lower bound Φk of
U(k, t)” in the above requirement.

We emphasize that the choice of relevant gaps is crucial for determining whether two FGUs are topologically
equivalent according to Def. 3. Even if two FGUs have exactly the same time-evolution matrix U(k, t) = U ′(k, t),
different choices of relevant gaps can make them topologically distinct. As mentioned above, if we choose different
numbers of relevant gaps for U(k, t) and U ′(k, t), they must be topologically distinct since no continuous deformation
can change the number of relevant gaps without closing any of them.

Even if we choose the same number of relevant gaps for U(k, t) = U ′(k, t), it is still possible to make them
topologically distinct by choosing different quasi-energies for the relevant gaps. Let us consider two 0 + 1D two-band
FGUs with trivial G, and suppose they have the same time-evolution matrix U(t) = U ′(t) (the Bloch momentum is
not needed) as schematically shown in Fig. 7(a). Suppose we only pick one of the two quasi-energy gaps to be relevant.
If we choose different relevant gaps for the two FGUs, it is impossible to establish the topological equivalence between
them according to Def. 3, since it is impossible to continuously deform the relevant gap of U into the relevant gap
of U ′ without closing it. In reality, choosing the relevant gaps normally requires careful consideration based on the
physics of interest. One common choice is to treat all quasi-energy gaps as relevant, just like the 1+1D example in
Appendix. A. In the remaining of this work, we will not address the issue of choosing the relevant gaps, and we always
discuss FGUs with relevant gaps already specified, unless specified otherwise.

c. Topological Equivalence Among Floquet Crystals

Now let us turn to the topological equivalence among Floquet crystals. Suppose we have two Floquet crystals Û(t)

(with T , a relevant gap choice, and G) and Û ′(t) (with T ′, a relevant gap choice, and G). Similar to Def. 3, we have
the following definition for Floquet crystals.
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FIG. 7. Schematic plots of the phase bands for 0+1D class-A models. “R.G.” and “I.G.” stand for relevant gap and irrelevant
gap, respectively. In (a), we consider two 0 + 1D class-A 2-band FGUs with the same time-evolution matrix U(t) = U ′(t). Due
to the different choices of the relevant gaps, the two FGUs are topologically distinct according to Def. 3. In (b), we schematically

show the continuous deformation described in Eq. (B16) for a 0 + 1D class-A case: Us(t) = e−iφs(t) with φs(t) = φ(t) + 2πst/T .
From blue to red, s varies from 0 to 1. The deformed PBZ [Φs,Φs + 2π) (bounded by the dashed orange lines) is given by
Φs = φs(T ) − π, which always lies in the only quasi-energy gap. The quasi-energy gap is kept open along the deformation as
φs(T )− Φs cannot pass through 0.

Definition 4 (Topological Equivalence for Floquet Crystals). The two Floquet crystals Û(t) and Û ′(t) are defined to
be topologically equivalent iff there exists a continuous deformation that connects them, preserves G and preserves all
relevant gaps.

Specifically, the deformation that connects Û(t) and Û ′(t) is a unitary operator Ûs(t) depending on s ∈ [0, 1] such

that (i) Ûs=0(t) = Û(t) and Ûs=1(t) = Û ′(t), (ii) Ûs(t + Ts) = Ûs(t)Ûs(Ts) with Ts > 0 satisfying Ts=0 = T and

Ts=1 = T ′. The deformation being continuous means that there exist |ψk,s〉 serving as bases of Ûs(t) at each value
of s (thus satisfying all requirements for bases at each value of s) such that (i) 1BZ is independent of s and the
periodic part of the bases e−ik·r̂|ψk,s〉 is a continuous function of (k, s) ∈ Rd× [0, 1], and (ii) the matrix representation

of Ûs(t), denoted by Us(k, t), is a continuous function of (k, t, s) ∈ Rd × R × [0, 1], and (iii) Ts is continuous in

[0, 1]. The deformation preserving symmetry means that [Ûs(t), g] = 0 and g|ψk,s〉 = |ψkg,s〉us,g(k). The deformation
preserving the relevant gaps means that after choosing the relevant gaps of Us=0(k, t) (Us=1(k, t)) to be the same as

Û(t) (Û ′(t)), the relevant gaps of Us=0(k, t) are kept open as s increases from 0 and eventually becomes the relevant
gaps of Us=1(k, t) as s reaches 1.

The defined topological equivalence between two Floquet crystals is a equivalence relation, i.e., (i) a Floquet crystal

is always equivalent to itself, (ii) Û(t) being equivalent to Û ′(t) infers that Û ′(t) being equivalent to Û(t), and (iii)

Û(t) being equivalent to Û ′(t) and Û ′(t) being equivalent to Û ′′(t) infer that Û(t) being equivalent to Û ′′(t).
As discussed in Appendix. B 2 b, we can naturally define a FGU for any given Floquet crystal upon choosing bases. If

two Floquet crystals are topologically equivalent, they must have topologically equivalent FGUs for any bases choices,
where the equivalence between the FGUs is established by Us(k, t) (together with Ts) and us,g(k) furnished by |ψk,s〉
in the above discussion. Therefore, the topological distinction among FGUs must infer the topological distinction
among the underlying Floquet crystals, and all topological invariants of FGUs can be applied to Floquet crystals. As
we do not require the completeness of the topological invariants, we in this work focus on the topological equivalence
among FGUs unless specified otherwise.

d. Comparison to Previous Literature

Def. 3 for FGUs is similar to the definition in Sec. 2 of Ref. [68], except the following two key differences. First,
Def. 3 allows the deformation to deviate from the topologically equivalent FGUs by U(N) gauge transformations
(Eq. (B12) and (B14)) so that the defined topological equivalence is gauge invariant. Second, Def. 3 allows the
symmetry representation and time period to vary along the deformation, and also allows the symmetry representation
to depend on momenta. Next, we discuss the possible difference between the topological classification based on Def. 3
and the classification in Ref. [69–71].

For the topological equivalence defined in Def. 3, the PBZ is allowed to continuously evolve along with the defor-
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mation Us(k, t) (e.g., Fig. 6), or in other words the quasi-energy bands (times Ts) given by Us(k, Ts) do not need to
be confined in a s-independent 2π range (like [−π, π)). The reason for us to adopt this definition is demonstrated by
the following deformation.

Let us consider a Floquet Hamiltonian in class A parametrized by s ∈ [0, 1] as

Ĥs(t) = Ĥ(t) +
2π

T
s , (B15)

where Ĥ(t + T ) = Ĥ(t) and different values of s just correspond to different calibrations of the energy (or different
global energy shifts). We emphasize that even in the Fock space for many-body Hamiltonians, 2πs/T should still be
proportional to the identity operator instead of the particle-number operator, and thus it does not change the particle
number. Therefore, varying s in Ĥs(t) should not change any physical property (like the crystalline symmetry group
G) or topological property (like topological distinction).

We can choose a set of s-independent bases, and then the corresponding time-evolution matrix reads

Us(k, t) = U0(k, t) exp

(
−i

2πs

T
t

)
, (B16)

and the representation of G reads ug(k). Let us focus on U0(k, t) and U1(k, t). Since U0(k, T ) = U1(k, T ), we can
choose the same relevant gaps for U0(k, t) and U1(k, t). Then, we have two FGUs U0(k, t) and U1(k, t) with the same
T , same relevant gap choice, same G, and same ug(k), provided that all other requirements are satisfied. Us(k, t)
in Eq. (B16), together with Ts = T and us,g(k) = ug(k), establishes the topological equivalence between U0(k, t)
and U1(k, t), since the relevant gaps are preserved and all other conditions are satisfied. Specifically for the relevant
gaps, suppose Φk is a PBZ lower bound of U0(k, T ), and we can choose the deformed PBZ lower-bound during the
deformation to be Φk,s = Φk + 2πs, resulting in the deformed quasi-energy bands Esm,k = E0

m,k + 2πs/T within

[Φk,s,Φk,s + 2π)/T . Then, varying s can only shift all quasi-energy bands simultaneously by the same amount and
thus cannot close any of the quasi-energy gaps. Moreover, Es=1

m,k = E0
m,k + 2π/T means that the quasi-energy gaps at

s = 1 are nothing but 2π-shifts of those at s = 0. As a result, the relevant gaps of U0(k, t) are kept open and eventually
coincide with the relevant gaps of U1(k, t) as s reaches 1, since U0(k, t) and U1(k, t) have the same relevant gaps.
The topological equivalence between U0(k, t) and U1(k, t) according to Def. 3 coincides with above statement that the
global energy shift should not change any physical or topological property in class A. As all quasi-energy bands are
continuously shifted by 2π/T as s changes from 0 to 1, no bands (times Ts) can be confined in a s-independent 2π
range during this deformation.

Owing to Def. 3, the topological classification that we obtain might differ from the previous classification [69–71].
One example would be 0 + 1D one-band class-A case without any crystalline symmetries. In this case, the Bloch
momentum is not needed, and we consider a FGU with a 1 × 1 time-evolution matrix U0(t) = e−iφ(t), where φ(t)
is real and U0(t + T ) = U0(t)U0(T ). For the PBZ lower bound Φ = φ(T ) − π, we have only one quasi-energy φ(T )
and only one quasi-energy gap—the one between φ(T ) and φ(T ) − 2π—which we have chosen to be relevant. Let
us again shift the global energy to give a deformation Us(t) = e−iφ(t)−i2πst/T with s ∈ [0, 1], which is a special case
of Eq. (B16). As schematically shown in Fig. 7(b), the deformation indeed does not close the quasi-energy gap, and
thereby U0(t) is topologically equivalent to U1(t) as long as we also choose the only quasi-energy gap of U1(t) to be
relevant, according to Def. 3 and the above discussion. In contrast, according to the classification in Ref. [69–71], U0(t)
and U1(t) are topologically distinct since they have different winding numbers if we impose the same branch cut for
their return maps. Such a difference arises from the different definition of topological equivalence in Ref. [69–71].

3. Return Map

The definition of the return map has been discussed in Appendix. A 4. Here we just need to generalize it from the
1 + 1D two-band case to a N -band FGU U(k, t) with T , a relevant gap choice, a generic G, and ug(k). Specifically,
we replace k by k and replace 2 bands by N bands in Eq. (27)-(29) to get the return map

Uε(k, t) = U(k, t) [U(k, T )]
−t/T
ε , (B17)

where

[U(k, T )]
−t/T
ε =

N∑
m=1

exp

[
− t

T
logεk(e−iEm,kT )

]
Pk,m(T ) , (B18)
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and Pk,m(T ) is the projection matrix given by the eigenvector of U(k, T ) for e−iEm,kT . Under the gauge transformation
Eq. (B11), Uε(k, t) transforms as

Uε(k, t)→W †(k)Uε(k, t)W (k) . (B19)

Recall that we always choose the PBZ lower bound Φk as the branch cut εk = Φk unless specified otherwise. Then,
Uε=Φ(k, t+ T ) = Uε=Φ(k, t), Uε=Φ(k, t) is a continuous function of (k, t) ∈ Rd ×R, Uε=Φ(k + G, t) = Uε=Φ(k, t), and
Uε=Φ(k, t) is G-invariant

ug(k)Uε=Φ(k, t)u†g(k) = Uε=Φ(kg, t) . (B20)

(See more details in Appendix. H.) Since the PBZ lower bound Φk is required to lie in a relevant gap, Uε=Φ(k, t) is
continuously deformed under any topologically equivalent continuous deformation of U(k, t), as long as we continuously
deform the PBZ lower bound along with the deformed relevant gap.

4. Obstruction to Static Limits

Def. 3 only defines the relative topological equivalence, but it does not tell us which side is topologically nontrivial.
In static crystals, the obstruction to the atomic limits is used to define the topologically nontrivial systems [30, 31].
As mentioned in Appendix. A 6, here we are interested in the obstruction to static limits for the characterization
of Floquet dynamics. Specifically, a Floquet crystal Û(t) has obstruction to static limits iff given any continuous

deformation that starts from Û(t) and ends as the time-evolution operator of a static Hamiltonian, the deformation

must break certain symmetries or close certain RGs of Û(t). It turns out that for later derivations, it is more convenient
to use an equivalent formal definition of obstruction to static limits based on a formal definition of static limits, which
are discussed below.

The explicit definition that we adopt for static limits and static FGUs in this work is the following.

Definition 5 (Static Limits and Static FGUs). A static limit is a Floquet crystal with static Hamiltonian; a static
FGU is a FGU with static matrix Hamiltonian.

As a static limit (static FGU) satisfies the definition of Floquet crystal (FGU), we can study its topological properties
according to proposed definition of topological equivalence.

Now we discuss how to construct static limits given a static Hamiltonian ĤSL. The time-evolution operator
ÛSL(t) = exp(−iĤSLt) and crystalline symmetry group G can be naturally determined from ĤSL. However, to make
it a static limit that satisfies the definition of a Floquet crystal, we need to have the time period and the relevant
gaps. This is where a subtlety appears. When we refer to the period T of a Floquet crystal, we actually mean
the fundamental period—the smallest positive T that satisfies Ĥ(t + T ) = Ĥ(t). Static Hamiltonians do not have
a fundamental period since they are invariant under any time shift. To resolve this issue, we can assign a period
TSL > 0 to a given ÛSL(t), and determine the quasi-energy bands and pick the relevant gaps according to ÛSL(TSL).
Another way to fix this issue is to add an infinitesimal drive with period TSL to the static Hamiltonian and define the
Floquet crystal based on the resultant driven Floquet system. Both ways are equivalent, and we, in this work, stick

to assigning TSL to ÛSL(t). The resultant static limit is just the time-evolution operator ÛSL(t) = e−iĤSLt with the

assigned TSL, the relevant gaps chosen according to ÛSL(TSL), and the crystalline symmetry group G of ĤSL. The
same procedure can be applied to a static matrix Hamiltonian HSL(k) with a crystalline symmetry group G and the
representation ug(k), resulting in a static FGU as USL(k, t) = e−iHSL(k)t with the assigned TSL, the relevant gaps
chosen according to USL(k, TSL), G, and ug(k). A static FGU can be naturally given by picking bases for a static
limit. We emphasize that different assigned TSL’s or different relevant gap choices by definition give different static
limits (or static FGUs).

Definition 6 (Obstruction to Static Limits). A Floquet crystal (a FGU) with G is defined to have obstruction to
static limits iff it is topologically distinct from all static limits (static FGUs) with G.

According to the definition, it seems that we need take into account all possible choices of TSL to determine
the obstruction. It turns out that given a FGU with time period T and crystalline symmetry group G, we can
neglect static FGUs with TSL 6= T in order to determine the obstruction for the FGU. It is because for any static
FGU USL(k, t) = e−iHSL(k)t with TSL, relevant gap choice, G, and ug(k), we always have another static FGU

U ′SL(k, t) = e−iHSL(k)
TSL
T t with T , relevant gap choice same as USL, G, and ug(k), such that USL(k, t) and U ′SL(k, t)

are topologically equivalent. The same relevant gap choice is allowed by USL(k, TSL) = U ′SL(k, T ), and the topological
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equivalence is established by Us(k, t) = e−iHs(k)t with s ∈ [0, 1], Ts = (1 − s)TSL + sT , Hs(k) = HSL(k)TSL/Ts,
and us,g(k) = ug(k). In other words, to have obstruction to static limits, a G-invariant FGU with period T must
and only need to be topologically distinct from all G-invariant static FGUs with TSL = T . The same conclusion can
also be drawn for the Floquet crystals. Furthermore, if a FGU of a G-invariant Floquet crystal for certain bases has
obstruction to static limits, the Floquet crystal then must be topologically distinct from all G-invariant static limits,
and thus has obstruction to static limits. Therefore, in the remaining of this work, we will focus on the obstruction
of FGUs, and when determining the obstruction for a FGU with period T , we always assign TSL = T to all static
FGUs unless specified otherwise.

In contrast to Def. 5 adopted in this work, the static limit was sometimes implied as the T → 0 limit in previous
literature [112]. According to Def. 5, T → 0 is just one way to make a Floquet crystal (or FGU) static, while there
are infinite many other ways, including continuously decreasing the driving amplitude to zero while fixing T . In this
work, if a Floquet crystal (or FGU) has the obstruction to static limits, all continuous deformations that make it
static are forbidden (or equivalently must break certain symmetries or close certain relevant gaps).

Appendix C: Details on General Framework

In this section, we follow Fig. 4 to introduce the symmetry data, the quotient winding data, and the DSI for class-A
d + 1D FGUs (and thus for Floquet crystals) with a generic crystalline symmetry group G and d ≤ 3. Henceforth,
when we discuss different FGUs, we always imply that they have the same crystalline symmetry group G.

1. Symmetry Data of Quasi-energy Band Structure

We start with introducing the symmetry data of the quasi-energy bands. We first follow Ref. [30, 31, and 108], and
then discuss the subtlety that is absent in static crystals.

Let us first consider a generic FGU U(k, t) with time period T , a relevant gap choice, a generic crystalline symmetry
group G and a symmetry representation ug(k). According to Eq. (B7), an element g = {R|τ} of the crystalline
symmetry group G can change the Bloch momentum k to kg = Rk. Iff there exists a reciprocal lattice vector G
such that kg = k + G, we say g leaves k invariant. For any k ∈1BZ, all elements of G that leave k invariant form a
group, which is called the little group [108] of k and denoted by Gk. Gk must contain all lattice translations in G; if
Gk contains more than lattice translations, such as the little groups for Γ and X discussed in Appendix. A 3, we call
k a high-symmetry momentum [108].

Now we focus on Gk. When restricting g ∈ Gk, the representation ug(k) satisfies a simpler version of Eq. (B8),
which reads

ug1g2(k) = ug1(k)ug2(k) ∀g1, g2 ∈ Gk , (C1)

where the Bloch momenta other than k are not involved. Eq. (C1) suggests ug(k) with fixed k is a representation
of Gk, which is called a small representation of Gk. In particular, the small representation ug(k) commutes with the
time-evolution matrix U(k, t):

ug(k)U(k, t)u†g(k) = U(k, t) ∀g ∈ Gk . (C2)

Eq. (C2) suggests that each eigenvector of U(k, T ) participates in furnishing a definite small irreducible representation
(irrep) of Gk, and thereby we can associate each quasi-energy band in a given PBZ with a small irrep of Gk.

Let us now pick a generic PBZ lower bound Φk for the given FGU U(k, t). Recall that the quasi-energy bands in
the Φk-PBZ are separated into isolated sets by the relevant gaps. For each small irrep α of Gk, we can count the
number of quasi-energy bands in the lth isolated set that are associated with it, labelled as ñlk,α, where α ranges

over all inequivalent small irreps of Gk. For convenience, we do not directly use ñlk,α but use the number of copies of

irreps, which is nlk,α = ñlk,α/dα with dα the dimension of the small irrep α of Gk. In the 1 + 1D example discussed in
Appendix. A 3, the small irreps at high-symmetry momenta are labelled by the parity and have dimension 1, resulting
in nlk,α = ñlk,α. nlk,α is invariant under the gauge transformation Eq. (B11), since it is derived from the trace of
symmetry representations.

For the given crystalline symmetry group G, we do not need to include all momenta in 1BZ for the study of nlk,α. To
see this, we classify the momenta in 1BZ into a finite number of types based on the following definition. Two momenta
k and k′ in 1BZ are defined to be of the same type iff there exists a symmetry g ∈ G, a reciprocal lattice vector G,
and a continuous path ks with s ∈ [0, 1] such that (i) ks=0 = kg + G and ks=1 = k′, and (ii) Gks=0

= Gks=1
⊂ Gks .
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There are two elementary cases: (i) G = 0 and g is identity, meaning that ks=0 = k and ks=1 = k′, and (ii) ks = k′

is constant in s, meaning that kg + G = k′. Note that the path ks is allowed to take values outside of 1BZ if
needed. Moreover, we allow Gks to be larger than Gks=0

and Gks=1
(e.g., even if Gks=0

and Gks=1
only contain lattice

translations, the path is allowed to pass a mirror plane), though we typically do not need a larger Gks . According
to the definition, being in the same type is an equivalence relation, and thereby the types of momenta are just the
corresponding equivalence classes. It turns out nlk,α = nlk′,α as long as k and k′ are of the same type, and thus we
only need to consider one representative in each type of momenta.

Now turn to the symmetry data of the given FGU U(k, t) for the given PBZ choice Φk. The symmetry content for
the lth isolated set of quasi-energy bands is the vector

Al = (..., nlα,k, ...)
T , (C3)

where k and α respectively range over all types of Bloch momenta and all inequivalent small irreps of Gk. All
components of Al are non-negative integers. As exemplified by Eq. (6), not all components of Al are independent, as
they satisfy the compatibility relation C

CAl = 0 . (C4)

The compatibility relations of all crystalline symmetry groups (spatial dimensions up to three) can be found on the
website of Bilbao Crystallographic Server [30]. Owing to the compatibility relation, we are allowed to omit certain
types of momenta (especially those whose little groups are not maximal subgroups of G) without affecting the results.
As a result, only a small number of high-symmetry momenta are included in general, like the 1+1D example discussed
in Appendix. A 3; if G has no high-symmetry momenta, we only need to pick one generic momentum. After picking
the momentum types, the number of components of Al is fixed for the given G, which we label as K. Then, combined
with Eq. (C4), we have

Al ∈ {BS} ≡ NK ∩ ker C . (C5)

The symmetry data A of U(k, t) for Φk is the K × L matrix with Al as its columns

A =
(
A1 A2 ... AL

)
, (C6)

where L is the total number of isolated sets in any PBZ.
The above discussion of symmetry data is for a fixed PBZ choice, which is the same as the discussion for static

crystals [30, 31]. As discussed in Appendix. A 3, the freedom of choosing PBZ for FGUs leads to a subtlety that is
absent in static crystals. Specifically, changing the artificial PBZ choice might change the symmetry data by a cyclic
permutation. Nevertheless, a given FGU can only have a finite number of different symmetry data given by varying
PBZ choices, as discussed below.

Suppose Φ̃k is another possible PBZ lower bound of the given FGU U(k, t), which yields symmetry data Ã. To

relate Ã to the symmetry data A given by Φk, we can consider a continuous deformation (1 − s)Φk + sΦ̃k which

connects Φk to Φ̃k as s continuously evolves from 0 to 1. We define L̃ as the number of isolated sets of quasi-energy
bands, as well as their 2πn-copies (with n integer), swept through by the deformation as s continuously increases from

0 to 1. When L̃ 6= 0, sgn(L̃) = sgn(Φ̃k−Φk). For examples, L̃ = 0 iff Φ̃k lies in the same relevant gap as Φk, L̃ = nL

if Φ̃k = Φk + n2π, and L̃ = l− 1 (l = 2, ..., L) iff Φ̃k lies in the lth relevant gap in the PBZ defined by Φk. With this

convention, we say Φ̃k is given by a L̃-shift of Φk, and then 2πn-shifts are equivalent to nL-shifts. For example, the

PBZ lower bound in Fig. 2(b) is given by a 1-shift of that in Fig. 2(a). In general, a L̃1-shift followed by a L̃2-shift is

always equivalent to a (L̃1 + L̃2)-shift.

Suppose Φ̃k is given by a L̃-shift of Φk with 0 < L̃ < L. Then, Φ̃k lies in the (L̃+ 1)th relevant gap of the Φk-PBZ,

and the first isolated set of quasi-energy bands in the Φ̃k-PBZ would be the (L̃ + 1)th isolated set of quasi-energy

bands in the Φk-PBZ. As a result, the symmetry data Ã for Φ̃k should have AL̃+1 as its first column and reads

Ã =
(
AL̃+1 ... AL A1 ... AL̃

)
. (C7)

Furthermore, adding nL to L̃ is equivalent to further shifting Φ̃k by 2πn, which leaves the symmetry data invariant.

Then, for general L̃ ∈ Z, we have

Ã = APL̃ , (C8)
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FIG. 8. Two schematic quasi-energy band structures for 1 + 1D inversion-invariant FGUs. In both (a) and (b), all quasi-energy
gaps are relevant, and ± indicate the parities. The orange and purple dashed lines indicate two different choices of PBZ that
yield the same symmetry data, and there are four isolated sets of quasi-energy bands (each set has one band) for each choice
of PBZ. In (a), moving a PBZ lower-bound through LKSD = 1 isolated set (purple arrow) leaves the symmetry data invariant.
In (b), moving a PBZ lower-bound through 2 isolated sets (purple arrow) leaves the symmetry data invariant while moving
through 1 isolated set fails, resulting in LKSD = 2.

where PL̃ is a L× L cyclic permutation matrix taking the form[
PL̃
]
ij

= δi,j+(L̃modL) + δi,j−L+(L̃modL) . (C9)

As shown by Eq. (C9), the symmetry data for Φ̃k is determined by L̃ and the symmetry data for Φk, without caring

about the detailed forms of Φk and Φ̃k. It is because the symmetry data is invariant under any deformation of PBZ
lower bound within one relevant gap. Eq. (C9) also suggests that

PL̃1
PL̃2

= PL̃1+L̃2
= PL̃2

PL̃1
, (C10)

which coincides with the additive nature of PBZ-shifts.

For the given FGU U(k, t), we focus on the smallest positive L̃ that satisfies A = APL̃, which we label as LKSD

with “KSD” short for keeping-symmetry-data. An L̃-shift of Φk leaves A invariant iff L̃modLKSD = 0, because if

AP(L̃modLKSD) = A holds for 0 < L̃modLKSD < LKSD, LKSD cannot be smallest. Thus, the number of different

symmetry data given by changing PBZ is just LKSD. For examples, LKSD = 1 for Fig. 8(a), LKSD = 2 for Fig. 8(b),
and LKSD = 2 for the 1+1D example discussed in Appendix. A 3. Although we derive LKSD from the symmetry
data A given by the PBZ lower bound Φk, LKSD is in fact independent of PBZ choices, owing to the commutation
relation of the cyclic permutations in Eq. (C10). It coincides with the fact that the number of different symmetry
data possessed by a FGU should not rely on specific PBZ choices.

The finite LKSD allows us to define the equivalent symmetry data to remove the artificial ambiguity of the sym-
metry data brought by changing PBZ, as discussed in Appendix. A 3. We define two FGUs U(k, t) and U ′(k, t) to
have equivalent symmetry data iff there exist PBZ choices that yield exactly the same symmetry data for them.
Alternatively, we can define [A] to be the set of all symmetry data of U(k, t) given by varying PBZ, similarly [A′] for
U ′(k, t). Then, having equivalent symmetry data is equivalent to [A] = [A′]. Based on this equivalent statement, the
equivalence among symmetry data of FGUs does not depend on specific PBZ choices, and is an equivalence relation.

As shown in Fig. 6, given two topologically equivalent FGUs U(k, t) and U ′(k, t), we can always pick a PBZ lower
bound Φk,0 for U(k, t), and continuously deform Φk,0 into a PBZ lower bound Φk,1 for U ′(k, t) without touching the
deformed quasi-energy bands. Since no relevant gaps are closed during the deformation, we know the symmetry data
are exactly the same for U(k, t) with Φk,0 and U ′(k, t) with Φk,1, meaning that topologically equivalent FGUs must
have equivalent symmetry data. As the contrapositive, inequivalent symmetry data infers topological distinction
among FGUs (thus among Floquet crystals) and provides a topological classification that only involves the time-
evolution operators at t = T . For two FGUs with equivalent symmetry data, they must have the same number of
bands and the same number of relevant gaps, but the dynamics can still make them topologically distinct. Next, we
will introduce the quotient winding data that can help classify the dynamics of FGUs (thus of Floquet crystals) with
equivalent symmetry data.
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2. Winding Data

To introduce quotient winding data, we first discuss the winding data for a generic FGU U(k, t) with time period
T , a relevant gap choice, a generic crystalline symmetry group G and a symmetry representation ug(k). By picking
a generic PBZ lower bound Φk, Appendix. C 1 suggests that we can derive the symmetry data A of U(k, t). As
exemplified in Appendix. A 4, the winding data is derived from the return map Uε=Φ(k, t). Since the return map is
invariant under G as discussed in Appendix. B 3, we have

ug(k)Uε=Φ(k, t)u†g(k) = Uε=Φ(k, t) ∀g ∈ Gk . (C11)

It enables us to simultaneously block diagonalize Uε=Φ(k, t) and ug(k) (for all g ∈ Gk) according to inequivalent small
irreps of Gk:

W †GkUε=Φ(k, t)WGk =


. . .

Uε=Φ,k,α(t)

. . .



W †Gkug(k)WGk =


. . .

ũαg (k)

. . .

 ,

(C12)

where WGk is a unitary matrix, and Uε=Φ,k,α(t) and ũαg (k) are the blocks of the return map and the symmetry
representation that correspond to the small irrep α of Gk, respectively. Specifically, ũαg (k) is a small representation
of Gk that can be unitarily transformed to 1nk,α

⊗ uαg (k) in a g-independent way, where uαg (k) is the small irrep α of

Gk, nk,α =
∑L
l=1 n

l
k,α is the total number of copies of small irrep α that occur in ug(k), and L is the total number of

isolated sets in any PBZ. For the 1+1D example in Appendix. A 4, WGk happens to be an identity matrix. Based on
Eq. (C12), we can define the following U(1) winding number

νk,α =
i

2π

1

dα

∫ T

0

dtTr[U†ε=Φ,k,α(t)∂tUε=Φ,k,α(t)] , (C13)

where dα was defined as the dimension of small irrep α in Appendix. C 1. We emphasize that this expression of νk,α
requires Uε=Φ,k,α(t) to be a piece-wise differentiable function of t, while a more general definition of νk,α is the winding
number of the continuous phase angle of det[Uε=Φ,k,α(t)] divided by dα. The integer-valued νk,α is invariant under
the gauge transformation Eq. (B11) and Eq. (B19), as discussed in Appendix. H.

Interestingly, νk,α = νk′,α if k and k′ are in the same type, and νk,α has the same compatibility relation as the
symmetry content Al in Eq. (C4). (See more details in Appendix. H.) Therefore, we can pick the same momentum
types as the symmetry data, and get the winding data of the given FGU U(k, t) for the given PBZ choice Φk as

V = (..., νk,α, ...)
T , (C14)

where k and α respectively range over all chosen types of Bloch momenta and all inequivalent small irreps of Gk. As
a result, V has the same number K of components as the symmetry content Al, and the compatibility relation reads

CV = 0 . (C15)

However, unlike Al, the components of V are allowed to take negative values.
Besides the compatibility relation, there is a possible extra constraint on V imposed by the symmetry data A,

which is

nk,α = 0⇒ νk,α = 0 . (C16)

Specifically, nk,α = 0 means that the block-diagonalized ug(k) in Eq. (C12) has no blocks for the small irrep α of Gk,
and thereby Uε=Φ,k,α(t) has zero dimension, resulting in νk,α = 0. This extra constraint can be expressed in terms of
a diagonal matrix D

DV = 0 , (C17)
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P.G. p1 p2 pm pg cm p2mm p2mg p2gg c2mm p4 p4mm p4gm p3 p3m1 p31m p6 p6mm

{V } for spinless P.G. Z Z5 Z3 Z Z2 Z9 Z4 Z3 Z6 Z8 Z9 Z6 Z7 Z5 Z5 Z9 Z8

{V } for spinful P.G. Z Z5 Z3 Z Z2 Z Z4 Z3 Z2 Z8 Z3 Z4 Z7 Z5 Z5 Z9 Z4

TABLE 3. The largest winding data sets {V } (Eq. (C19)) for all spinless and spinful plane groups. “P.G.” means plane group.

Note that {V } does not provide a topological classification, while the quotient group {V }/ĀZ does as shown in Eq. (C24).

where a diagonal element of D is 0 (1) if the corresponding nk,α is nonzero (zero). Combining Eq. (C15) with Eq. (38),
the winding data takes value from the following group {V }

{V } ≡ ZK ∩ ker C ∩ kerD . (C18)

As K, C, and D are independent of PBZ choices, so is {V }. Therefore, all winding data of all FGUs with equivalent
symmetry data should belong to the same {V }.

In general, for a given crystalline symmetry group G, the largest winding data set {V } occurs when the FGUs of
interest contain all inequivalent small irreps of Gk for all chosen momenta k. In this case, the constraint Eq. (38)

disappears, and the winding data set {V } becomes {V } as

{V } ≡ ZK ∩ ker C . (C19)

This is what happens for the 1+1D example Fig. 2(a) discussed in Appendix. A 4, where we do not need to consider

the D constraint. We further list {V } for all spinless and spinful 2D plane groups in Tab. 3, which can be reproduced
by artificially allowing the negative numbers of band in the {BS} set [31, 32] (Eq. (37)).

Nevertheless, as mentioned in Appendix. A 4, {V } does not give topological classifications since different the PBZ

choices can result in different winding data. Specifically for the given FGU U(k, t), a L̃-shift of the PBZ lower bound
Φk leads to

V → V − L̃− (L̃modL)

L

L∑
l=1

Al −
L̃modL∑
l=1

Al , (C20)

where Al are labelled according to the original Φk. (See more details in Appendix. H.) Therefore, a FGU has infinitely
many different winding data given by varying the PBZ, causing difficulty for comparing winding data to determine
topological distinction. Next, we introduce the quotient winding data to resolve this issue.

3. Quotient Winding Data

The quotient winding data is defined as the following. Let us consider a FGU U(k, t), and by choosing a PBZ
lower bound Φk, we can derive symmetry data A and winding data V of U(k, t). As discussed in Appendix. C 1,
the symmetry data is invariant and only invariant under nLKSD-shifts of Φk (with n integer). Then, similar to the
discussion in Appendix. A 5, we want to make the quotient winding data VQ also invariant under all the nLKSD-shifts.
According to Eq. (C20), we can achieve the invariance for VQ by defining

VQ = V mod Ā , (C21)

where

Ā =

LKSD∑
l=1

Al . (C22)

By exploiting Eq. (C9), one can show that Ā is independent of PBZ choices, and in fact Ā is the same for all FGUs
with equivalent symmetry data. The modulo operation in Eq. (C21) can be taken for the first nonzero component
of Ā as specified in Appendix. A 5. In contrast to the winding data, the given FGU U(k, t) only has LKSD different
quotient winding data upon changing the PBZ, just like the symmetry data. As discussed in Appendix. A 5, we can
then define an equivalence among quotient winding data of FGUs with equivalent symmetry data as the following.
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For two FGUs with equivalent symmetry data, we define them to have equivalent quotient winding data iff they
have the same quotient winding data for all PBZ choices that yield the same symmetry data. We do not compare
the quotient winding data when the PBZ choices yield different symmetry data, since the quotient winding data
can be changed by any artificial PBZ shift that changes symmetry data. In the following, we provide two other
equivalent definitions for equivalent quotient winding data. Given a FGU U(k, t), we can pick a PBZ lower bound
Φk to get the symmetry and quotient winding data (A, VQ); similarly, for another FGU U ′(k, t), we have (A′, V ′Q)

for a Φ′k. Then, U(k, t) and U ′(k, t) have equivalent symmetry and quotient winding data iff there exist Φk and Φ′k
such that (A, VQ) = (A′, V ′Q). Moreover, by varying the PBZ lower bound Φk of U(k, t), we can get a set [(A, VQ)] of

all symmetry and quotient winding data of U(k, t); similarly [(A′, V ′Q)] for U ′(k, t). Then, U(k, t) and U ′(k, t) have

equivalent symmetry and quotient winding data iff [(A, VQ)] = [(A′, V ′Q)]. The equivalence among the three definitions

relies on the correlated changes of the symmetry data Eq. (C9) and winding data Eq. (C20) given by the PBZ shifts.
The first two definitions provide an efficient way to determine equivalent quotient winding data. Provided that

U(k, t) and U ′(k, t) have equivalent symmetry data and we have picked Φk and Φ′k to yield A = A′, then the first
definition suggests that VQ 6= V ′Q infers inequivalent quotient winding data, and the second definition suggests that

VQ = V ′Q infers equivalent quotient winding data. The third definition shows that having equivalent symmetry and
quotient winding data is independent of the specific PBZ choices and is an equivalence relation.

As discussed in Appendix. A 5, the equivalence of the quotient winding data should be related to the topological
equivalence. Suppose the above-mentioned U(k, t) and U ′(k, t) are topologically equivalent. Then, according to Fig. 6,
we have a continuously evolving in-gap Φk,s with Φk,s=0 = Φk, and we can always pick Φk,s=1 as Φ′k. With this
choice, we would have A = A′ and the same winding data V = V ′, resulting in Ā = Ā′ and VQ = V ′Q. Therefore, two
topologically equivalent FGUs have equivalent symmetry and quotient winding data. The contrapositive suggests if
two FGUs have equivalent symmetry data but have inequivalent quotient winding data, they must be topologically
distinct.

The quotient winding data does not lose any essential information compared to the winding data, because if two
FGUs have equivalent symmetry and quotient winding data, there must exist PBZ choices for them to have the
same symmetry and winding data. To be more specific, when PBZ choices give the same symmetry and quotient
winding data for two FGUs, the two FGUs must have the same Ā, L and LKSD, always allowing us to compensate
the difference in winding data by performing a nLKSD-shift on the PBZ lower bound of one FGU without changing
the symmetry data. Nevertheless, the quotient winding data has the advantage of directly providing a topological
classification for FGUs (and thus for Floquet crystals) with equivalent symmetry data, as discussed in the following.

Let us consider all FGUs that have symmetry data equivalent to a given FGU U(k, t), and we can always choose
PBZs for them such that they have the same symmetry data. As mentioned in Appendix. A 5 and Appendix. C 1,
we still have LKSD different types of the PBZ choices, which respectively yield the LKSD different symmetry data
of U(k, t) for all those FGUs. For each type of PBZ choices, the quotient winding data of each FGU takes a unique
value in the following set

{VQ} = {V mod Ā|V ∈ {V }}

≈ {V }
ĀZ

=
ZK ∩ ker C ∩ kerD

ĀZ
,

(C23)

where ĀZ = {qĀ|q ∈ Z}. As different VQ in this case infers topological distinction, {VQ} serves as a topological
classification of those FGUs for each type of PBZ choices. Since the winding data given by different PBZs are related
(Eq. (C20)), the quotient winding data for different types of PBZs are also related, suggesting that the {VQ}-based
classifications for different types of PBZ choices are equivalent. Specifically, for any two types of PBZ choices, two of
those FGUs have the same quotient winding data for one type iff they have the same quotient winding data for the
other type. Therefore, {VQ} provides a topological classification for FGUs with equivalent symmetry data, as long as
the comparison of VQ is done for the PBZ choices that yield the same symmetry data.

The classification Eq. (C23) given by {VQ} is fully determined by the symmetry group G and the PBZ-independent
Ā of the FGUs with equivalent symmetry data. To see the reason, recall that D is determined by whether the copy
number nk,α of each small irrep α at each k is zero, and then nk,α = (L/LKSD)Āk,α suggests that D can be fully
determined by Ā. Appendix. C 1 further suggests that K and C are determined by G, resulting in the above statement.
It is worth mentioning that if the FGUs contain all inequivalent small irreps at all chosen momenta like Fig. 2(a), we
have D = 0, and the classification becomes

{V }
ĀZ

=
ZK ∩ ker C

ĀZ
. (C24)

As discussed in Appendix. A 5, the symmetry data and quotient winding data together provide a topological clas-
sification of FGUs (and thus of Floquet crystals). However, the classification is not necessarily complete, i.e., if two
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FGUs have equivalent symmetry and quotient winding data, they can still be topologically distinct. We do not resolve
this completeness issue in this work as it is in general highly nontrivial. On the other hand, Eq. (C23) only gives a
relative classification without telling us which side is nontrivial. Next, we will resolve this issue by constructing the
DSI.

4. DSI

In this part, we will construct the DSI to sufficiently indicate the obstruction to static limits for a given FGU U(k, t)
with G its crystalline symmetry group.

In order to determine the obstruction to static limits, we only need to consider G-invariant static FGUs with
symmetry data equivalent to U(k, t) since inequivalent symmetry data must infer topological distinction. Then, based
on the classification in Appendix. C 3, if all those G-invariant static FGUs have quotient winding data inequivalent to
U(k, t), then U(k, t) must have obstruction to static limits. Specifically, we can pick a PBZ lower bound Φk for the
FGU U(k, t) to get its symmetry data A, winding data V , and quotient winding data VQ. We further enumerate all
winding data VSL and quotient winding data VQ,SL of all those static FGUs for all PBZ choices that yield symmetry
data ASL = A, resulting in a static winding data set {VSL} and a static quotient winding data set {VQ,SL}. Then, if
VQ /∈ {VQ,SL}, we know U(k, t) has obstruction to static limits.

It turns out for the obstruction to static limits, we can use the winding data instead of the quotient winding data
owing to

VQ /∈ {VQ,SL} ⇔ V /∈ {VSL} , (C25)

which saves us from an extra modulo operation. The reasoning is the following. Since the static FGUs have symmetry
data equivalent to U(k, t), the static FGUs have the same Ā as U(k, t). If V = VSL, we have VQ = V mod Ā =
VSL mod Ā = VQ,SL; if VQ = VQ,SL, the difference in the winding data can always be compensated by a PBZ shift for
the static FGU without changing the symmetry data, as discussed in Appendix. C 3. Therefore, a sufficient condition
for U(k, t) to have the obstruction to static limits is V /∈ {VSL}, which is the underlying idea for constructing DSI.
As discussed in Appendix. A 6, besides indicating obstruction to static limit, DSI is also a topological invariant—
its different values infer topological distinction for FGUs (and thus for Floquet crystals) with equivalent symmetry
data—though the resultant classification is a subset of that given by quotient winding data. Although the idea
of constructing DSI is the same as Appendix. A 6, there are some subtleties in the construction of {VSL} and the
derivation of DSI, which will be discussed below.

a. Positive Affine Monoid and Hilbert Bases

To derive {VSL} for the given FGU U(k, t) with Φk, let us first discuss several properties of the symmetry contents
Al of isolated sets of quasi-energy bands. As shown in Eq. (37), the symmetry content compatible with the given
crystalline symmetry group G always takes value from the set {BS}. We call a nonzero element in {BS} irreducible [99]
if it cannot be expressed as the sum of any two other elements in {BS}; otherwise, it is called reducible. If an isolated
set of quasi-energy bands has an irreducible symmetry content Al, the quasi-energy bands in the isolated set must be
connected, since if there is a gap that splits the isolated set into two isolated subsets of bands, the symmetry contents
of the two subsets, labeled as Al,1 and Al,2, would satisfy Al = Al,1 +Al,2 and Al,1 6= Al and Al,2 6= Al, violating Al
being irreducible. We further define the symmetry data A of U(k, t) for Φk to be irreducible if all its columns are
irreducible symmetry contents; otherwise, A is reducible.

For the given G, the irreducible symmetry contents form a unique set of bases of {BS} [27, 99]. Mathematically
speaking, {BS} is a monoid because {BS} has an identity for the addition and the addition is closed and associative
in {BS}, while all symmetry contents have non-negative integer components and thus typically have no inverse. More
specifically, {BS} is a positive affine monoid [27, 99], whose irreducible elements form a unique minimal set of bases
of the monoid. Here “affine” means the monoid is a finitely generated submonoid of ZK , “positive” means that only
the zero element in the affine monoid has inverse, and “bases” means that any element of the positive affine monoid
can be expressed as the linear combination of the bases with non-negative integer coefficients. The irreducible bases
are called the Hilbert bases, and all irreducible symmetry contents are just the Hilbert bases of the {BS}, labeled as
ai with i = 1, 2, ..., I. Here I is the total number of distinct Hilbert bases. For the 1+1D inversion-invariant case in
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Appendix. A 3, there are four Hilbert bases given by four ways of assigning ± parities to Γ/X, which read

a1 = (1, 0, 1, 0)T ,

a2 = (0, 1, 1, 0)T ,

a3 = (1, 0, 0, 1)T ,

a4 = (0, 1, 0, 1)T .

(C26)

In general, we can obtain the Hilbert bases using the SageMath software [113], together with the 4ti2 package [114]
and the data [30] of atomic limits from Bilbao Crystallographic Server. We have obtained the Hilbert bases for all
spinless and spinful 2D plane groups as mentioned in Tab. 1-2 and listed in Appendix. J. Next we will discuss how we
use the Hilbert bases to construct the {VSL} and DSI.

b. DSI for Irreducible Symmetry Data

We start with the case where the symmetry data A of the given FGU U(k, t) for the PBZ choice Φk is irreducible,
such as Fig. 2(a). Owing to the irreducible symmetry data, each isolated set of the quasi-energy bands is connected;
thereby, there are no irrelevant gaps and all quasi-energy gaps are relevant. In this case, the static winding data set
{VSL} in Eq. (C25) has the following expression

{VSL} = {
L∑
l=1

Alql|ql ∈ Z} , (C27)

where Al is the lth column of A and L is the number of isolated sets (or equivalently the number of relevant gaps) in
any PBZ. (See Appendix. I for details.)

Eq. (C27) can be simplified. For Al = Al′ , qlAl + ql′Al′ = (ql + ql′)Al means that only the sum (ql + ql′) contributes
to the winding data, allowing us to only include the distinct columns of A for {VSL}. Then, we can list all different Al,
relabeled as aj with j taking J different values in {1, 2, ..., I}, which are the Hilbert bases involved in the irreducible
symmetry data of U(k, t). Here I is the total number of distinct Hilbert bases for G. As a result, Eq. (C27) is simplifed
to

{VSL} = {
∑
j

ajqj |qj ∈ Z} . (C28)

Combined with the winding data set {V } in Eq. (39), the DSI takes values in the following quotient group

X =
{V }
{VSL}

. (C29)

Strictly speaking, each element of X is a set of winding data; for the given winding data V of U(k, t) for Φk, we can
find the x in X such that V ∈ x, and then x is the DSI of U(k, t). We label x in X as zero iff x contains 0. Then, the
zero DSI for U(k, t) means V − 0 ∈ {VSL}; nonzero DSI infers V /∈ {VSL} and thus infers the obstruction to static
limits for the FGU (and thus for the underlying Floquet crystal). Normally, we can use certain simple index to label
x, just like the expression used for the 1+1D example in Eq. (21).

Recall that the symmetry data A is derived after a PBZ lower bound Φk is picked for U(k, t). Therefore, the above
discussion is for a particular PBZ choice Φk for U(k, t). If we change Φk, {VSL} stays invariant since any cyclic
permutation of columns of A leaves Eq. (C27) invariant. In other words, all winding data of all G-invariant static
FGUs with symmetry data equivalent to the given FGU U(k, t) belong to the same {VSL}, even if the PBZ choices for
static FGUs yield symmetry data ASL 6= A. Combined with the fact that {V } is PBZ-independent (Appendix. C 2),
we know X is PBZ-independent. The change of the winding data brought by changing Φk is a linear combination of
symmetry contents (Eq. (C20)), which is contained in {VSL}. Therefore, the evaluation of DSI is independent of PBZ
choice Φk for U(k, t).

Eq. (40) suggests that {VSL} only depends on the set of Hilbert bases {aj} involved in the irreducible symmetry
data. On the other hand, as the vanishing components of

∑
lAl are the same as the vanishing components of

∑
j aj ,

the D constraint in Eq. (39) is also determined by the set {aj}. Specifically, a diagonal element of D is 0 (1) if the
corresponding component of

∑
j aj is nonzero (zero). Therefore, if two FGUs have the same G and have irreducible

symmetry data that involve the same set of Hilbert bases, they have the same {VSL}, {V }, and X , no matter whether
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the two FGUs have equivalent symmetry data. This simplification allows us to enumerate all possible DSI sets for
irreducible symmetry data by considering all possible combinations of Hilbert bases of a given crystalline symmetry
group G. All possible combinations of Hilbert bases can be enumerated by considering the presence and absence of
each Hilbert basis, resulting in 2I − 1 nontrivial combinations, where the only trivial one corresponds to the absence
of all bases. We emphasize that not all the combinations of Hilbert bases can be reproduced by FGUs since certain
symmetry contents are forbidden for isolated sets of bands [12]. Nevertheless, the above derivation can guarantee
none of the physical combinations of Hilbert bases are missed.

We perform this derivation for the 1 + 1D inversion-invariant class-A FGUs with irreducible symmetry data, and
obtain only two nontrivial DSI sets. One is for the case where the irreducible symmetry data is spanned by a1 and
a4 in Eq. (22), which is just Fig. 2(a) and the DSI is shown in Eq. (21). The other one is for the irreducible symmetry
data spanned by a2 and a3 in Eq. (22), and the DSI set reads

X ≈ {νΓ,+ − νX,− ∈ Z} . (C30)

We further derive the DSI sets for all nontrivial combinations of Hilbert bases for all spinless and spinful 2D plane
groups, and list the numbers of nontrivial DSI sets in Tab. 1-2. We do not list the exact forms of DSIs since the
paper would be too long otherwise, but we present in Appendix. I the detailed method that we adopt to obtain
Tab. 1-2. Rigorously speaking, the final results given by the method are not exactly equal to the DSI sets, but there
are one-to-one correspondences (bijections) between them.

c. DSI for Reducible Symmetry Data

In this part, we discuss the DSI for the case where the symmetry data A of the given FGU U(k, t) for Φk is reducible.
As we can see below, the DSI sets for irreducible symmetry data actually serve as elementary building blocks for the
construction of DSIs for reducible symmetry data.

Two examples of reducible symmetry data for 1+1D inversion-invariant case are shown in Fig. 9. Suppose the
lth isolated set of quasi-energy bands of U(k, t) has reducible symmetry content Al and contains irrelevant gaps.
The irrelevant gaps separate the lth isolated set into isolated connected subsets, and we label the symmetry content
of the rlth connected subset as Al,rl , which satisfies Al =

∑
rl
Al,rl . As a result, the relevant gaps and irrelevant

gaps together reduce the symmetry data A into a finer matrix (...Al,rl ...), and we call (...Al,rl ...) a reduction of A.
We emphasize that the definition of a reduction (...Al,rl ...) of A requires and only requires that

∑
rl
Al,rl = Al and

Al,rl ∈ {BS} is nonzero, while we do not require that (...Al,rl ...) can be reproduced by a FGU. A is also a reduction of
A, since rl is allowed to take only one value. Fig. 9 provides two different reductions of the same reducible symmetry
data. Owing to the existence of the reduction of A, the winding data VSL of any G-invariant static FGU with any
PBZ yielding symmetry data A takes value in the following set

{VSL} =
⋃

(...Al,rl ...) reduces A

{
∑
l,rl

Al,rlql,rl |ql,rl ∈ Z} , (C31)

and we have

{VSL} ⊂ {VSL} . (C32)

(See Appendix. I for more details.)
Unlike Eq. (C27) where each Al is reproducible by an isolated set of bands since it appears in the given FGU, it

is possible that not all reduction of A can be reproduced by FGUs, and thus it is possible that {VSL} is strictly

larger than {VSL}. Nevertheless, for the winding data V of the FGU U(k, t), V /∈ {VSL} infers V /∈ {VSL} and thus
sufficiently indicates the obstruction to static limits. Since we only require DSIs to be sufficient indices for obstruction
to static limits, we in this part use {VSL} instead of {VSL}.
{VSL} can be simplified by the irreducible inductions of A, i.e., each column of those reductions is irreducible. For

each irreducible induction of A, the story becomes similar to Appendix. C 4 b. We can use {aj} to label the set of all
distinct columns of an irreducible reduction (...Al,rl ...) of A, and then

{
∑
l,rl

Al,rlql,rl |ql,rl ∈ Z} = {
∑
j

qjaj |qj ∈ Z} (C33)

similar to Eq. (40). The {aj} is a set of Hilbert bases, and we say {aj} spans A since {aj} consists of all distinct
columns of an irreducible reduction (...Al,rl ...) of A. Suppose Ai = Aj + Aj′ , then AiZ ⊂ {q1Aj + q2Aj′ |q1, q2 ∈ Z},
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FIG. 9. The schematic quasi-energy band structure (blue) for two 1 + 1D inversion-invariant FGUs with the same reducible
symmetry data. “R.G.”, “I.G.”, and “I.S.” stand for relevant gap, irrelevant gap, and isolated set, respectively. The dashed
lines mark the boundary of the PBZ, and ± mark the parity. In either (a) or (b), there is one isolated set of quasi-energy
bands with symmetry content A1 = (1, 1, 1, 1)T , which is separated into two connected subsets by one irrelevant gap. The
symmetry contents for the connected subsets are A1,1 = (0, 1, 0, 1)T and A1,2 = (1, 0, 1, 0)T for (a), and are A1,1 = (0, 1, 1, 0)T

and A1,2 = (1, 0, 0, 1)T for (b).

indicating that {
∑
l,rl

Al,rlql,rl |ql,rl ∈ Z} constructed from a reducible reduction must be a subset of that constructed

from certain irreducible reduction. Then, {VSL} can be simplified to

{VSL} =
⋃

{aj} spans A

{
∑
j

qjaj |qj ∈ Z} . (C34)

Similar to the discussion in Appendix. C 4 b, {VSL} is actually independent of the PBZ choice Φk for U(k, t), and
contains all winding data of all G-invariant static FGUs with symmetry data equivalent to the given FGU U(k, t),
regardless of the PBZ choices for static FGUs.

Let us take Fig. 9 as an example. The reducible symmetry data shown in Fig. 9 has four irreducible reductions
(a1 a4), (a4 a1), (a2 a3), and (a3 a2), where ai are shown in Eq. (22). As a result, only two sets of Hilbert bases—

{a1, a4} and {a2, a3}—span the symmetry data, and {VSL} for Fig. 9 would just be

{VSL} = {VSL}
′
∪ {VSL}

′′
, (C35)

where

{VSL}
′

= {q1a1 + q2a4|q1, q2 ∈ Z}

{VSL}
′′

= {q1a2 + q2a3|q1, q2 ∈ Z} .
(C36)

(See Appendix. I for a general method of determining Hilbert bases sets that span symmetry data.)
If all irreducible reductions of the reducible A correspond to the same set of Hilbert bases (or equivalently only one

set of Hilbert bases that spans A), then {VSL} is still a group for addition and we can calculate the DSI according to

Eq. (C29). If more than one sets of Hilbert bases are involved, it is very likely that {VSL} is not a group anymore. In
this case, we can define the DSI set for each set of Hilbert bases {aj} that spans A as

X [{aj}] =
{V }

{
∑
j qjaj |qj ∈ Z}

. (C37)

Since the DSI for one set of Hilbert bases has been addressed in Appendix. C 4 b, we only need to find out all distinct
sets that span A to specify {aj} for Eq. (C37). For example, we know {a1, a4} and {a2, a3} are the two sets of Hilbert
bases that span the symmetry data for Fig. 9, and the corresponding DSI sets X [{a1, a4}] and X [{a2, a3}] are given
in Eq. (21) and Eq. (23), respectively.

We focus on the direct product of the DSI sets for all sets of Hilbert bases that span A, which reads

X =
∏

{aj} spans A

X [{aj}]

= X [{aj}]×X [{aj′}]×X [{aj′′}]× ... .
(C38)
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It means that element x̄ in X is a vector, and each component of x̄ is an element of Eq. (C37). Similar to the irreducible
case Appendix. C 4 b, X and the evaluation of x̄ are independent of the PBZ choice Φk for the given U(k, t). Moreover,
X provides a topological classification for FGUs with equivalent symmetry data.

The given FGU (and thus its underlying Floquet crystal) must have obstruction to static limits if all components
of its x̄ are nonzero. Then, we can define the DSI for the given FGU as the product of all components of its x̄,
meaning that nonzero DSI infers obstruction to static limits. (If certain components of x̄ are vectors, we can treat
both numbers and vectors as matrices, and use the more general Kronecker product to define DSI.) For Fig. 9, the X
set is

X ≈ {νΓ,+ − νX,+ ∈ Z} × {νΓ,+ − νX,− ∈ Z} , (C39)

and then the DSI is (νΓ,+ − νX,+)(νΓ,+ − νX,−). Then, a 1+1D inversion-invariant FGU with the symmetry data
shown in Fig. 9 must have obstruction to static limits if (νΓ,+ − νX,+)(νΓ,+ − νX,−) 6= 0.

Appendix D: Details on DSI For A 2+1D Anomalous Floquet First-order Topological Insulator

In this section, we construct a 2+1D model with plane group p2, which has chiral edge modes in the absence of
nonzero Chern numbers. Plane group p2 is spanned by a two-fold rotation C2 and the 2D lattice translations. Since
spinless p2 is equivalent to spinful p2, we will focus on the spinless p2 in the following, i.e., G = spinless p2. We will
use the DSI to indicate its obstruction to static limits.

We consider a 2D square lattice with lattice constant being 1, and each lattice site consists of one spinless s orbital
and one spinless p orbital at the same position. We use |R, a〉 to label the Wannier bases, where a = s,p and R the
2D lattice vector, and then the Bloch bases are

|ψk,a〉 =
1√
N

∑
R

|R, a〉eik·R . (D1)

With |ψk〉 = (|ψk,s〉, |ψk,p〉), C2 is represented as

uC2(k) = σz , (D2)

according the Eq. (B7).
The Floquet Hamiltonian that we choose has the form

Ĥ(t) =
∑
k

|ψk〉H(k, t)〈ψk| (D3)

with

H(k, t) =

 1
4 [1− 2 cos kx − 2 cos ky − 2 cos(kx + ky)]σz , 0 ≤ t < T

2

1
2 [sin(kx)σx + sin(ky)σy] , T

2 ≤ t < T
. (D4)

The construction of the above model is inspired by the quantum-anomalous-Hall-effect model in Ref. [2]. The time-
evolution matrix U(k, t) can be derived from Eq. (D4) based on Eq. (B2). For concreteness, we choose T = 2π in the
following.

As shown in Fig. 10(a), the system has two quasi-energy bands, and we choose both quasi-energy gaps to be relevant.
Then, the two quasi-energy bands are separated into two isolated sets, of which each contains one band. According
to Bilbao Crystallographic Server [30], we only need to consider four C2-invariant momenta for p2 in the study of
the symmetry data, namely Γ(0, 0), X(π, 0), Y (0, π), and M(π, π). Then, the symmetry content of each isolated set
should have the form

Al = (nlM,+, n
l
M,−, n

l
X,+, n

l
X,−, n

l
Γ,+, n

l
Γ,−, n

l
Y,+, n

l
Y,−)T , (D5)

where l = 1, 2 labels the isolated sets of quasi-energy bands, and nlk,α represents the number of parity-α states at k in

the lth set of quasi-energy bands. According to Fig. 10(a), we have the symmetry data A of U(k, t) for Φk = −π as

A =
(
A1 A2

)
, (D6)
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FIG. 10. The symmetry data, winding data and boundary modes for the 2 + 1D anomalous Floquet first-order topological
insulator (Eq. (D4)). “R.G.” and “I.S.” stand for relevant gap and isolated set, respectively. In (a), we plot the two quasi-energy
bands in [−π, π). Both quasi-energy gaps are chosen as relevant gaps, resulting in two isolated sets of quasi-energy bands, and
Φk = −π is the PBZ lower bound. The C2-parities for each band at Γ, X, Y and M are marked. In (b), we plot the phase
bands of the return map at Γ, X, Y and M for εk = Φk = −π. The dashed lines label the boundary of the PBZ. In (c), we
plot quasi-energy bands for open boundary condition along y with Ny = 20 layers along y. The orange (green) lines mark the
chiral modes at y = 20 (y = 1). The dashed lines label the boundary of the PBZ.

where

A1 = (0, 1, 0, 1, 0, 1, 0, 1)T

A2 = (1, 0, 1, 0, 1, 0, 1, 0)T .
(D7)

Then, according to the list of HBs in Appendix. J for plane group p2, the symmetry data is irreducible. (When
comparing to Appendix. J, we should perform X → B, M → A, + → 1 and − → 2 on our convention to match the
convention in Appendix. J.)

As discussed in Appendix. C 2, the momenta and irreps for winding data V are the same as those for the symmetry
data, and we derive the winding data from the return map at those momenta. Based on Eq. (C13), we have the
winding data of U(k, t)

V = (νM,+, νM,−, νX,+, νX,−, νΓ,+, νΓ,−, νY,+, νY,−)T , (D8)

which can be intuitively read out from the winding of the phase bands of the return map for each irrep. Then,
Fig. 10(b) suggests

V = (0, 0, 0, 0,−1, 1, 0, 0)T (D9)
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for Φk = −π. Indeed, direct calculation based on Eq. (C13) also yields Eq. (D9). With this preparation, we next
derive the DSI.

According to Bilbao Crystallographic Server, the compatibility relation for spinless p2 reads

nlΓ,+ + nlΓ,− = nlX,+ + nlX,− = nlY,+ + nlY,− = nlM,+ + nlM,− , (D10)

or equivalently the compatibility relation matrix C reads

C =


1 1 −1 −1 0 0 0 0

1 1 0 0 −1 −1 0 0

1 1 0 0 0 0 −1 −1

 . (D11)

According to Eq. (D6), U(k, t) contains all inequivalent small irreps, and thereby the D matrix in Eq. (39) is zero.
Then, all winding data of all G-invariant FUGs with symmetry data equivalent to U(k, t) belong to the following set

{V } = Z8 ∩ ker C =


(
A2 A1 Vec3 Vec4 Vec5

)


νΓ,+

νΓ,−

νM,+ − νΓ,+

νX,+ − νΓ,+

νY,+ − νΓ,+



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
νΓ,+, νΓ,−, νX,+, νY,+, νM,+ ∈ Z


, (D12)

where Vec3 = (1,−1, 0, 0, 0, 0, 0, 0)T , Vec4 = (0, 0, 1,−1, 0, 0, 0, 0)T , and Vec5 = (0, 0, 0, 0, 0, 0, 1,−1)T . Since the
symmetry data is irreducible, according to Eq. (C27), all winding data of all G-invariant static FGUs with symmetry
data equivalent to U(k, t) belong to

{VSL} = {q1A1 + q2A2|q1, q2 ∈ Z} . (D13)

As a result, the DSIs for all G-invariant FUGs with symmetry data equivalent to U(k, t) take values in

X =
{V }
{VSL}

≈ {(νM,+ − νΓ,+, νX,+ − νΓ,+, νY,+ − νΓ,+) ∈ Z3} , (D14)

meaning that the DSI is (νM,+ − νΓ,+, νX,+ − νΓ,+, νY,+ − νΓ,+). In fact, this is one example for the Z3 DSI set of
spinless p2 in Tab. 1. Then, according to Eq. (D9), we know the DSI of the FGU U(k, t) is (1, 1, 1) 6= 0, indicating
the obstruction to static limits.

One signature of the obstruction to static limits is the anomalous edge modes shown in Fig. 10(c). The edge modes
are anomalous because both bulk bands have zero Chern numbers [115]. The π3 winding number defined in Ref. [64]
is evaluated as W = 1 for the model, where

W =
1

24π2

∫ T

0

dt

∫
dkxdkyε

i1i2i3 Tr[U†ε ∂i1UεU
†
ε ∂i2UεU

†
ε ∂i3Uε] (D15)

with i1, i2, i3 ∈ {0, 1, 2}, (∂0, ∂1, ∂2) = (∂t, ∂kx , ∂ky ) and ε = Φ = −π, verifying the anomalous nature of the chiral
modes. Furthermore, we can see in this specific model, all components of the DSI take the same value of the π3

winding number W , implying a relation between the DSI and W . Nevertheless, the evaluation of DSI is more efficient
than that of W , since the former only cares about four C2-invariant momenta while the latter needs the entire 1BZ.

Appendix E: Details on DSI For A 2+1D Anomalous Floquet Higher-order Topological Insulator

In this section, we derive the DSI for the 2+1D model proposed in Ref. [86], which has an anomalous Floquet
higher-order topological insulator phase. We will show that DSI is indeed nonzero in the anomalous phase, even if we
only consider the crystalline symmetries in the model and neglect the internal symmetries like chiral symmetry.

The model in Ref. [86] is a dynamical version of the static quadruple insulator model proposed in Ref. [16], which
is constructed on a square lattice with four sublattices at each lattice site. As a result, we have a 4 × 4 matrix
Hamiltonian [86]



51

(a) (b)

𝜙𝜖,Γ

𝜙𝜖,M

𝜖𝒌 = Φ𝒌 = −𝜋

R.G.

R.G.

Φ𝒌 = −𝜋

I.S. 1

I.S. 2

ℇ 𝑇

𝑘𝑦

𝑘𝑥

𝑡

𝑡

𝑡

𝜙𝜖,X

തΓ7

തΓ6

ഥM7

ഥX5

ഥM6
ഥX5

തΓ6

തΓ7

ഥM6

ഥM7

ഥX5

FIG. 11. The symmetry data and winding data for the 2 + 1D anomalous Floquet higher-order topological insulator (Eq. (E1)
with Eq. (E3)). “R.G.” and “I.S.” stand for relevant gap, and isolated set, respectively. In (a), we plot the two doubly-
degenerate quasi-energy bands in [−π, π). Both quasi-energy gaps are chosen as relevant gaps, resulting in two isolated sets of
quasi-energy bands, and Φk = −π is the PBZ lower bound. The black dots label Γ, M , and X, and the irreps at the three
momenta for each isolated set are marked. In (b), we plot the phase bands of the return map at Γ, M , and X for εk = Φk = −π.
Each phase band is doubly degenerate, and the corresponding irrep is marked. The dashed lines label the boundary of the
PBZ.

h(k, t) =


γ(τxσ0 − τyσy) , t ∈ [0, T4 ]

λ [cos(kx)τxσ0 − sin(kx)τyσz − cos(ky)τyσy − sin(ky)τyσx] , t ∈ (T4 ,
3T
4 ]

γ(τxσ0 − τyσy) , t ∈ ( 3T
4 , T )

, (E1)

where h(k, t) = h(k, t + T ), τ ’s are also Pauli matrices, and the lattice constant is set to be 1. The time-evolution
matrix U(k, t) can be derived from Eq. (E1) based on Eq. (B2).

The model effectively has the spinful p4mm plane group as the crystalline symmetry group G, which is spanned by
a four-fold rotation C4 along z, a mirror my perpendicular to y, and lattice translations. Specifically, C4 and my are
represented as

uC4(k) =

 iσy

σ0


umy (k) = −iτxσx .

(E2)

The model also has other symmetries like the chiral symmetry, but we choose to omit them, meaning that we allow
the continuous deformation of U(k, t) to break chiral symmetry, as well as other symmetries that are not in G. In this
case, the model can be treated as a class-A system with a time-independent crystalline symmetry group G.

For concreteness, we choose

T = 2,
√

2γ =
π

2
,
√

2λ = π , (E3)

for which the model is in the anomalous Floquet higher-order topological insulator phase according to Ref. [86]. We
emphasize that the topological properties of U(k, t) determined with Eq. (E3) should hold for the entire phase, since
other parameter values in the same phase should be topological equivalent to Eq. (E3). With Eq. (E3), U(k, T ) can
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be analytically diagonalized, and we get two doubly degenerate eigenvalues ±i at each k. In Fig. 11(a), we plot the
two doubly degenerate flat quasi-energy bands of U(k, t) in [−π, π), showing two quasi-energy gaps. According to
Ref. [86], both quasi-energy gaps are relevant, and then combined with time period T , G = spinful p4mm and the
symmetry representations like Eq. (E2), we have a FGU U(k, t). Furthermore, Φk = −π is a legitimate PBZ lower
bound for U(k, t) since it lies in a relevant gap. As shown in Fig. 11(a), we have two isolated sets of quasi-energy
bands, and each set consists of one doubly degenerate band.

According to Bilbao Crystallographic Server [30], we only need to consider three momenta for spinful p4mm in the
study of the symmetry data, namely Γ(0, 0), M(π, π) and X(0, π), which are shown as black dots in Fig. 11(a). Here
picking X as (0, π) for spinful p4mm is the convention used in Bilbao Crystallographic Server, since (0, π) and (π, 0)
are equivalent owing to C4. At each of the three momenta, the little group only has two-dimensional small irreps.
Specifically, we have two small irreps Γ6 and Γ7 for GΓ = G, two small irreps M6 and M7 for GM = G, and one small
irrep X5 for GX = spinful p2mm. Moreover, trace of the representation of C4 distinguishes i6 (Tr(C4) = −

√
2) from

i7 (Tr(C4) =
√

2), where i = Γ,M . As a result, the symmetry content of each isolated set should be

Al = (nl
Γ6
, nl

Γ7
, nl
M6
, nl
M7
, nl
X5

)T , (E4)

where l = 1, 2 labels the two isolated sets, recall that nlk,α labels the copy number of the small irrep α at k in the
lth isolated set, and we do not need to separately label the momentum for each component of Al since the name of
each irrep contains the label of the momentum. According to Fig. 11(a), we have the symmetry data A of U(k, t) for
Φk = −π as

A =
(
A1 A2

)
, (E5)

where

A1 = (0, 1, 0, 1, 1)T

A2 = (1, 0, 1, 0, 1)T .
(E6)

As discussed in Appendix. C 2, the momenta for winding data V are the same as those for the symmetry data, and
we derive the winding data from the return map at those momenta. Based on Eq. (C13), we have the winding data
of U(k, t)

V = (νΓ6
, νΓ7

, νM6
, νM7

, νX5
)T , (E7)

which can be intuitively read out from the winding of the phase bands of the return map for each irrep. Then,
Fig. 11(b) suggests

V = (−1, 1, 0, 0, 0)T (E8)

for Φk = −π. Indeed, direct calculation based on Eq. (C13) also yields Eq. (E8). With this preparation, we next
derive the DSI.

According to Bilbao Crystallographic Server, the compatibility relation for spinful p4mm reads

nl
Γ6

+ nl
Γ7

= nl
M6

+ nl
M7

= nl
X5

, (E9)

or equivalently the compatibility relation matrix C reads

C =

1 1 −1 −1 0

1 1 0 0 −1

 . (E10)

According to Eq. (E5), U(k, t) contains all inequivalent small irreps, and thereby the D matrix in Eq. (39) is zero.
Then, all winding data of all G-invariant FUGs with symmetry data equivalent to U(k, t) belong to the following set

{V } = Z5 ∩ ker C = {νΓ6
A2 + νΓ7

A1 + (νΓ6
− νM6

)(0, 0,−1, 1, 0)T |νΓ6
, νΓ7

, νΓ6
− νM6

∈ Z} . (E11)

On the other hand, both columns of A in Eq. (E5) are Hilbert bases according to Appendix. J, and thereby A is
irreducible. Then, according to Eq. (C27), all winding data of all G-invariant static FGUs with symmetry data
equivalent to U(k, t) belong to

{VSL} = {q1A1 + q2A2|q1, q2 ∈ Z} . (E12)
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As a result, the DSIs for all G-invariant FUGs with symmetry data equivalent to U(k, t) take values in

X =
{V }
{VSL}

≈ {νΓ6
− νM6

∈ Z} , (E13)

meaning that the DSI is νΓ6
− νM6

. In fact, this is one example for the Z DSI set of spinful p4mm in Tab. 2. Then,

according to Eq. (E8), we know the DSI of the FGU U(k, t) in the anomalous Floquet higher-order topological phase
is νΓ6

− νM6
= −1 6= 0, indicating the obstruction to static limits.

The above analysis shows that the anomalous Floquet higher-order topological insulator phase in Ref. [86] has
obstruction to static limits as long as the spinful p4mm is preserved, regardless of the chiral symmetry. In other
words, although the chiral symmetry is needed to pin the corner modes in the quasi-energy spectrum, it is not
essential for the “inherently dynamical” nature of the phase. Furthermore, to determine the obstruction, the DSI
only requires three momenta in the 1BZ, saving us from evaluating the quantized dynamical quadrupole momoent
proposed in Ref. [86], which involves all momenta in the entire 1BZ.

Appendix F: Details on The 3+1D AFSOTI

In this section, we construct a 3+1D model with space group P1, which has chiral hinge modes in the absence of
nonzero axion angles. P1 is space group #2, and is spanned by the inversion P and the 3D lattice translations. Since
spinless P1 is the same as spinful P1, we will focus on the spinless P1 in the following, i.e., G = spinless P1. We will
use the DSI to indicate its obstruction to static limits.

We consider a 3D cubic lattice with lattice constant being 1, and each lattice site consists of two spinless s orbitals
and two spinless p orbitals at the same position. We use |R, a〉 to label the Wannier bases, where a = s1, s2,p1,p2,
s1,2 labels the two s orbitals, p1,2 labels the two p orbitals, and R is the 3D lattice vector. Then, the Bloch bases are

|ψk,a〉 =
1√
N

∑
R

|R, a〉eik·R . (F1)

With |ψk〉 = (|ψk,s1〉, |ψk,s2〉, |ψk,p1
〉, |ψk,p2

〉), the inversion P is represented as

uP(k) = τzσ0 , (F2)

based on the convention Eq. (B7). Here τ ′s are also the Pauli matrices.
The Floquet Hamiltonian that we choose has the form

Ĥ(t) =
∑
k

|ψk〉H(k, t)〈ψk| (F3)

with

H(k, t) =

 1
4 [2 + cos kx + cos ky + cos(kz)]τzσ0 + 0.02(τ0σx + τ0σy + τ0σz) , 0 ≤ t < T

2

1
4 [sin(kx)τyσx + sin(ky)τyσy + sin(kz)τyσz] + 0.02(τ0σx + τ0σy + τ0σz) , T

2 ≤ t < T
. (F4)

The time-evolution matrix U(k, t) can be derived from Eq. (F4) based on Eq. (B2). For concreteness, we choose
T = 2π in the following.

As shown in Fig. 12, the system has four quasi-energy bands, and two quasi-energy gaps at 0 and π. We choose
both quasi-energy gaps to be relevant, and then, the four quasi-energy bands are separated into two isolated sets,
of which each consists of two bands. According to Bilbao Crystallographic Server [30], we only need to consider
eight inversion-invariant momenta for P1 in the study of the symmetry data, namely Γ(0, 0, 0), X(π, 0, 0), Y (0, π, 0),
Z(0, 0, π), V (π, π, 0), U(π, 0, π), T (0, π, π), and R(π, π, π). Then, the symmetry content of each isolated set should
have the form

Al = (nlΓ,+, n
l
Γ,−, n

l
X,+, n

l
X,−, n

l
Y,+, n

l
Y,−, n

l
Z,+, n

l
Z,−, n

l
V,+, n

l
V,−, n

l
U,+, n

l
U,−, n

l
T,+, n

l
T,−, n

l
R,+, n

l
R,−)T , (F5)

where l = 1, 2 labels the isolated sets of quasi-energy bands, and nlk,α represents the number of parity-α states at k

in the lth set of quasi-energy bands. Direct calculation yields the symmetry data A of U(k, t) for Φk = −π as

A =
(
A1 A2

)
, (F6)
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𝑘𝑦
𝑘𝑧 = 0

FIG. 12. The bulk quasi-energy bands for the 3 + 1D inversion-invariant AFSOTI (Eq. (F4)) at kz = 0 in [−π, π). “R.G.”, and
“I.S.” stand for relevant gap and isolated set, respectively. Both quasi-energy gaps are chosen as relevant gaps, resulting in two
isolated sets of quasi-energy bands; each isolated set consists of two quasi-energy bands. Φk = −π is the PBZ lower bound.
Although we only plot the quasi-energy bands at kz = 0, the relevant gap choice, the separation of isolated sets, and the PBZ
lower bound hold for the entire 1BZ.

where

A1 = (2, 0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 2, 0)T

A2 = (0, 2, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 0, 2)T .
(F7)

As discussed in Appendix. C 2, the momenta and irrep labels for winding data V are the same as those for the
symmetry data, and we derive the winding data from the return map at those momenta. Based on Eq. (C13), we
have the winding data of U(k, t)

V = (2,−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T (F8)

for Φk = −π. With this preparation, we next derive the DSI.

The compatibility matrix reads

C =



1 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1


. (F9)

According to Eq. (F6), U(k, t) contains all inequivalent small irreps, and thereby the D matrix in Eq. (39) is zero.
Then, all winding data of all G-invariant FUGs with symmetry data equivalent to U(k, t) belong to the following set
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{V } = Z16 ∩ ker C =



M



νΓ,+

νΓ,−

νΓ,+ − νX,−
νΓ,+ − νY,−
νΓ,+ − νZ,−
νΓ,+ − νV,−
νΓ,+ − νU,−
νΓ,+ − νT,−
νR,− − νΓ,−



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

νΓ,+, νΓ,−, νX,−, νY,−, νZ,−, νV,−, νU,−, νT,−, νR,− ∈ Z



, (F10)

where

M =
(
a1 a2 Vec3 Vec4 Vec5 Vec6 Vec7 Vec8 Vec9

)
(F11)

with

Vec3 = (0, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

Vec4 = (0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

Vec5 = (0, 0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0)T

Vec6 = (0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 0, 0)T

Vec7 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0)T

Vec8 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0, 0)T

Vec9 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1)T .

(F12)

According to the compatibility matrix, P1 has 256 Hilbert bases, which are given by the 256 permutations of the
following vector

(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) , (F13)

where the 256 permutations are given by permuting any two elements with the same momentum. Then, the symmetry
data Eq. (F6) is reducible, but it is can be spanned by only one set of Hilbert basis {a1, a2}, where

a1 = (1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0)T

a2 = (0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1)T .
(F14)

According to Eq. (C34), all winding data of all G-invariant static FGUs with symmetry data equivalent to U(k, t)
belong to

{VSL} = {q1a1 + q2a2|q1, q2 ∈ Z} , (F15)

where we have used the fact that the symmetry data is spanned by only one Hilbert basis set. Combined with
Eq. (C38), we have

X =
{V }

{q1a1 + q2a2|q1, q2 ∈ Z}
≈ {(νΓ,+ − νX,−, νΓ,+ − νY,−, νΓ,+ − νZ,−, νΓ,+ − νV,−, νΓ,+ − νU,−, νΓ,+ − νT,−, νR,− − νΓ,−) ∈ Z7} ,

(F16)

meaning that the DSI is (νΓ,+−νX,−, νΓ,+−νY,−, νΓ,+−νZ,−, νΓ,+−νV,−, νΓ,+−νU,−, νΓ,+−νT,−, νR,−−νΓ,−) since
there is only one Hilbert basis set that spans A. In fact, this is one example for the Z7 DSI set of P1. Then, according
to Eq. (F8), we know the DSI of the FGU U(k, t) is (2, 2, 2, 2, 2, 2, 2) 6= 0, indicating the obstruction to static limits.
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One signature of the obstruction to static limits is the anomalous chiral hinge modes shown in Fig. 3. The hinge
modes are anomalous because both bulk bands have zero axion angle θmod 2π. The axion angle for each isolated set
can be derived from the symmetry data Eq. (F6) according to the following expression [12, 100, 116]

θl
π

mod 2 =
∑
K

nlK,+ − nlK,−
4

mod 2 = 0 , (F17)

where K ranges over all eight inversion-invariant momenta, and θl is the axion angle of the lth isolated set.
At last of this section, we specify the parameters that we use to plot Fig. 3 of the main text. In Fig. 3(a-b), we choose

Nx = 11 and Ny = 11, where Ni is the number of lattice sites along i direction with i ∈ {x, y, z}. In Fig. 3(a-b), the red
color is marked when the mode has total probability at (x, y) = (1, Ny), (1, Ny−1), (2, Ny), (2, Ny−1) larger than 1/2,
and the purple color is marked when the mode has total probability at (x, y) = (Nx, 1), (Nx, 2), (Nx−1, 1), (Nx−1, 2)
larger than 1/2. In Fig. 3(c), we choose Nx = Ny = Nz = 11.

Appendix G: Nonzero Initial Time

In this section, we will show that setting the initial time to zero does not lose any generality for the study of
topology. We will focus on the FGUs, since a similar argument can be applied to Floquet crystals.

Consider a time-evolution matrix U(k, t) with zero initial time, time period T , a crystalline symmetry group G,
and a symmetry representation ug(k). It is not a FGU yet since we have not picked the relevant gaps. Let us now
shift the initial time to t0, and the time-evolution matrix then reads

U(k, t+ t0, t0) = T e−i
∫ t0+t
t0

dt′H(k,t′) , (G1)

where H(k, t) is the underlying matrix Hamiltonian. By defining Ht0(k, t) = H(k, t + t0), we have an equivalent
expression of Eq. (G1) as

U(k, t+ t0, t0) = Ut0(k, t) ≡ T e−i
∫ t
0
dt′Ht0 (k,t′) , (G2)

and U(k, t) = Ut0=0(k, t). Based on Eq. (G2), we can view Ut0(k, t) as the time-evolution matrix of a new matrix
Hamiltonian Ht0(k, t) for zero initial time. Ut0(k, t) still has time period T as Ut0(k, t+ T ) = Ut0(k, t)Ut0(k, T ), and
has crystalline symmetry group G and symmetry representation ug(k) owing to ug(k)Ut0(k, t)u†g(k) = Ut0(kg, t).

The quasi-energy bands given by Ut0(k, T ) are the same as those given by U(k, T ). To see this, first note that

U(k, T + t0, t0) = U(k, t0 + T, T )U(k, T, 0)U(k, 0, t0) . (G3)

Combined with H(k, t+ T ) = H(k, t) and U†(k, t0, t+ t0) = U(k, t+ t0, t0), we have

U(k, T + t0, t0) = U(k, t0, 0)U(k, T, 0)U†(k, t0, 0) , (G4)

resulting in

Ut0(k, T ) = U(k, t0)U(k, T )[U(k, t0)]† . (G5)

Owing to the same quasi-energy bands, we can always choose the same relevant gaps for Ut0(k, t) and U(k, t).
Therefore, we have two FGUs—one is U(k, t) (with T, a relevant gap choice, G, ug(k)) and the other one is Ut0(k, t)
(with T , the relevant gap choice same as U(k, t), G, ug(k))—which are related by a shift of the initial time.

It turns out Ut0(k, t) is topologically equivalent to U(k, t). The deformation that establishes the topological equiv-
alence is Us(k, t) = U(k, t+ st0, st0), Ts = T , and us,g(k) = ug(k) with s ∈ [0, 1]. Since s is just changing the initial
time, Us(k, t) is a continuous function of (k, t, s) ∈ Rd ×R× [0, 1], and the quasi-energy bands given by Us(k, Ts) are
the same as those of Us=0(k, t) = U(k, t) for all s ∈ [0, 1]. It means that all relevant gaps of U(k, t) will be kept open as
s continuously increases and eventually become the relevant gaps of Us=1(k, t) = Ut0(k, t). All other requirements of
the continuous deformation for topological equivalence in Def. 3 can be straightforwardly checked. Therefore, shifting
the initial time of a FGU while keeping the relevant gap choice always results in an topologically equivalent FGU. A
similar argument can show that the same conclusion holds for Floquet crystals. Then, for the study of topology of
FGUs and Floquet crystals, we only need to consider t0 = 0.
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Appendix H: Details on Return Map and Winding Data

In this section, we present more details on the return map and winding data. Within this section, we allow the
return map to have branch cut εk different from the PBZ lower bound. We still require the continuous real εk (i) to
lie either in a relevant gap in the PBZ or in a redundant 2πn-copy of a relevant gap, (ii) to satisfy εk+G = εk for all
reciprocal lattice vectors G, and (iii) to satisfy εkg = εk for all g ∈ G. In other words, εk is required to satisfy the
requirement for PBZ lower bounds.

1. Return Map: Symmetry Properties and Change of Branch Cut

Let us start with the return map of a given FGU U(k, t) with time period T , a relevant gap choice, a crystalline
symmetry group G, and a symmetry representation ug(k). After picking the PBZ lower bound Φk, we can label the
quasi-energy bands and their projection matrices as discussed in Appendix. B. For the convenience of latter discussion,
we relabel the quasi-energy bands and their corresponding projection matrices as Ek,l,ml and Pk,l,ml(T ), respectively,
where l = 1, 2, ..., L labels the isolated sets of quasi-energy bands, ml = 1, 2, ..., nl labels the quasi-energy bands in the
lth isolated set, and nl is the total number of quasi-energy bands in the lth isolated set. The relabelling is required
to make sure

Ek,l+1,ml+1
> Ek,l,ml

Ek,l,ml+1 ≥ Ek,l,ml .
(H1)

As mentioned in Appendix. B, each quasi-energy band is a continuous function of k ∈ Rd, is G-periodic (Ek+G,l,ml =
Ek,l,ml), and is G-symmetric (Ekg,l,ml = Ek,l,ml).

With the relabelling, the definition of [U(k, T )]
−t/T
ε in Eq. (31) is re-expressed as

[U(k, T )]−t/Tε

=

L∑
l=1

nl∑
ml=1

exp

[
− t

T
logεk(e−iEk,l,mlT )

]
Pk,l,ml(T ) ,

(H2)

where

i logεk(e−iEk,l,mlT ) = Ek,l,mlT + 2πjl ∈ [εk, εk + 2π) (H3)

and jl ∈ Z. jl does not depend on ml or k since εk lies in a relevant gap (or one of its redundant copies) and thus εk
and Ek,l,ml are continuous. Then, the return map defined in Eq. (31) becomes

Uε(k, t) = U(k, t)

L∑
l=1

nl∑
ml=1

eiEk,l,ml t+i2πjlt/TPk,l,ml(T ) . (H4)

Since eiEk,l,ml t+i2πjlt/T has the same degeneracy property as e−iEk,l,mlT , [U(k, T )]
−t/T
ε should have the same symmetry

and continuity properties as U(k, T ). Therefore, [U(kg, T )]
−t/T
ε is continuous in Rd × R, is G-periodic, and satisfies

ug(k)[U(k, T )]−t/Tε u†g(k) = [U(kg, T )]−t/Tε ∀g ∈ G . (H5)

As a result, combined with Eq. (B9), we know Uε(k, t) is continuous, is G-periodic, and satisfies

ug(k)Uε(k, t)u
†
g(k) = Uε(kg, t) ∀g ∈ G , (H6)

which further yields Eq. (C11) after choosing ε = Φ.
According to Eq. (H4), changing the branch cut can only change jl. Specifically, when the branch cut lies in the

lth relevant gap in the PBZ, denoted by εl, jl′ = 0 for l′ ≥ l and jl′ = 1 for l′ < l. If shifting the branch cut by
ε→ ε− 2πq with q integer, then jl → jl − q for all l. As a result, we have

Uεl−2πq(k, t) = Uε=Φ(k, t)e−iq2π t
T

L∑
l′=1

ei2πθ(l−l′) tT Pk,l′(T ) , (H7)



58

where θ(x) = 0 for x ≤ 0, θ(x) = 1 for x > 0,

Pk,l(T ) =

nl∑
ml=1

Pk,l,ml(T ) , (H8)

and we use Uε1(k, t) = Uε=Φ(k, t) since the PBZ lower bound Φk lies in the first relevant gap.

2. Winding Data: Gauge Invariance and Change of Branch Cut

In order to show the effect of changing the branch cut, we will focus on the ε-dependent winding vector in the
following. First, similar to Eq. (C12), Eq. (H6) suggests that we can block diagonalize Uε(k, t) and ug(k) simultaneously
by a unitary WGk as

W †GkUε(k, t)WGk =


. . .

Uε,k,α(t)

. . .



W †Gkug(k)WGk =


. . .

ũαg (k)

. . .

 ,

(H9)

where Uε,k,α(t) and ũαg (k) are the blocks of the return map and the symmetry representation that correspond to the
small irrep α of Gk, respectively. Recall that ũαg (k) is a small representation of Gk that can be unitarily transformed

to 1nk,α
⊗ uαg (k), where uαg (k) is the small irrep α of Gk, and nk,α =

∑L
l=1 n

l
k,α is the total number of copies of small

irrep α that occur in ug(k). Then, we define the following ε-dependent U(1) winding number

νε,k,α =
i

2π

1

dα

∫ T

0

dtTr[U†ε,k,α(t)∂tUε,k,α(t)] , (H10)

and the ε-dependent winding vector

Vε = (..., νε,k,α, ...)
T (H11)

with k and α respectively ranging over all chosen types of momenta and all inequivalent small irreps of Gk. The choice
of momenta for the winding vector is based on the fact that νε,k,α obeys all compatibility relations for symmetry
contents, which will be elaborated in the last part of this section. Vε becomes the winding data if the PBZ lower
bound Φ is chosen as the branch cut ε = Φ.
Vε is gauge invariant. The U(N) gauge transformation of Uε(k, t) is Uε(k, t) → W (k)†Uε(k, t)W (k), which can be

canceled by simultaneously performing W (k)→W †GkW (k) according to Eq. (H9). However, the U(N) gauge freedom
or the choice of bases is not the only redundancy that we need to consider. After fixing the U(N) gauge or the choice
of bases, the choice of WGk in Eq. (H9) allows a new gauge freedom

WGk →WGk


. . .

WGk,α
. . .

 , (H12)

where WGk,α is a unitary matrix. Under this gauge transformation, we have

Uε,k,α(t)→W †Gk,αUε,k,α(t)WGk,α , (H13)

which leaves Vε invariant according to Eq. (H10). Therefore, Vε is gauge invariant, and so does the winding data Vε=Φ.
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Now we show the components of Vε must be integers. Owing to the gauge invariance of Vε, we can always choose
WGk such that ũαg (k) = 1nk,α

⊗ uαg (k). Then according to Schur’s Lemma [117], Uε,k,α(t) in Eq. (H9) has the form

Uε,k,α(t) = Ũε,k,α(t)⊗ 1dα , (H14)

where Ũε,k,α(t) is a nk,α × nk,α matrix, and dα is the dimension of uαg (k). Substituting the above equation into
Eq. (H10), we arrive at

νε,k,α =
i

2π

∫ T

0

dtTr[Ũ†ε,k,α(t)∂tŨε,k,α(t)] , (H15)

which must be an integer since it represents the winding number of the continuous phase angle of det[Ũε,k,α(t)] over
one time period. Therefore, the components of Vε, as well as the winding data Vε=Φ, must be integers.

At the end of this part, we show how Vε changes upon changing the branch cut ε. Combining Eq. (H7) with Eq. (H9),
we have

Uεl−2πq,k,α(t) = Uε=Φ,k,α(t)e−iq2πt/TUl,α,k(t) , (H16)

where Ul,α,k(t) is given by

W †Gk

L∑
l′=1

ei2πθ(l−l′) tT Pk,l′(T )WGk =


. . .

Ul,α,k(t)

. . .

 . (H17)

Combined with Eq. (H10), we get

νεl−2πq,k,α = νk,α + q nk,α

+
i

2π

1

dα

∫ T

0

dtTr[U†l,α,k(t)∂tUl,α,k(t)] .
(H18)

As νεl−2πq,k,α is gauge invariant, we can choose WGk such that each of its columns not only corresponds to certain
small irrep of Gk but also belongs to a definite isolated set of quasi-energy bands at k, labeled as Y αl,ml,α with

ml,α = 1, ..., nlk,αdα. Then,

Pαk,l′(T )Y αl,ml,α = δl′lY
α
l,ml,α

. (H19)

We can collect all columns of WGk belonging to α irrep to form a matrix

Wα
Gk =

(
... Y αl,ml,α ...

)
, (H20)

where ... ranges over l,ml,α. As a result, we have

Ul,α,k(t) = [Wα
Gk ]†

L∑
l′=1

ei2πθ(l−l′) tT Pk,l′(T )Wα
Gk

=


. . .

ei2πtθ(l−l′)/T1nlk,αdα
. . .l′

 .

(H21)

Combined with Eq. (H18), we arrive at

νεl−2πq,k,α = νk,α + q nk,α −
l−1∑
l′=1

nl
′

k,α , (H22)
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and thereby

Vεl−2πq = V + q

L∑
l′=1

Al′ −
l−1∑
l′=1

Al′ . (H23)

The above expression suggests that we do not need to choose branch cut for the winding data different from the PBZ
lower bound since they are related by the symmetry data.

If we choose the PBZ lower bound Φk as the branch cut, a new PBZ lower bound Φ̃k given by a L̃-shift of Φk

would be equivalent to εl̃+1 + 2πq with l̃ = L̃modL and q = (L̃− l̃)/L. (Recall that L is the number of isolated sets
of quasi-energy bands in one PBZ.) Then, the new winding data would be Vεl̃+1+2πq, resulting in Eq. (C20).

3. Compatibility Relation of Winding Numbers

At the end of this section, we demonstrate that νε,k,α obeys all compatibility relations for symmetry contents.
Again, we demonstrate it for tunable branch cut ε. In the above discussion, when we talk about the small irreps of
Gk, we always imply those small irreps are furnished by bases at k. However, in the remaining of this section, we
sometimes need to consider the small irreps of Gk furnished by bases at another k′. Then, we need complicate our
notation to emphasize the bases: we use αk instead of α to label inequivalent small irreps of Gk furnished by bases at
k, unless specified otherwise.

a. Same Winding Numbers for Momenta of Same Type

We start with showing that the winding number νε,k,αk
is the same for two momenta of the same type. Recall the

definition of two momenta being in the same type discussed in Appendix. C 1: two momenta k and k′ in 1BZ are
defined to be of the same type iff there exists a symmetry h ∈ G, a reciprocal lattice vector G, and a continuous path
ks with s ∈ [0, 1] such that (i) ks=0 = kh + G and ks=1 = k′, and (ii) Gks=0

= Gks=1
⊂ Gks for all s ∈ [0, 1]. Note

that we do not need to confine ks in 1BZ. Based on the definition, we split the derivation into two steps below.
First, we show the winding number is the same for ks=0 and ks=1 (in short denoted by k0 and k1 below, respectively)

in the definition. Since Gk0
⊂ Gks , ks is invariant under Gk0

, and thus ug(ks) satisfies

ug1(ks)ug2(ks) = ug1g2(ks) ∀ g1, g2 ∈ Gk0
. (H24)

Therefore, ug(ks) is a small representation of Gk0
furnished by bases at ks instead of k0. Recall that we use αk0

to
label the small irreps of Gk0

at k0. Owing to the continuous path, we are allowed to use the αk0
to label the small

irreps of Gk0
at ks [108]. Such a correspondence is enabled by tracking the small irreps continuously along the path

(or more mathematically based on the underlying projective representations of Gk0
/T with T the lattice translation

group). In this case, we can use a unitary WGk0
(ks) to block diagonalize the return map and symmetry representation

at ks according to the inequivalent small irreps of Gk0
at ks as

[
WGk0

(ks)
]†
Uε(ks, t)WGk0

(ks) =


. . .

Uε,ks,αk0
(t)

. . .



[
WGk0

(ks)
]†
ug(ks)WGk0

(ks) =


. . .

ũ
αk0
g (ks)

. . .

 ,

(H25)

where g ∈ Gk0
, ũg(ks) can be unitarily transformed to 1nk0,αk0

⊗uαk0
g (ks) in a g-independent way, and u

αk0
g (ks) is the

small irrep αk0
of Gk0

at ks. In the above equation, we used the fact that the number of u
αk0
g (ks) in ug(ks) is equal

to nk0,αk0
that is the number of u

αk0
g (k0) in ug(k0) since the symmetry contents respect the momentum type. We

emphasize that WGk0
(ks) is not WGks suggested in Eq. (H9) since Gks may not equal to Gk0

. We can always choose

WGk0
(ks) to be a continuous of s since the columns of WGk0

(ks) that correspond to the same small irrep of Gk0
are
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sections of a vector bundle with 1D base space, resulting that Uε,ks,αk0
(t) is a continuous function of (s, t). Based on

Eq. (H25), we can further define

νε,ks,αk0
=

i

2πdαk0

∫ T

0

dtTr[Uε,ks,αk0
(t)∂tUε,ks,αk0

(t)] , (H26)

where we use the fact that the dimension of u
αk0
g (ks) is equal to dαk0

that is the dimension of the αk0
small irrep

of Gk0
at k0. Since νε,ks,αk0

is a continuous function of s and is quantized to integers, we have νε,k0,αk0
= νε,k1,αk0

.
Combined with the fact that Gk0 = Gk1 and thus αk0 can enumerates all small irreps of Gk1 at k1, we arrive at

νε,k0,αk0
= νε,k1,αk0

, (H27)

where the same label for small irreps of Gk0
and Gk1

is given by the continuous path as discussed above.
Second, we show the winding number is the same for k0 and k. Owing to k0 = kh + G with h ∈ G, Gk = h−1Gk0

h
and thereby Gk and Gk0

are isomorphic. Then, we know the small irreps of Gk at k are one-to-one corresponding to
those of Gk0

at k0, which can both be labeled as α. Specifically, we can choose uαg0(k0) = uαh−1g0h
(k) for all g0 ∈ Gk0

and all inequivalent α. Suppose we choose unitary WGk to give

W †Gkug(k)WGk =


. . .

1nk,α
⊗ uαg (k)

. . .



W †GkUε(k, t)WGk =


. . .

Uε,k,α(t)

. . .


(H28)

for g ∈ Gk. Then, owing to uh(k)uh−1g0h(k)u†h(k) = ug0(k0) that holds for all g0 ∈ Gk0 , we can choose

WGk0
= uh(k)WGk (H29)

such that

W †Gk0
ug0(k0)WGk0

=


. . .

1nk,α
⊗ uαh−1g0h

(k)

. . .

 (H30)

for all g0 ∈ Gk0 , and

W †Gk0
Uε(k0, t)WGk0

=


. . .

Uε,k,α(t)

. . .

 . (H31)

Owing to uαg0(k0) = uαh−1g0h
(k) and nk,α = nk0,α, we know the blocks of return map for k0 and k are equal

Uε,k0,α(t) = Uε,k,α(t). Combined with Eq. (H10), we arrive at

νε,k,α = νε,k0,α , (H32)

where the same label for small irreps of Gk and Gk0 is given by the symmetry h ∈ G as discussed above.
Combining two steps, we have

νε,k,α = νε,k0,α = νε,k1,α = νε,k′,α (H33)

for all α. Therefore, the winding numbers are the same for two momenta of the same type, and thus we only need to
consider one momentum for each type.
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b. Winding Numbers Obey All Compatibility Relations for Symmetry Contents

Now, we show that νε,k,αk
obeys all compatibility relations for symmetry contents. For symmetry contents, there

are two types of compatibility relations [30, 31]. The first type comes from two momenta k0 and k1 (in 1BZ) that are
connected by a continuous path ks with s ∈ [0, 1] and satisfy Gk0 ( Gk1 and Gk0 ⊂ Gks for all s. Here we require Gk1

to be strictly larger than Gk0 , since otherwise k0 and k1 become in the same type. In practice, we can try to make
k0 and k1 infinitesimally close to each other [118].

Suppose that u
αk1
g1 (k1) is the αk1

small irrep of Gk1
at k1 for g1 ∈ Gk1

. Owing to Gk0
( Gk1

, u
αk1
g0 (k1) is also a

small representation of Gk0
at k1 with g0 ∈ Gk0

. u
αk1
g0 (k1) might not be irreducible for Gk0

, and then we can express

u
αk1
g0 (k1) as the direct sum of small irreps of Gk0

at k1

u
αk1
g0 (k1) =


. . .

1wαk1
,αk0
⊗ uαk0

g0 (k1)

. . .αk0

 (H34)

for all g0 ∈ Gk0 , where the diagonal blocks range over αk0 , and a proper gauge is chosen. It is the continuous path
that allows us to use αk0 , which is originally the label for the small irreps of Gk0 at k0, to label the small irreps of

Gk0
at k1 as u

αk0
g0 (k1). In particular, wαk1

,αk0
is the number of u

αk0
g0 (k1) in u

αk1
g0 (k1), which is determined by αk1 ,

αk0 , Gk1 , and Gk0 [108, 117]. Ref. [30 and 31] suggests that the symmetry data satisfies

nlk0,αk0
=
∑
αk1

wαk1
,αk0

nlk1,αk1
, (H35)

where l labels the isolated set of quasi-energy bands, and nlk,αk
was defined in Appendix. C 1.

We want to demonstrate that the relation Eq. (H35) holds between νε,k0,αk0
and νε,k1,αk1

, where νε,k,αk
was defined

in Eq. (H10). According to Eq. (H26), we can construct νε,k1,αk0
, which is the winding number of the return map

block for the αk0
small irrep of Gk0

at k1, and we have

νε,k0,αk0
= νε,k1,αk0

(H36)

with αk0
ranging over all inequivalent small irreps of Gk0

. However, since Gk1
is strictly larger than Gk0

, αk0
cannot

be used to label all small irreps of Gk1
at k1. Thus, we need to connect νε,k1,αk0

to νε,k1,αk1
.

To do so, we can use a special unitary WGk1
to give Eq. (H34) as well as

W †Gk1
Uε(k1, t)WGk1

=


. . .

Ũε,k1,αk1
(t)⊗ 1dαk1

. . .



W †Gk1
ug1(k1)WGk1

=


. . .

1nk1,αk1
⊗ uαk1

g1 (k1)

. . .

 ,

(H37)

where g1 ∈ Gk1
. νε,k1,αk1

is given by Ũε,k1,αk1
(t) according to Eq. (H15). The nk1,αk1

dαk1
columns in WGk1

that

furnish the copies of αk1
small irrep of Gk1

can be labeled as Y
αk1

k1,jk1,αk1
,iαk1

with jk1,αk1
= 1, ..., nk1,αk1

labels the

copies of the small irrep and iαk1
= 1, ..., dαk1

labels the components for each copy. Owing to the Eq. (H34), the iαk1

index can be relabeled as (αk0
, jαk1

,αk0
, iαk0

) with jαk1
,αk0

= 1, ..., wαk1
,αk0

and iαk0
= 1, ..., dαk0

. Then, we have

Y
αk1

,αk0

k1,jk1,αk1
,jαk1

,αk0
,iαk0

as columns of WGk1
satisfying

Uε(k1, t)Y
αk1

,αk0

k1,jk1,αk1
,jαk1

,αk0
,iαk0

=
∑

j′k1,αk1

Y
αk1

,αk0

k1,j′k1,αk1
,jαk1

,αk0
,iαk0

[Ũε,k1,αk1
(t)]j′k1,αk1

jk1,αk1

ug0(k1)Y
αk1

,αk0

k1,jk1,αk1
,jαk1

,αk0
,iαk0

=
∑
i′αk0

Y
αk1

,αk0

k1,jk1,αk1
,jαk1

,αk0
,i′αk0

[u
αk0
g0 (k1)]i′αk0

iαk0
∀g0 ∈ Gk0 .

(H38)
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We can then regroup Y
αk1

,αk0

k1,jk1,αk1
,jαk1

,αk0
,iαk0

with the same αk0
together and give a unitary WGk0

(k1) that satisfies

W †Gk0
(k1)ug0(k1)WGk0

(k1) =


. . .

1nk1,αk0
⊗ uαk0

g0 (k1)

. . .

 ∀g0 ∈ Gk0

W †Gk0
(k1)Uε(k1, t)WGk0

(k1) =


. . .

Uε,k1,αk0
(t)

. . .

 ,

(H39)

where nk1,αk0
=
∑
αk1

wαk1
,αk0

nk1,αk1
is the number of u

αk0
g0 (k1) in ug0(k1), and

Uε,k1,αk0
(t) =


. . .

Ũε,k1,αk1
(t)⊗ 1wαk1

,αk0
dαk0

. . .αk1

 . (H40)

We then have

νε,k1,αk0

=
i

2π

1

dαk0

∫ T

0

dtTr[U†ε,k0,αk0
(t)∂tUε,k0,αk0

(t)]

=
∑
αk1

wαk1
,αk0

i

2π

∫ T

0

dtTr[Ũ†ε,k1,αk1
(t)∂tŨε,k1,αk1

(t)]

=
∑
αk1

wαk1
,αk0

νε,k1,αk1
.

(H41)

Combined with Eq. (H36), we arrive at

νε,k0,αk0
= νε,k1,αk0

=
∑
αk1

wαk1
,αk0

νε,k1,αk1
, (H42)

which is the same as Eq. (H35) for symmetry contents.
The first type of compatibility relation is enough for all symmorphic crystalline groups. For non-symmorphic

crystalline groups, we need to include the second type. To introduce the second type, first note that Gk = Gk+G. The
compatibility relation arises when k and k + G can be connected by a continuous path ks with s ∈ [0, 1] such that
k0 = k, k1 = k + G, and Gk ⊂ Gks for all s. Then, according to the first part of the definition of the momentum
type, the small irreps of Gk+G at k + G can be labeled by αk (originally for the small irreps of Gk at k) based on the
continuous path, and we know

νε,k,αk
= νε,k+G,αk

. (H43)

With this convention, for certain momentum k whose little group Gk contains non-symmorphic symmetries, the αk

small irrep of Gk+G at k + G, labeled as uαk
g (k + G), may not equal to the αk small irrep of Gk at k, labeled as

uαk
g (k) for g ∈ Gk = Gk+G; instead they satisfy (up to a g-independent unitary transformation)

uαk
g (k + G) = upG(αk)

g (k) (H44)

for all g ∈ Gk, where pG labels a permutation of the small irreps. As a result, we have

νε,k+G,αk
= νε,k,pG(αk) , (H45)
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where the G-periodic nature of ug(k) and Uε(k, t) is used. Combining this equation with Eq. (H43), we arrive at

νε,k,αk
= νε,k,pG(αk) . (H46)

On the other hand the symmetry contents also obey nlk,αk
= nlk,pG(αk), showing that the winding numbers possess

the second type of compatibility relation of the symmetry contents. In short, there are two ways of labelling small
irreps at k + G: one is based on the continuous path, and the other is to make small irreps G-periodic. The second
type of compatibility relation is nothing but the result of compromising these two ways.

Since the winding numbers obey all compatibility relations for the symmetry contents, we can choose the same
types of momenta for the symmetry data and winding data.

Appendix I: Details on Static Winding Data Set and DSI

In this section, we present more details on the static winding data set {VSL} for a given FGU U(k, t) with time
period T , a relevant gap choice, a crystalline symmetry group G, and a symmetry representation ug(k) of G. Then,
we elaborate the core method for the calculation of the DSI set given the Hilbert bases. At last, we discuss how to
determine the Hilbert bases sets that span a given symmetry data.

1. {VSL}

In this part, we show how to construct {VSL} for the given FGU U(k, t). Let us pick a PBZ choice for U(k, t) that
yields symmetry data A. As discussed in Appendix. B 4 and Appendix. C 4, we only need to consider the G-invariant
static FGUs with time period TSL = T and symmetry data equivalent to U(k, t), labelled as USL(k, t) = e−iHSL(k)t

with the corresponding relevant gap choice and symmetry representation.

HSL(k) can always be expanded by the projection matrices as

HSL(k) =

R∑
r=1

Mr∑
mr=1

Ek,r,mrPk,r,mr , (I1)

where Pk,r,mr is the time-independent projection matrix onto the subspace corresponding to the band Ek,r,mr . Here
we use r to label the isolated connected set of bands and use mr to label the bands in the rth isolated connected set.
Being connected means the for any mr < Mr, there exist k0 such that Ek0,r,mr+1 = Ek0,r,mr . We can always choose
Ek,r,mr to be continuous in Rd, G-periodic, and G-symmetric for all r,mr, and we also choose Ek,r+1,mr+1 > Ek,r,mr

and Ek,r,mr+1 ≥ Ek,r,mr . Then, the time-evolution matrix reads

USL(k, t) =
∑
r,mr

e−iEk,r,mr tPk,r,mr . (I2)

The relevant gaps of the static FGU are picked based on the quasi-energy band structure given by USL(k, T ). We
further choose a PBZ lower bound ΦSL,k for the static FGU. As a result, we can have the quasi-energy bands as

Ek,r,mr =
i

T
logεk=ΦSL,k

e−iEk,r,mrT = Ek,r,mr +
2π

T
qr , (I3)

where qr ∈ Z realizes Ek,r,mrT ∈ [ΦSL,k,ΦSL,k + 2π). Here qr is independent of mr and k because (i) ΦSL,k lies
in a gap of USL(k, T ), (ii) ΦSL,k and Ek,r,mr are continuous functions of k, and (iii) Ek,r,mr (mr = 1, ...,Mr) is a
connected set for each r. Although Ek,r,mr and Ek,r′,m′

r′
have no definite relations for r 6= r′ before determining qr,

Ek,r,mr with mr = 1, ...,Mr, denoted by Ek,r, must always be a connected set. Then, each connected set Ek,r must lie
in a unique isolated set of quasi-energy bands of USL(k, t), and thereby we can relabel the index r as (l, rl), where l
labels the isolated set of quasi-energy bands in which Ek,r lies, and rl is the index of Ek,r in the lth isolated set. With
this notation, the bands of HSL(k) are now labeled as Ek,l,rl,ml,rl

with (l, rl) still labelling the isolated connected set
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of bands of HSL(k), and we have

HSL(k) =

L∑
l=1

∑
rl,ml,rl

Ek,l,rl,ml,rl
Pk,l,rl,ml,rl

USL(k, t) =

L∑
l=1

∑
rl,ml,rl

e
−itEk,l,rl,ml,rl Pk,l,rl,ml,rl

Ek,l,rl,ml,rl = Ek,l,rl,ml,rl
+

2π

T
ql,rl .

(I4)

To derive the corresponding VSL, we need to make sure the relevant gap choice and the PBZ choice give ASL = A.
Since (l, rl) labels the isolated connected set of bands of HSL(k), Pk,l,rl =

∑
ml,rl

Pk,l,rl,ml,rl
provides a nonzero

symmetry content Al,rl ∈ {BS}, which is also the symmetry content of Ek,l,rl . Owing to ASL = A, we have∑
rl
Al,rl = Al, and therefore (...Al,rl ...) is a reduction of A. (See the definition of reduction in Appendix. C 4 c.) On

the other hand, VSL is directly derived from the return map, which is given by Eq. (31) as

USL,ε=ΦSL(k, t) =
∑
l,rl

eiql,rl
2π
T tPk,l,rl . (I5)

Based on a derivation similar to Eq. (H21), we have

VSL = −
∑
l,rl

ql,rlAl,rl . (I6)

Since (...Al,rl ...) is a reduction of A and −ql,rl ∈ Z, we arrive at

{VSL} ⊂ {VSL} (I7)

with {VSL} defined in Eq. (C31).
The above derivation does not specify whether A is irreducible or not. (Recall that we define the symmetry data

A of a FGU to be irreducible if all its columns are irreducible symmetry contents; otherwise, A is reducible.) If A is

reducible, it is possible that {VSL} is strictly larger than {VSL} since certain reduction of A might be not reproducible
by isolated sets of bands. If A is irreducible, then we only have one reduction of A, which is A itself, and this reduction
can be reproduced by isolated sets of bands since U(k, t) has it, resulting in Eq. (C27).

2. DSI Set for Irreducible Symmetry Data

In this part, we will derive Eq. (C29) from Eq. (39) and Eq. (40) given the set of Hilbert bases {aj} with J elements.
The derivation will show how to construct the DSI set for FGUs with irreducible symmetry data.

The winding data set in Eq. (39) can be rewritten as

{V } = ZK ∩ ker

C
D

 , (I8)

and Eq. (40) gives {VSL}. Recall that the diagonal D is determined as: a diagonal element of D is 0 (1) if the
corresponding component of

∑
j aj is nonzero (zero). To derive Eq. (C29), let us first define a matrix with aj as its

columns:

Ma =
(
...aj ...

)
. (I9)

Since Ma is a K × J matrix with integer elements, it always has the so-called Smith normal form (SNF) [27, 119],
i.e., there exists a unimodular K ×K matrix UL and a unimodular J × J matrix UR such that

Ma = ULΛUR , (I10)
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where the K × J matrix Λ satisfies

Λij =

 λi , i = j ∈ {1, 2, ..., r}

0 , otherwise
, (I11)

λ1,..,r are positive integers, r is the matrix rank of Ma, and λi+1/λi is a positive integer for all i = 1, ..., r − 1. Here
being unimodular means that (i) the square matrix is invertible and (ii) itself and its inverse are all matrices with
integer elements. Then, the DSI set reads

X =
{V }
{VSL}

≈ ZK−r̃−r × Zλ1×λ2×...×λr , (I12)

where r̃ is the rank of

C
D

. In the following, we derive Eq. (I12) explicitly.

Let us focus on the first r columns of UL, denoted by UL,1, ..., UL,r, which form a matrix B

B =
(
UL,1...UL,r

)
. (I13)

Combining this definition with Eq. (I10), we have

MaqJ = BΛrqr , (I14)

where

Λr =


λ1

λ2

. . .

λr

 , (I15)

qJ ∈ ZJ , and qr ∈ Zr consists of the first r components of URqJ . As qJ ranges over ZJ , qr ranges over Zr, resulting in

{VSL} = {BΛrq|q ∈ Zr} . (I16)

Since the SNF Eq. (I10) is a special type of singular value decomposition, we have

{Bx|x ∈ Rr} = col(Ma) , (I17)

with col(Ma) the column space of Ma. Therefore, we have {Bq|q ∈ Zr} ⊂ ZK ∩ col(Ma). On the other hand, since
all columns of UL form a set of bases for ZK , all elements in ZK ∩ col(Ma) can be expressed as linear combinations
of columns of UL with integer coefficients. Since the last K − r columns of UL are not in col(Ma), all elements in
ZK ∩ col(Ma) can be expressed as linear combinations of the first r columns of UL with integer coefficients, i.e.,
ZK ∩ col(Ma) ⊂ {Bq|q ∈ Zr}. Moreover, since {Bq|q ∈ Zr} and ZK ∩ col(Ma) have the same definition of addition
and scalar multiplication, we have {Bq|q ∈ Zr} = ZK ∩ col(Ma). Eventually combined with CMa = 0 and DMa = 0,
we arrive at

{VSL} ⊂ {Bq|q ∈ Zr} = ZK ∩ col(Ma) ⊂ {V } . (I18)

Eq. (I18) suggests us to derive the DSI set in two steps based on the following expression

X =
{V }
{VSL}

≈ {V }
ZK ∩ col(Ma)

× ZK ∩ col(Ma)

{VSL}
. (I19)

In the first step, we derive ZK∩col(Ma)
{VSL} from Eq. (I16) and Eq. (I18), which reads

ZK ∩ col(Ma)

{VSL}
≈ Zλ1×λ2×...×λr . (I20)
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So the second step is to derive

{V }
ZK ∩ col(Ma)

=

ZK ∩ ker

C
D


ZK ∩ col(Ma)

. (I21)

To do so, let us first look at the SNF of

C
D


C
D

 = ŨLΛ̃ŨR . (I22)

The last K − r̃ columns of Ũ−1
R spans {V } with r̃ the rank of

C
D

. We label the matrix formed by the last K − r̃

columns of Ũ−1
R as S, and label the matrix formed by the last K − r̃ rows of ŨR as S−1

L , where S−1
L is the left inverse

of S

S−1
L S = 1K−r̃ . (I23)

{V } can be rewritten as

{V } = {Sq|q ∈ ZK−r̃} , (I24)

we have

{V } ∼= S−1
L {V } = ZK−r̃

col(Ma) ∩ ZK ∼= S−1
L (col(Ma) ∩ ZK) = {S−1

L Bq|q ∈ Zr} ,
(I25)

resulting in

{V }
col(Ma) ∩ ZK

≈ ZK−r̃

{S−1
L Bq|q ∈ Zr}

. (I26)

Here ∼= means being isomorphic. On the other hand, since S−1
L aj ∈ S−1

L {V } = ZK−r̃ and the rank of S−1Ma is still
r, we have

ZK−r̃

ZK−r̃ ∩ col(S−1
L Ma)

≈ ZK−r̃−r , (I27)

which can be straightforwardly derived by the SNF of S−1
L Ma. So as long as we can verify

S−1
L (col(Ma) ∩ ZK) = ZK−r̃ ∩ col(S−1

L Ma) , (I28)

we have

{V }
col(Ma) ∩ ZK

≈ ZK−r̃−r , (I29)

which, combined with Eq. (I20) and Eq. (I19), gives Eq. (I12).
To verify Eq. (I28), let us recall Eq. (I18). Any element y of S−1

L (col(Ma) ∩ ZK) satisfies

y = S−1
L Max and Max ∈ ZK , (I30)

where x ∈ RJ . Since S−1
L is a (K − r̃) × K integer matrix, Max ∈ ZK infers S−1

L Max ∈ ZK−r̃ and thereby

y ∈ ZK−r̃ ∩ col(S−1
L Ma), resulting in

S−1
L (col(Ma) ∩ ZK) ⊂ ZK−r̃ ∩ col(S−1

L Ma) . (I31)
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On the other hand, for any element y in ZK−r̃ ∩ col(S−1
L Ma), y has the form

y = S−1
L Max and y ∈ ZK−r̃ , (I32)

where x ∈ RJ . Since SS−1
L V = V for any V ∈ {V }, we have SS−1

L Ma = Ma, resulting in

Max = Sy ∈ ZK . (I33)

Thereby, we have y ∈ S−1
L (col(Ma) ∩ ZK) and thus ZK−r̃ ∩ col(S−1

L Ma) ⊂ S−1
L (col(Ma) ∩ ZK). Combined with that

fact that ZK−r̃ ∩ col(S−1
L Ma) and S−1

L (col(Ma)∩ZK) have the same definition of addition and scalar multiplication,
we have

ZK−r̃ ∩ col(S−1
L Ma) = S−1

L (col(Ma) ∩ ZK) . (I34)

3. Hilbert Bases Sets That Span Symmetry Data

In this part, we provide a general method of finding all Hilbert bases sets that span any given symmetry data A,
for any given crystalline symmetry group G. In Appendix. C 4 c, a set of Hilbert bases {aj} is defined to span A iff
{aj} consists of all distinct columns of an irreducible reduction of A. However, this definition is not convenient for
general computation. Then, we use the following convenient yet equivalent definition for a Hilbert bases set to span
A. Namely, a set of Hilbert bases {aj} spans A iff there exists cjl ∈ N such that Al =

∑
j ajcjl ∀l and

∑
l cjl 6= 0 ∀j.

Now we discuss the method. Suppose the given symmetry data A has L columns, and {BS} (the set that contains
all symmetry contents) for G in total has I Hilbert bases, labeled as ai (i = 1, ..., I). First, find all solutions to

A =
(
a1 ... ai ... aI

)
C (I35)

for C ∈ NI×L, and label the solutions as Cγ with γ the index labelling the solutions. (γ should not be confused with
model parameter in Appendix. E.) Second, for each solution Cγ , find all nonzero rows of Cγ , and then find all the
corresponding Hilbert bases, forming a set {ajγ}. Third, all distinct {ajγ} are all Hilbert bases sets that span A.

As a demonstration, let us focus on the 1+1D inversion-invariant case. As shown in Eq. (22), we have in total four
Hilbert bases (I = 4), and thus given any symmetry data A, the equation that we should solve is

A =
(
a1 a2 a3 a4

)
C (I36)

with C ∈ N4×L. For the irreducible symmetry data A in Eq. (4), we have only one solution C for Eq. (I36), namely

C =


1 0

0 0

0 0

0 1

 , (I37)

which has two nonzero rows—the first and the fourth. It means that only one Hilbert bases set {a1, a4} spans A,
coinciding with the conclusion in the main text. As another example, let us consider the reducible symmetry data in
Fig. 9, which reads

A =


1

1

1

1

 . (I38)

In this case, we have two solutions for Eq. (I36) as

C =


0

1

1

0

 ,


1

0

0

1

 . (I39)
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For first solution, the nonzero rows are the second and third, giving us {a2, a3}; for the second solution, the nonzero
rows are the first and fourth, giving us {a1, a4}. Thus, the reducible symmetry data in Fig. 9 is spanned by {a2, a3}
or {a1, a4}, coinciding with Appendix. C 4 c.

At last, we emphasize that if two symmetry data are given by the same FGU with different PBZ choices (thus
related by the cyclic permutation in Eq. (C9)), the method would give the same spanning Hilbert bases sets for them.
It is because the cyclic permutation can only change the order of columns of C in Eq. (I35), and thus cannot transform

a zero row to a nonzero one or vise versa. It coincides with the fact that {VSL} in Eq. (C34) is PBZ-independent.
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Appendix J: Hilbert Bases for Plane Groups

In this part, we list the Hilbert bases of {BS} for all spinless and spinful plane groups, which are used to provide
Tab. 1-2. We label the small irreps of little groups of chosen momenta according to Bilbao Crystallographic Server [30].
Given a crystalline symmetry group, Bilbao Crystallographic Server sometimes picks more than one momenta in each
type (see the definition of type in Appendix. C 1), but this redundancy can be removed by including extra compatibility
relations (or equivalently by considering a larger compatibility matrix C in Eq. (C4) and Eq. (C15)). Therefore, the
Hilbert bases and DSIs derived with a larger C would be equivalent to those derived by picking one momentum in
each chosen type.

In each of the following matrices, the first column label the small irreps of little groups of chosen momenta, and all
other columns show the Hilbert bases. Each component of a Hilbert basis labels the number of involved copies of the
corresponding small irrep.

spinless p1:
V1 1

X1 1

Y1 1

Γ1 1


spinful p1:

V2 1

X2 1

Y2 1

Γ2 1


spinless p2:

A1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

A2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

B1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

B2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Γ1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

Γ2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Y1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Y2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


spinful p2:

A3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

A4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

B3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

B4 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Γ3 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

Γ4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Y3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Y4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


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spinless pm:

C1 1 1 0 0

C2 0 0 1 1

Γ1 1 0 1 0

Γ2 0 1 0 1

Y1 1 0 1 0

Y2 0 1 0 1

Z1 1 1 0 0

Z2 0 0 1 1


spinful pm:

C3 1 1 0 0

C4 0 0 1 1

Γ3 1 0 1 0

Γ4 0 1 0 1

Y3 1 0 1 0

Y4 0 1 0 1

Z3 1 1 0 0

Z4 0 0 1 1


spinless pg:

B1 1

B2 1

D1 1

D2 1

Γ1 1

Γ2 1

Z1 1

Z2 1


spinful pg:

B3 1

B4 1

D3 1

D4 1

Γ3 1

Γ4 1

Z3 1

Z4 1


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spinless cm:



Γ1 1 0

Γ2 0 1

Y1 1 0

Y2 0 1

V1 1 1


spinful cm:



Γ3 1 0

Γ4 0 1

Y3 1 0

Y4 0 1

V2 1 1


spinless p2mm:



Γ1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ2 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Γ3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

Γ4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

S1 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0

S2 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0

S3 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0

S4 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1

X1 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

X2 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0

X3 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0

X4 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

Y1 0 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0

Y2 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 0

Y3 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0

Y4 1 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1


spinful p2mm:


Γ5 1

S5 1

X5 1

Y5 1


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spinless p2mg:



Γ1 1 1 1 0 0 0

Γ2 1 1 0 1 0 0

Γ3 0 0 1 0 1 1

Γ4 0 0 0 1 1 1

S1 1 1 1 1 1 1

X1 1 1 1 1 1 1

Y1 1 0 1 0 1 0

Y2 1 0 0 1 1 0

Y3 0 1 1 0 0 1

Y4 0 1 0 1 0 1


spinful p2mg:



Γ5 1 1 1 1 1 1

S2 1 1 1 0 0 0

S3 1 0 0 1 1 0

S4 0 1 1 0 0 1

S5 0 0 0 1 1 1

X2 1 1 0 1 0 0

X3 1 0 1 0 1 0

X4 0 1 0 1 0 1

X5 0 0 1 0 1 1

Y5 1 1 1 1 1 1


spinless p2gg:



Γ1 1 1 0 0

Γ2 1 1 0 0

Γ3 0 0 1 1

Γ4 0 0 1 1

S1 1 0 1 0

S2 1 0 1 0

S3 0 1 0 1

S4 0 1 0 1

X1 1 1 1 1

Y1 1 1 1 1


spinful p2gg:
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Γ5 1 1 1 1

S5 1 1 1 1

X2 1 1 0 0

X3 0 0 1 1

X4 1 1 0 0

X5 0 0 1 1

Y2 1 0 1 0

Y3 0 1 0 1

Y4 1 0 1 0

Y5 0 1 0 1



spinless c2mm:



Γ1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Γ2 1 1 1 0 0 1 1 0 0 0 0 0 0 0

Γ3 0 0 0 0 0 0 0 1 1 1 1 1 0 0

Γ4 0 0 0 0 0 0 0 1 1 1 0 0 1 1

Y1 0 0 0 1 1 0 0 1 1 1 0 0 0 0

Y2 0 0 0 0 0 1 1 1 1 1 0 0 0 0

Y3 1 1 1 0 0 0 0 0 0 0 1 1 0 0

Y4 1 1 1 0 0 0 0 0 0 0 0 0 1 1

S1 2 1 0 1 0 1 0 2 1 0 1 0 1 0

S2 0 1 2 0 1 0 1 0 1 2 0 1 0 1



spinful c2mm:


Γ5 1 1 1

Y5 1 1 1

S3 2 1 0

S4 0 1 2



spinless p4:
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Γ1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Γ4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

M1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

M2 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0

M3 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

M4 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

X1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

X2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


spinful p4:



Γ5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ6 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Γ8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

M5 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

M6 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0

M7 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

M8 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

X3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

X4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


spinless p4mm:



Γ1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ2 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ3 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

Γ4 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0

Γ5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

M1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0

M2 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0

M3 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0

M4 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 0

M5 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

X1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0

X2 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0

X3 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1

X4 0 1 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1


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spinful p4mm:



Γ6 1 1 0 0

Γ7 0 0 1 1

M6 1 0 1 0

M7 0 1 0 1

X5 1 1 1 1



spinless p4gm:



Γ1 1 1 1 1 0 0 0 0 0 0 0

Γ2 0 0 0 0 1 1 1 1 0 0 0

Γ3 1 0 0 0 1 1 1 0 0 0 0

Γ4 0 1 1 1 0 0 0 1 0 0 0

Γ5 0 0 0 0 0 0 0 0 1 1 1

M1 1 1 0 0 1 0 0 0 1 0 0

M2 0 0 1 0 0 1 0 1 0 1 0

M3 1 0 1 0 0 1 0 0 0 1 0

M4 0 1 0 0 1 0 0 1 1 0 0

M5 0 0 0 1 0 0 1 0 0 0 1

X1 1 1 1 1 1 1 1 1 1 1 1



spinful p4gm:



Γ6 1 1 1 1 0 0 0 0

Γ7 0 0 0 0 1 1 1 1

M6 1 1 0 0 1 1 0 0

M7 0 0 1 1 0 0 1 1

X2 1 0 1 0 1 0 1 0

X3 0 1 0 1 0 1 0 1

X4 1 0 1 0 1 0 1 0

X5 0 1 0 1 0 1 0 1



spinless p3:
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Γ1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ2 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Γ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

K1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

K2 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

K3 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1

KA1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

KA2 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

KA3 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

M1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



spinful p3:



Γ4 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ5 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Γ6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

K4 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

K5 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

K6 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1

KA4 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

KA5 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

KA6 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

M2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



spinless p3m1:



Γ1 1 1 1 0 0 0 0 0 0 0 0 0

Γ2 0 0 0 1 1 1 0 0 0 0 0 0

Γ3 0 0 0 0 0 0 1 1 1 1 1 1

K1 1 0 0 1 0 0 2 1 1 0 0 0

K2 0 1 0 0 1 0 0 1 0 2 1 0

K3 0 0 1 0 0 1 0 0 1 0 1 2

M1 1 1 1 0 0 0 1 1 1 1 1 1

M2 0 0 0 1 1 1 1 1 1 1 1 1



spinful p3m1:
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Γ4 1 1 1 0 0 0 0 0 0 0 0 0

Γ5 0 0 0 1 1 1 0 0 0 0 0 0

Γ6 0 0 0 0 0 0 1 1 1 1 1 1

K4 1 0 0 1 0 0 2 1 1 0 0 0

K5 0 1 0 0 1 0 0 1 0 2 1 0

K6 0 0 1 0 0 1 0 0 1 0 1 2

M3 1 1 1 0 0 0 1 1 1 1 1 1

M4 0 0 0 1 1 1 1 1 1 1 1 1



spinless p31m:



Γ1 1 1 1 1 0 0 0 0 0

Γ2 1 1 1 0 1 0 0 0 0

Γ3 0 0 0 0 0 1 1 1 1

K1 1 0 0 1 0 1 1 0 0

K2 1 0 0 0 1 1 1 0 0

K3 0 1 1 0 0 0 0 1 1

KA1 0 1 0 1 0 1 0 1 0

KA2 0 1 0 0 1 1 0 1 0

KA3 1 0 1 0 0 0 1 0 1

M1 1 1 1 1 0 1 1 1 1

M2 1 1 1 0 1 1 1 1 1



spinful p31m:



Γ4 1 1 1 1 0 0 0 0 0

Γ5 1 1 1 0 1 0 0 0 0

Γ6 0 0 0 0 0 1 1 1 1

K4 1 0 0 1 0 1 1 0 0

K5 1 0 0 0 1 1 1 0 0

K6 0 1 1 0 0 0 0 1 1

KA4 0 1 0 0 1 1 0 1 0

KA5 0 1 0 1 0 1 0 1 0

KA6 1 0 1 0 0 0 1 0 1

M3 1 1 1 1 0 1 1 1 1

M4 1 1 1 0 1 1 1 1 1



spinless p6:
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Γ1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ2 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Γ5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

Γ6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

K1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0

K2 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0

K3 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1

M1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

M2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


spinful p6:

Γ7 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ8 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ9 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Γ11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

Γ12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

K4 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0

K5 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0

K6 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1

M3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

M4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


spinless p6mm:

Γ1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ2 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ3 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0

Γ4 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0

Γ5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

Γ6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

K1 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0

K2 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0

K3 0 1 1 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1

M1 0 1 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0

M2 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0

M3 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1

M4 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1


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spinful p6mm:



Γ7 1 1 0 0 0 0

Γ8 0 0 1 1 0 0

Γ9 0 0 0 0 1 1

K4 1 0 1 0 1 0

K5 1 0 1 0 1 0

K6 0 1 0 1 0 1

M5 1 1 1 1 1 1


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