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Measurement of tunnel coupling in a Si double quantum dot based on charge sensing

Xinyu Zhao and Xuedong Hu∗

Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, USA

In Si quantum dots, valley degree of freedom, in particular the generally small valley splitting
and the dot-dependent valley-orbit phase, adds complexities to the low-energy electron dynamics
and the associated spin qubit manipulation. Here we propose a four-level model to extract tunnel
coupling information for a Si double quantum dot (DQD). This scheme is based on a charge sensing
measurement on the ground state as proposed in the widely used protocol for a GaAs double dot
[DiCarlo et. al., PRL 92. 226801]. Our theory can help determine both intra- and inter-valley tunnel
coupling with high accuracy, and is robust against system parameters such as valley splittings in
the individual quantum dots.

INTRODUCTION

Tunnel coupling is an essential element in coherent ma-
nipulation of electron qubits in semiconductor quantum
dots (QDs) [1–18]. It allows single-qubit operations on a
charge qubit, and exchange gates for spin qubits [19–25].
Interdot shuttling is also crucial for information trans-
fer on chip [26–33]. With spin and spin-charge hybrid
qubits having been demonstrated as hopeful candidates
for foundational building blocks of future quantum pro-
cessors [34–40], accurately characterizing tunnel coupling
between quantum dots is an imperative task in charac-
terizing these qubits.
A robust approach to detect tunnel coupling in a DQD

was developed more than a decade ago [41] based on
measuring the charge distribution of the DQD in ther-
mal equilibrium as a function of the interdot detuning,
then fits a two-level (2L) model [42] to obtain the tun-
nel coupling between the two single-dot ground states.
This measurement technique is particularly successful for
a GaAs DQD, where excited orbital states are generally
several meV above the ground state while experimental
temperature is kept at about 100 mK (for a thermal en-
ergy of ∼ 10µeV), so that the 2L model including only
the single-dot ground states works perfectly [41, 43].
In recent years, studies of spin qubits have focused

on Si QDs because of their superior coherence properties
[34–40, 44]. The thermal equilibrium charge sensing tech-
nique has been widely used to measure tunnel coupling
between the ground orbital states of two neighboring dots
[45–53]. However, in Si-based QDs, the valley degree of
freedom introduces extra energy levels a fraction of meV
above the ground states, making the Si DQDs better de-
scribed as a four-level (4L) system instead of a 2L system.
There are also two relevant tunnel coupling parameters
instead of one. Clearly, a 2L model cannot represent all
the relevant properties of a Si DQD. It is not even clear
whether it is capable of consistently producing accurate
measurement of the ground state tunnel coupling. Al-
though alternative schemes such as spin-cavity coupling
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Figure 1. The IQPC(ǫ) curve measured form experiment
(red-doted markers) and the best fit curves. top-left inset:
Schematic diagram of triple dot configuration. QDs “1,2,3”
are confined under the plunger gates “P1, P2, P3”. Dot “1-
2” and “2-3” forms two DQD systems. Barrier gates “B1” to
“B4” control the tunneling strength. Dot “Q” plays the role
of charge sensor. Bottom-right inset: Typical energy levels of
DQD.

have been employed to successfully measure tunnel cou-
pling [54], the thermal equilibrium charge sensing tech-
nique will still be the most easily accessible and widely
used in the foreseeable future. As such, it is important to
develop an updated procedure of measuring tunnel cou-
pling in a Si DQD that accounts for the valley dynamics.

In this paper, we develop a four-level (4L) model for
the thermal equilibrium charge sensing measurement of
tunnel coupling for a Si DQD. Specifically, we develop a
numerical 4L fitting procedure for both intra- and inter-
valley tunnel couplings of a Si DQD. We also derive a
perturbative 4L fitting formula, which speeds up the fit-
ting procedure dramatically while maintaining high de-
gree of accuracy under most conditions. We apply the
updated fitting procedures on multiple sets of data ob-
tained in a linear Si/SiGe triple quantum dot (schematic
diagram in Fig. 1) provided by Adam Mills and Jason
Petta [4, 47], and produce consistent fitting for some-
times noisy experimental data. We compare the results
from these new fitting procedures with the conventional
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2L-based approach, and find significant differences un-
der common conditions. For example, in a particular
DQD, we observe an average of 46% difference in the
intra-valley tunnel coupling between the 2L fitting and
4L fitting. For a particular set of data, the two mod-
els make totally contradictory predictions on tunnel cou-
plings, with the 4L prediction more consistent with the
experimental procedure. These examples clearly illus-
trate the advantages and necessity of the 4L model in
obtaining a reliable estimate of tunnel coupling in a Si
DQD. Lastly, we analyze the robustness of our fitting
procedure and identify possible errors.

RESULTS

Charge distribution in a four-level model

The six-fold degeneracy of the Si conduction band is
lifted by the growth-direction (nominally the z direction)
confinement near an interface, which leaves two of the
bulk valleys with lower energy, denoted as |z〉 and |z̄〉
states. Scattering at the interface further couples |z〉
and |z̄〉 states [15, 16, 55], leading to the valley eigen-
states |±〉 = 1√

2

(

|z〉 ± eiφ|z̄
)

, where the phase φ is deter-

mined by the interface scattering matrix element. The
energy splitting 2|∆| between |±〉 states is called the val-
ley splitting, and is typically 0.1 to 0.2 meV in a SiMOS
quantum dot and . 0.1 meV in a Si/SiGe dot. Compared
to the few meV orbital excitation energy in these quan-
tum dots due to in-plane confinement, valley splitting
is much smaller, making it reasonable to neglect intra-
valley orbital excitation but include both valleys when
considering charge distribution in thermal equilibrium at
low temperatures.
A minimal model for the low-energy single-electron

charge distribution and dynamics of a Si DQD should
thus include the ground orbital state in each dot (de-
noted as |L〉 and |R〉 for left and right dot), together
with both valley eigenstates, leading to four basis states:
{|L,+〉, |L,−〉, |R,+〉, and |R,−〉}. Considering that
interdot barrier is generally a smooth variation in elec-
trical potential at a length scale much larger than the
lattice constant, tunneling is only allowed between states
in the same bulk valley: 〈L, z|H |R, z〉 = tC is finite
while 〈L, z|H |R, z̄〉 = 0. Using the four basis states
|D,±〉 = 1√

2
(|D, z〉 ± eiφD |D, z̄) (D = L,R) with lo-

cal phases φD, the single-electron Hamiltonian in the Si
DQD can be expressed as

H =







ǫ+ |∆L| 0 t+ t−
0 ǫ− |∆L| t− t+
t∗+ t∗− −ǫ+ |∆R| 0
t∗− t∗+ 0 −ǫ− |∆R|






.

(1)
Here ǫ is the interdot detuning, |∆L,R| are the L/R valley
splittings, t± = 1

2
tC [1 ± e−iδφ] are the intra- and inter-

valley (here “valley” means the valley eigenstates |±〉)
tunnel couplings, respectively, and δφ = φL − φR is the
valley phase difference between the two dots.
Hamiltonian (1) can be numerically diagonalized at

any given detuning ǫ to obtain the eigenvalues Ei and the
corresponding eigenstates |Ψi〉 (i = 1, 2, 3, 4). It can also
be diagonalized analytically, though the general expres-
sions are cumbersome and not transparent. If we treat
inter-valley tunneling as a perturbation, on the other
hand, we can obtain simple analytical expressions for Ei

and |Ψi〉, (see the “Methods” section), which can be used
in a fitting procedure much more conveniently. Specifi-
cally, the left-dot charge distribution for each eigenstate
|Ψi〉 takes the form

PL1 = cos2
Θ1

2
sin2

θ−
2

+ sin2
Θ1

2
cos2

θ+
2
,

PL2 = sin2
Θ2

2
cos2

θ−
2

+ cos2
Θ2

2
sin2

θ+
2
,

PL3 = cos2
Θ2

2
cos2

θ−
2

+ sin2
Θ2

2
sin2

θ+
2
,

PL4 = sin2
Θ1

2
sin2

θ−
2

+ cos2
Θ1

2
cos2

θ+
2
. (2)

Here tanΘ1 = |t
−
|

E++E
−
+∆+

, tanΘ2 = |t
−
|

E++E
−
−∆+

,

and tan θ± = |t+|
ǫ±∆

−

(θ± ∈ [0, π]), with E± =
√

(ǫ±∆−)2 + |t+|2 and ∆± = 1

2
(|∆L| ± |∆R|). The ex-

pressions given in Eq. (2) become exact if |∆L| = |∆R|. A
more detailed study in the “Methods” section shows that
the approximation underlying Eq. (2) is valid in most re-
gions of the parameter space. For example, there is only
a 4% error when |∆L| and |∆R| are different by 20%.
When the single electron in the DQD is in thermal

equilibrium, its density matrix is given by a thermal
state ρ =

∑

i
1

Z e
−βEi|Ψi〉〈Ψi|, where β = 1

kBT , kB is

the Boltzmann constant, and Z =
∑

i e
−βEi is the par-

tition function. The total charge occupation in the left
dot at temperature T is then

PL =
∑

i

1

Z
e−βEiPLi . (3)

Here PL is a function of both tunnel couplings t±, both
valley splittings |∆L| and |∆R| (with their phase differ-
ence δφ already contained in t±), and detuning ǫ. Given
experimentally measured PL(ǫ), we could thus obtain t±
via data fitting. In theory one could obtain the valley
splittings from this fitting procedure as well, though our
numerical studies below show that the results are not
particularly sensitive to |∆L,R|, making the information
obtained from fitting less reliable. Thus we generally
treat valley splittings as known parameters.
There are two major reasons that cause different pre-

dictions between 2L and 4L theories. First, the different
number of levels involved means that the thermal occupa-
tions are distributed differently. The impact of this ther-
mal occupation is typically limited since experimental
temperature is usually about 100 mK and much smaller
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than valley splittings in the dots. Obvious exceptions
include cases when the valley splittings are very small
(for example ∼ 10µeV, similar to the thermal energy), or
when the temperature is much higher than usual. Sec-
ond, and more importantly, all eigenstates |Ψi〉 in a Si
DQD contain the valley excited states |+〉 due to the fi-
nite inter-valley tunnel coupling. The involvement of the
excited valley states causes subtle changes to the state
compositions, which then lead to differences in the charge
distribution.
In the absence of inter-valley tunneling (δφ = 0), the

two valley eigenstates decouple into their own subspaces,
so that the charge distribution is reduced to an exact
analogy to the two-level case in GaAs when we neglect
the thermal occupation of the excited valley states

PL =
1

2

[

1−
ǫ−∆−
2E+

tanh

(

E+

2kBT

)]

. (4)

This is just the fitting formula in Ref. 41 with an ǫ shift
caused by asymmetric valley splittings. If we impose a
further condition that the valley splittings are symmet-
ric (∆− = 0), the thermal occupation of the excited val-
ley states would have the same left-right distribution as
the ground valley states, so that the 4L theory we de-
velop here would become identical to the conventional
2L model. In other words, under the condition

δφ = 0 & |∆L| = |∆R| (5)

Eq. (2) and Eq. (3) would lead exactly to the 2L fitting
formula in Ref. 41, as is Eq. (4).

Extracting tunnel couplings from charge

distributions

The functional forms for charge distribution in a Si
DQD given by Eqs. (2) and (3) allow us to obtain tun-
nel couplings t± (or tC and δφ) between the two dots
by fitting experimentally measured PL(ǫ), similar to the
procedure given in Ref. 41.
As we discussed above, the charge distribution PL is

a function of multiple parameters and variables: PL =
PL(∆L,∆R, t+, t−, ǫ). To obtain more constrained and
reliable knowledge of the tunnel couplings, the valley
splittings ∆L and ∆R should be known beforehand, for
example through the spin relaxation hot spot for each
dot [56]. If |∆L,R| are not known a priori, one can use
an estimate instead, without creating significant errors.
A detailed discussion of the consequences of not knowing
these splittings is given in the “Methods” section.
Experimentally, what is measured is the charge sensor

(for example a quantum point contact, or QPC) current
as a function of the interdot detuning: IQPC(ǫ). The
current is usually assumed to be linearly related to the
charge distribution in the DQD [41]:

IQPC = I0 + δI · PL(ǫ) + δInoise , (6)

where I0 is the background current (setting a reference
point), δI is the linear conversion ratio, and δInoise is the
noise in the IQPC measurement. The first two parame-
ters are part of the fitting procedure and the impact of
δInoise will be discussed in the “Methods” section. In
addition, the inter-dot detuning may also have a back-
ground voltage, i.e., ǫm = ǫ0 + ǫ, where ǫm is the value
measured in the experiment and ǫ0 is a reference shift.
Our fitting procedure thus consists of the following

steps. First we use Eq. (3) or Eq. (4) (for 4L or 2L fitting
respectively) to generate a theoretical curve Ith(ǫ) with a
set of candidate fitting parameters such as t±. We then
calculate the deviation from the experimental data, and
minimize it by varying the fitting parameters. While the
three parameters I0, δI, and ǫ0 are part of the fitting pa-
rameter set, they take up different roles compared to t±.
The tunnel couplings t± determine the “shape” of the
curve, while these three parameters determine the posi-
tions of the curve. In particular, ǫ0 determines the shift
in the horizontal (detuning) direction, I0 determines the
vertical shift, while δI is a scaling factor. None of them
contributes to the shape or curvature of the curve near
ǫ = 0, which is determined by t±. Therefore, they can
be obtained separately from the main fitting parameters
t±. One can follow an adaptive fitting procedure that fit
these two groups of parameters in turn until they con-
verge to steady values, respectively. A discussion about
the fitting inaccuracy caused by errors in I0, δI, and ǫ0
can be found in the “Methods” section, particularly in
Fig. 7.

Fitting actual experimental data: an example

With the procedure described above, we examine some
experimental data acquired during the tune-up of a linear
array of 9 QDs used to demonstrate charge shuttling [4,
33, 47]. The measurements were performed on a triple
dot schematically shown in Fig. 1. It is part of a Si/SiGe
9-dot array with three QPCs as charge sensors [4, 33,
47]. The experimental temperature is at T = 50 mK [47]
and the valley splittings |∆L| and |∆R| are estimated
to be around 66-74 µeV from spin measurements in the
same device [57]. For each DQD, the IQPC(ǫ) curve are
measured with four different barrier gate voltage VB2 (or
VB3). One set of data, together with our fitting curve,
is shown in Fig. 1. All other data sets and fitting curves
are shown in Fig. 4 in the “Methods” section.
The tunnel couplings and other parameters we ob-

tained from data fitting are summarized in Table I. In
particular, the inter-dot valley phase difference δφ for
QD 1-2 in Table I is roughly a constant under different
applied VB2, which implies that varying VB2 only changes
the interdot barrier height, but does not cause the dots
to shift to any significant degree. Consequently, in the
4L model only tC depends on VB2, while δφ does not.
The tunnel couplings are obtained with different fit-

ting formulas: (A). Eq. (4), labeled as “2L”, (B). Eq. (3)
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QD 1-2 (a) (b) (c) (d)

2L |t+| 24 ± 0.6 43 ± 1.1 53 ± 1.0 70 ± 2.5
4L |t+| (N.) 20 ± 1.2 32 ± 1.9 37 ± 2.6 37 ± 6.0
4L |t+| (F.) 20 ± 1.1 33 ± 1.8 37 ± 2.6 38 ± 5.7

4L |t−| 39 ± 4.7 64 ± 4.8 76 ± 5.9 112 ± 12
4L δφ (rad) 2.2 ± 0.05 2.2 ± 0.03 2.2 ± 0.04 2.5 ± 0.06

QD 2-3 (e) (f) (g) (h)

2L |t+| 22 ± 0.6 41 ± 0.8 44 ± 0.8 36± 1.3
4L |t+| (N.) 22 ± 0.7 41 ± 1.7 44 ± 1.6 26 ± 2.5
4L |t+| (F.) 22 ± 0.8 41 ± 1.6 44 ± 1.6 26 ± 2.5

4L |t−| 0 ± 9.6 0 ± 14 0 ± 14 62 ± 7.1
4L δφ (rad) 0 ± 0.22 0 ± 0.20 0 ± 0.18 2.3 ± 0.04

Table I. Best fitting parameters for tunnel couplings. Data set
(a)-(d) are measured from dot 1-2 and fitted with |∆L| = 66
µeV, |∆R| = 74 µeV. Data set (e)-(h) are measured from
dot 2-3 and fitted with |∆L| = 74 µeV, |∆R| = 74 µeV. |t±|
units are µeV. (N.) means using numerical diagonalization,
(F.) means using Eq. (2).

and (2), labeled as “4L (F.)”, (C). Eq. (3), with a nu-
merical diagonalization of H to calculate PLi, labeled as
“4L (N.)”. According to the fitting results, the analyti-
cal formula Eq. (2) provides almost the same results as
numerically diagonalizing the Hamiltonian. The average
difference between 4L |t+| (F.) and 4L |t+| (N.) is only
0.9%, which indicates that Eq. (2) is very accurate here.
Additional discussion about the accuracy of Eq. (2) will
be presented in following subsections as well as in the
“Methods” section.
In comparison, the 2L fitting results are quite differ-

ent from the 4L results: the average difference between
2L |t+| and 4L |t+| for QD 1-2 is 46% across the dif-
ferent barrier heights in Table I, with 2L model consis-
tently producing larger tunnel splittings. Qualitatively,
this deviation is due to the fact that in the 2L model we
are using a single excited level to represent the effect of
three excited levels in the 4L model. As such this sin-
gle excited state needs to be above the first excited state
but lower than the third excited state in the 4L model,
so that |t+| in the 2L model has to be larger than that
in the 4L model. The error bars are obtained by numer-
ically generating various stochastic realization of δInoise
with the same standard deviation as the measured data
and then fitting all realizations. Here we assume the un-
certainty mainly comes from the noise in the IQPC signal
as shown in Fig. 1, which is the conclusion from Ref. [41]
as well.
We perform the curve fitting with several combinations

of |∆L| and |∆R| within the estimated range of 66 to 74
µeV. The parameters presented in Table I are chosen
because they produce the most consistent fitting results
for δφ. The fitting results for other |∆L,R| are shown in
Fig. 5 in the “Methods” section.
The best fittings for QD 2-3 are shown in Table I, data

set (e)-(h). A notable contradiction arises for (h). The
2L theory predicts tC = |t+| = 36µeV for (h), which is
smaller than tC = |t+| = 44µeV for (g), even though the

increase in VB3 from (g) to (h) should cause the barrier
height to decrease and tunnel coupling to increase [57].
This abnormality does not show up in the 4L theory,
which suggests that tC =

√

|t+|2 + |t−|2 = 67µeV for
(h), larger than tC = 44µeV for (g). However, the 4L
result of δφ for (h) is remarkably different from other
fitting results for QD 2-3, as if the dots have shifted so
that at least one of the dots has a significantly different
valley phase. Indeed multiple factors could cause this
change in δφ. A physical reason such as possible interface
steps in the DQD [58] could lead to such a shift. Other
reasons, such as the relatively noisy data (see Fig. 4 in
the “Methods” section) or non-linear effect in Eq. (6)
[41], could cause a change in δφ, too. Under imperfect
conditions, such as a large δInoise for (h), both 2L and
4L theory may fail to provide accurate fitting results,
although the 2L prediction is qualitatively worse since it
contradicts the experimental procedure.
The example given in Fig. 1 and Table I clearly shows

that our 4L model is a much better representation of a Si
DQD, and provides more reliable knowledge of the tun-
nel coupling in the DQD compared to the 2L model that
has been widely used so far. Qualitatively, the 2L the-
ory only includes the intra-valley tunneling reflected by
anti-crossing “A” in Fig. 1, resulting in a simple form

of ground state charge distribution PL = sin2 θ
−

2
. The

inter-valley tunneling reflected by anti-crossings “B” and
“C” are taken into account in our 4L theory. They pro-
vide a correction to the 2L theory as represented by the
factors cos2 Θ1

2
and sin2 Θ1

2
(t− dependent) in Eq. (2).

The details are presented in the “Methods” section and
the magnitude of the 4L corrections from “B” and “C”
will be discussed further in the next subsection.

Comparison between two-level and four-level models

Our results above show that 2L fitting returns quite
different numbers from the 4L fitting. Nevertheless, it is
still valuable to investigate the differences between the
two models in a wide range of experimental conditions
(under various |t±|, |∆L,R|, T , etc.), to better clarify
their applicability in experimental studies of Si DQDs,
which is the subject of this subsection.
In order to investigate a certain set of parameters

(|t±|, |∆L,R|, T ) other than the measured ones shown
in Table I, we employ the Hamiltonian (1) to calculate a
“pseudo-curve” IQPC(ǫ) theoretically with given param-
eters. It represents an expected IQPC(ǫ) curve measured
in experiments with particular parameters. Then, we ap-
ply the procedure we proposed to fit this “pseudo-curve”
and compare the fitted parameters with the original pa-
rameters used to generate the curve.
We first discuss qualitatively the necessary condition

for a 4L model description of a Si DQD. Consider two
well separated dots, when t± can be treated as pertur-
bations in Eq. (1). The eigen-states |Ψi〉 are mainly
the four unperturbed states |L,±〉, |R,±〉 except near
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Figure 2. Errors for different fitting methods. The parame-
ters to generate the “pseudo-curve” are |∆L| = 0.066 meV,
|∆R| = 0.074 meV. tC = 0.071 meV, δφ = 0.7π, and T = 50
mK unless specified explicitly in the figures. As shown in
the legend, the blue-upper-triangles are results from the 2L
formula (4), the red circles are obtained via numerical diago-
nalization of the 4L Hamiltonian, while the black squares are
from the 4L analytical formula of Eq. (2).

the anti-crossings. For example, when ǫ is in the region
ǫA ± ∆ǫ, where ǫA = (|∆L| − |∆R|)/2 is the center of
anti-crossing “A”, the ground state would be a mixture
of |L,−〉 and |R,−〉. The range of this “mixing region” is
roughly in the order of intra-valley tunneling, ∆ǫ ∼ |t+|.
Outside the “mixing region”, eigen-states |Ψi〉 are not
affected by the this anti-crossing and remain the un-
perturbed states. Similarly, anti-crossings “B” and “C”
also have their own “mixing regions”, but mix different
states |L,+〉 → |R,−〉 or |L,−〉 → |R,+〉, with a differ-
ent magnitude of ∆ǫ ∼ |t−|. The charge distribution of
the ground state is mainly determined by anti-crossing
“A”, as illustrated in Fig. 1. The impacts of “B” and
“C” can be regarded as corrections. Therefore, when “B”
and “C” are far away from “A”, the impacts are limited
and the dynamics is roughly a 2L dynamics with a single
anti-crossing “A”. In other words, under the condition

|ǫA − ǫB| = |∆L| ≫ |t−| & |ǫA − ǫC | = |∆R| ≫ |t−|,
(7)

the 2L theory proposed in Ref. 41 is still a good approx-
imation to describe the ground state charge distribution
of a Si DQD. When the condition (7) is not fulfilled, on
the other hand, a 4L model is necessary.
In Fig. 2 we provide numerical evidences for the con-

dition (7), in the form of fitting errors’ dependences on
various system parameters. Specifically, Fig. 2(a) shows
the effects of δφ with a fixed tC and valley splittings.
Clearly, Eq. (7) is fulfilled when |t−| ≈ 0, which requires
δφ ≈ 0. In this case, the valley states |+〉 does not cou-
ple to |−〉, and the 4L system is approximately reduced
to a pair of 2L system. When δφ is finite, on the other

hand, the 2L fitting generally results in significant errors,
especially when δφ → π. At this limit |t+| → 0, making
the 2L model unstable and sensitive to any data noise.
Figure 2 (b), (c), and (d) show the effects of tunnel cou-

pling tC , valley splittings |∆L| and |∆R|, and tempera-
ture. The results are all consistent with condition Eq. (7).
Here tC represents tunnel coupling between bulk valleys,
and is not directly measurable. However, larger tC leads
to larger |t−| for a given δφ, making the 2L theory less
reliable as the condition Eq. (7) is weakened. Similarly,
when |∆L,R| is large, the fitting error by 2-level theory is
significantly suppressed, while a smaller |∆L,R| leads to
overlapping of mixing regions for anti-crossings A, B, and
C, and the 2-level theory fails. The large errors of the 2L
fitting at higher temperatures are also expected, as there
is only one excited state with a simple ǫ dependence as
opposed to three excited states with much more complex
ǫ dependence.
One advantage of the 4L theory is that it automat-

ically extracts inter-valley tunnel coupling t− from the
ground state charge distribution, as shown with the cyan
triangles in all four subplots of Fig. 2. We also note that
the approximate charge distributions given by the ana-
lytical expressions in Eq. (2) is very accurate except in
a very small region when δφ ≈ π in Fig. 2 (a). There-
fore, Eq. (2) are a perfect approximation in most cases,
allowing a much faster fitting calculation compared to
a fully numerical procedure. A more detailed study on
the accuracy of Eq. (2) is in the “Methods” section and
Fig. 3.
There are also other practical factors affecting the ac-

curacy of the fitting such as the inaccurate fitting of the
parameters δI, I0, ǫ0, insufficient information of |∆L,R|,
and signal noise in IQPC . The impacts of all these factors
are discussed in the “Methods” section.

DISCUSSION

In this paper, we present a four-level model that can
extract tunnel coupling information in a Si double quan-
tum dot via measurement of charge distribution of the
double dot in thermal equilibrium. In essence, we have
adapted the protocol originally proposed and used for
GaAs double dot [41] to a Si DQD by including the
valley-orbit coupling and dynamics. We demonstrate
the efficiency and robustness of our model and the as-
sociated fitting procedure by applying it to experimental
data collected in a pair of Si DQD IQPC(ǫ) [47]. The re-
sults clearly demonstrate the superiority of the 4L model
compared to the conventional two-level model used in
the original proposal, with the 2L model produces al-
most 50% larger tunnel coupling t+, not to mention that
only by the 4L model can one extract any information
on the inter-valley tunnel coupling t−. In addition to
directly diagonalizing the 4L model Hamiltonian in the
fitting procedure, we have also derived a set of approxi-
mate formula with the assumption that t− can be treated



6

perturbatively. Our numerical results show that the ap-
proximate formula perform nearly perfectly in the vast
majority of parameter regimes, with the only exception
near the point where the inter-dot valley phase differ-
ence is π. Lastly, we compare the performance of the
2L and 4L models, and clarify the condition under which
4L model is necessary. In short, our 4L model for a Si
DQD provides much better accuracy in extracting the
intravalley tunnel coupling t+ from a charge distribution
measurement, while carrying the extra benefit of also ex-
tracting inter-valley tunnel coupling t−. We hope that
the proposed protocol can help experimentalists to mea-
sure tunnel couplings for a Si DQD more accurately and
efficiently.

METHODS

Theoretical charge distribution

In our approximate treatment, we consider inter-valley
tunnel coupling as a perturbation, while include intra-
valley tunnel couplings in the unperturbed Hamiltonian.
In essence we take a DQD with a completely smooth
interface as our starting point. The Hamiltonian (1) can
thus be split into two parts

H = H0 +H1, (8)

where

H0 =







ǫ+ |∆L| 0 t+ 0
0 ǫ− |∆L| 0 t+
t∗+ 0 −ǫ+ |∆R| 0
0 t∗+ 0 −ǫ− |∆R|






,

(9)

H1 =







0 0 0 t−
0 0 t− 0
0 t∗− 0 0
t∗− 0 0 0






. (10)

The eigen-energies and eigen-states of H0 are

E1,± = ±∆+ − E± (11)

E2,± = ±∆+ + E± (12)

where E± =
√

(ǫ ±∆−)2 + |t+|2 and ∆± = 1

2
(|∆L| ±

|∆R|), and the corresponding eigen vectors are

|ψ1,∓〉 = cos
θ∓
2
|R,∓〉 − e−iδφ/2 sin

θ∓
2
|L,∓〉 (13)

|ψ2,∓〉 = eiδφ/2 sin
θ∓
2
|R,∓〉+ cos

θ∓
2
|L,∓〉 (14)

where tan θ∓ = |t+|
ǫ∓∆

−

(θ∓ ∈ [0, π]).

When the inter-valley tunneling |t−| is finite, the
Hamiltonian H can be rewritten in the new basis
{|ψ1,∓〉, |ψ2,∓〉}. The matrix representation of H0 be-
comes diagonal and the matrix elements of H1 can be
obtained as, for example,

〈ψ1,−|H1|ψ1,+〉 = −i|t−| sin

(

θ−
2

−
θ+
2

)

(15)

〈ψ1,−|H1|ψ2,+〉 = t∗− cos

(

θ−
2

−
θ+
2

)

(16)

When |∆L| = |∆R|, θ− = θ+. As a result,

cos
(

θ
−

2
− θ+

2

)

= 1 and sin
(

θ
−

2
− θ+

2

)

= 0. In the new

basis {|ψ1,∓〉, |ψ2,∓〉}, the rotated full Hamiltonian H̃ can
be written as

H̃ =







−∆+ − E− 0 0 t∗−
0 −∆+ + E− t∗− 0
0 t− ∆+ − E+ 0
t− 0 0 ∆+ + E+







(17)
The eigen-energies are then

E1 =
1

2

(

E+ − E− −
√

(E+ + E− + 2|∆+|)2 + |t−|2
)

(18)

E2 =
1

2

(

E− − E+ −
√

(E+ + E− − 2|∆+|)2 + |t−|2
)

(19)

E3 =
1

2

(

E− − E+ +
√

(E+ + E− − 2|∆+|)2 + |t−|2
)

(20)

E4 =
1

2

(

E+ − E− +
√

(E+ + E− + 2|∆+|)2 + |t−|2
)

(21)
and the corresponding eigen-states are

|Ψ1〉 = eiφ cos
Θ1

2
|ψ1,−〉 − sin

Θ1

2
|ψ2,+〉 (22)

|Ψ2〉 = −eiφ sin
Θ2

2
|ψ2,−〉+ cos

Θ2

2
|ψ1,+〉 (23)

|Ψ3〉 = eiφ cos
Θ2

2
|ψ2,−〉+ sin

Θ2

2
|ψ1,+〉 (24)

|Ψ4〉 = eiφ sin
Θ1

2
|ψ1,−〉+ cos

Θ1

2
|ψ2,+〉 (25)

where tanΘ1 = |t
−
|

E++E
−
+∆+

and tanΘ2 =
|t

−
|

E++E
−
−∆+

. The left-dot charge distribution

|〈L,−|Ψi〉|
2 + |〈L,+|Ψi〉|

2 for these four eigen-states are
in the form of Eq. (2).
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Figure 3. Accuracy of approximate diagonalization under dif-
ferent conditions. The valley splittings are |∆L| = 0.045 meV,
|∆R| = 0.055 meV.

Accuracy of the approximate solution

The eigen-states (22-25) are obtained when |∆L| =
|∆R|. Practically, |∆L| is usually not identical to |∆R|.
However the charge distributions in Eq. (2) remain a
good approximation. This is because in most cases the
nearby dots have similar valley splittings |∆L| ≈ |∆R|,

which makes sin
(

θ
−

2
− θ+

2

)

≈ 0. As such, the term

〈ψ1,−|H1|ψ1,+〉 that we neglected is generally a small cor-
rection compared to 〈ψ1,−|H1|ψ2,+〉. Even if |∆L| and
|∆R| is quite different, our numerical results in Fig. 3
suggest only a small error in Eq. (2).

In Fig. 3, we plot the factor sin
(

θ
−

2
− θ+

2

)

under dif-

ferent QD parameters. It shows that in most region,
the factor we have neglected in Eq. (15) is quite small.
Only in the very special case when the phase difference

δφ→ π and the detuning ǫ→ 0, the factor sin
(

θ
−

2
− θ+

2

)

is notable. Otherwise, Eq. (2) is always a good approx-
imation. Besides, for any δφ and |∆L,R|, the notable
deviation always appears near ǫ = 0. If we consider the

average of sin
(

θ
−

2
− θ+

2

)

over all ǫ (because the fitting

depends on the charge distribution over all ǫ, not just at
ǫ = 0), the average deviation is always small. For exam-
ple, when there is a 20% difference between the two valley
splittings, |∆−|/|∆+| = 0.2, the overall magnitude (aver-

age value over different ǫ) of the factor sin
(

θ
−

2
− θ+

2

)

is

only 4% of the factor cos
(

θ
−

2
− θ+

2

)

. Namely, the terms

we dropped are indeed negligible even when there is a
notable difference between the two valley splittings.

Details of data fitting

In the “Results” section, we show all the fitting results
in Table I and the raw data of data set (c) in Fig. 1. Here,
we show all the other 7 sets of raw data and the best fit-
ting curves. The raw data are extracted from the readout
of the QPC sensor directly and the best fitting curves are
shown in Fig. 4. For panels (a), (b) and (d), the data are
measured from QD 1-2, with different barrier gate volt-
age VB2 (which tunes tC). The valley splitting |∆L| and
|∆R| are not actually measured directly in the experi-
ment, and are estimated to be around 66-74 µeV [57].
We perform the curve fitting with several groups of |∆L|
and |∆R| ranging from 66-74 µeV, as shown in Fig. 5.
The data presented in Tables I is picked because the fit-
ting results of δφ are relatively consistent. We choose this
criterion because the only tuned parameter in the exper-
iment is tC , which would generally not affect δφ when it
is not varied too significantly. Interestingly, Fig. 5 shows
that other estimates of |∆L| lead to very similar results
on δφ. The fitting results of δφ is always around 2.2 rad.
The value of δφ fitted from data set (d) has a small dif-
ference from the results from other data sets (a), (b) and
(c). We believe this is mostly because data set (d) has
larger noise in the raw data of IQPC , which is apparent
in Fig. 4. In short, our fitting procedure does not seem to
be overly sensitive to the choices of the valley splittings,
as long as they are not too different across the two dots.

We highlight data set (d) in Fig. 4 because it has the
largest tC , making the difference between 2L fitting curve
and 4L fitting curve clearly observable with bare eyes.
One can easily see the 4L curve fits better to the raw data.
The curve obtained by using Eq. (2) almost coincide with
the curve obtained by fully numerical diagonalization, il-
lustrating the robustness of our approximate expressions.
Besides, we would also like to emphasize that the actual
2L and 4L fitting results for (d) are quite different (al-
most 100% according the results in Table I), much larger
than it seems from the two curves.

Similarly, the best curve fittings of the data measured
from QD 2-3 are shown in Fig. 4 (e)-(h). The most inter-
esting result is the last panel (h). It is discussed that the
2L theory predicts tC(h) to be smaller than tC(g), while
the 4L theory suggests that tC(h) is larger than tC(g).
Experimentally, it is expected that the true value of tC in
panel (h) should be larger because the gate voltage VB3

used to tune tC between dot 2-3 is increased from (g) to
(h) when the experiment is performed. Here, Fig. 4 (h)
shows this set of data is obviously measured with a no-
tably larger noise than other sets. This large noise leads
to more significant error for the fitting results. However,
we also see that even with such a large noise the 4L fit-
ting still make a prediction which does not contradict
with the experimental setup.
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Figure 4. Curve fitting for actual data measured from experiment. (a), (b) and main plot (d) are obtained from the left two
dots (dot 1 and 2) with different barrier gate voltage. (e)-(h) in the right-bottom corner are measured from right two dots (2
and 3). Data set (c) is absent since it is presented in Fig. 1.

Figure 5. Fitting results of δφ by using various combination
of |∆L| and |∆R|.

Difference between 2L and 4L fitting curves

The difference between the 2L fitting curve and the
4L fitting curve in Fig. 1 looks insignificant. This is
mostly because the particular parameters in the experi-
ment happen to produce similar 2L and 4L curves, even
though the corresponding tunnel coupling strengths are
quite different. In Fig. 6, we show that the differences
between a 2L and a 4L fitting curves can both be mini-
mal and be dramatic. For example, very different valley
splittings |∆L,R| in the two dots makes the 4L curve lose
its symmetry around zero detuning, while a 2L curve is
always symmetric. The two fitting curve can also be eas-
ily distinguished when the condition (7) is not fulfilled.

0

0.5

1
4L Fit 2L Fit

0

0.5

1

(a)

(c) (d)

(b)

Figure 6. Intuitive difference of two fitting formulas. Param-
eters are tC = 50µeV, |∆L| = 74µeV. |∆R| and δφ are given
in each subplot. ǫ is ranging from −0.2 meV to 0.2 meV.

Even when two curves look very similar, they may yield
very different fitting results. For instance, the curves in
Fig. 4 (d) look quite similar, but there is nearly 90% dif-
ference between the 2L and 4L fitting results on |t+| in
Table I.

Estimation of fitting parameters I0, δI, and ǫ0

In the “Results” section, we describe our fitting proce-
dure by splitting the fitting parameters into two groups:
(1) I0, δI, and ǫ0, which determine the position of the fit-
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Figure 7. Fitting error caused by wrong estimation of I0, δI ,
and ǫ0. Parameters are the same as Table I, QD 1-2.

ting curve; and (2) t+ and t−, which determine the shape
of the curve. In our protocol we fit the two groups of pa-
rameters in turn until the results converge. Practically,
we only perform the iterative fitting 2 rounds because a
bad estimate on I0, δI, and ǫ0 does not result in too much
error on the final fitting results of t±. In Fig. 7, we plot
the fitting error caused by a wrong estimate of I0, δI, and
ǫ0. Fig. 7 is plotted in a relative wide range. However,
practically the errors cannot be too large, otherwise the
best fitting curve will have a notable shift. Therefore,
the iterative fitting converge very fast and 2 rounds of
fitting is generally enough.

fitting error caused by incomplete knowledge of

system parameters

Valley parameters such as |∆L|, |∆R| are crucial in
describing a Si DQD. As shown in Eq. (2) and (3), the
fitting protocol in our model requires a preliminary mea-
surement on the valley splitting of the two dots. Prac-
tically, the valley splittings may be unknown or only
roughly estimated. In the example in Table I, the val-
ley splittings are indeed estimated bu not measured. It
is thus important to know the impact on the accuracy of
t± by inexact knowledge of |∆L,R|.

In Fig. 8 we plot the error caused by incomoplete
knowledge of valley splitting |∆L,R|. The numerical data
used in fitting are generated with |∆L,R| = 74 µeV. We
then vary |∆L| or |∆R| on purpose to examine the sensi-
tivity of our protocol to this systematic error.
The numerical results show that a moderately off es-

timate of |∆L,R| will not lead to sizable errors in 4L
fitting unless |∆L,R| is significantly underestimated. In

50 100 150

-60%

-40%

-20%

0%

20%

40%

50 100 150
-40%

-20%

0%

20%

40%

(a) (b)

Figure 8. Fitting error by different methods, the “pseudo-
curve” data is obtained with tC = 0.071 meV, |∆L| = |∆R| =
0.074 meV, and δφ = 0.7π. Inaccurate |∆L,R| indicate a
wrong estimation/measurement on |∆L,R|. In (a), we assume
|∆L| = |∆R|. In (b), we assume |∆R| is measured accurately,
only |∆L| has an error.

Fig. 8 (a), when |∆L,R| ≈ 37 µeV (50% underestimated),
the 4L fitting error is still only about 10%. Furthermore,
an overestimated |∆L,R| will result in even smaller er-
ror comparing to an underestimated |∆L,R|, and the 4L
fitting error is always smaller than the 2L fitting. The
right panel (b) shows the case that only one valley split-
ting (|∆L|) is known inaccurately. Similar to panel (a),
the 4L fitting error is always smaller than the 2L fitting.
We note that the fitting accuracy of inter-valley tunnel
coupling |t−| is more sensitive to the knowledge of |∆L|,
though information on t− is not accessible at all to a 2L
model, since valley physics is not included there.

Another source of error in tunnel couplings is the mea-
surement of the current IPQC , which always contains
some noise δInoise as shown in Eq. (6) and illustrated
in Fig. 1. Here, we use a stochastic function δInoise
to simulate the uncertainty in current measurement.
The stochastic function is characterized by the mean
〈δInoise〉 = 0 and the standard deviation σ(δInoise),
which indicates the strength of the noise. Numerical re-
sults as presented in Table II show that the noise δInoise
has a much larger impact on the performance of 2L fit-
ting comparing to the 4L fitting. By using the 4L model,
even when the relative strength of the noise reaches 5%,
the fitting error is still under 10%, while the 2L fitting
always produces a significant error over 35%. The errors
from 4L fitting do increase rapidly with an increasing
σ(δInoise), while errors in the 2L fitting remains large
and do not change dramatically as σ(δInoise) increases.

σ(δInoise)
δI

0.01 0.02 0.03 0.04 0.05

Error on |t+| (2L) 36.87% 36.53% 36.18% 36.82% 37.18%
Error on |t+| (4L) 1.56% 4.30% 4.98% 6.25% 8.19%
Error on |t−| (4L) 1.06% 2.81% 3.54% 4.16% 4.68%

Table II. Fitting error caused by noise on IQPC measurement.
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[16] D. Culcer,  L. Cywiński, Q. Li, X. Hu, and S. Das Sarma,
Phys. Rev. B 82, 155312 (2010).
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