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Non-unitary Entanglement Dynamics in Continuous Variable Systems
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We construct a random unitary Gaussian circuit for continuous-variable (CV) systems subject to
Gaussian measurements. We show that when the measurement rate is nonzero, the steady state
entanglement entropy saturates to an area-law scaling. This is different from a many-body qubit
system, where a generic entanglement transition is widely expected. Due to the unbounded local
Hilbert space, the time scale to destroy entanglement is always much shorter than the one to build
it, while a balance could be achieved for a finite local Hilbert space. By the same reasoning, the
absence of transition should also hold for other non-unitary Gaussian CV dynamics.

I. INTRODUCTION

Recent years have seen a surge of interest in many-
body non-unitary quantum dynamics from the perspec-
tive of quantum trajectories[1-15]. A simple toy model
is a hybrid random circuit composed of both local uni-
tary gates and projective measurements[2, 3, 6-8, 15].
The competition between the unitary dynamics and the
local measurement leads to an entanglement phase tran-
sition of the steady state, separating the highly entan-
gled volume law phase from the disentangled area law
phase[3, 6-9]. This discovery leads to a series of devel-
opments and discoveries on non-unitary dynamics, such
as the error correcting properties of the volume law
phase[2, 11, 14, 15], the symmetry protected non-trivial
area law phase[12, 13, 16] and the connection with clas-
sical statistical mechanics models[4, 5, 17, 18].

In all these studies, the local degree of freedom is a
qubit or a generalized qudit, which is discrete in na-
ture and these systems are referred to as discrete-variable
(DV) systems. In contrast to this, many quantum sys-
tems are intrinsically continuous and are referred to
as continuous-variable (CV) systems (see review [19]).
These systems have infinite Hilbert space dimensions
with the physical observables having a continuum of
eigenvalues. Furthermore, these CV modes can be cou-
pled together and form a many-body quantum system.
In this Research Letter, we build up a Gaussian many-
body quantum circuit. In particular, we focus on the
non-unitary random circuit models and explore the en-
tanglement scaling of the Gaussian states. Similar to the
fermionic Gaussian models explored by others [5, 10, 20—
23], the Gaussian feature brings in tractability, but the
physics is different.

Previously, Ref. 24 constructed a Gaussian random
unitary circuit by using a set of fundamental one or two-
mode CV gates and studied the information spreading
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and entanglement dynamics of the circuit. They found
that analogous to the DV systems, there is a linear light
cone for information spreading for systems with local in-
teraction. After the local information reaches the bound-
ary of the system, the entanglement entropy scales lin-
early in the subsystem size. However, due to the infinite
local Hilbert space dimension, the entanglement entropy
of a subsystem is unbounded and continues to grow in
time. This is different from the aforementioned DV sys-
tem in which the local degree of freedom takes only O(1)
time to reach equilibrium. Such a difference leads to a
qualitative change in entanglement dynamics in the hy-
brid CV non-unitary dynamics. The unitary evolution
takes an infinitely long time to entangle the local mode
with the rest of the system and cannot compete with
the Gaussian measurement which typically disentangles
a single mode from the system in O(1) time. As a conse-
quence, there is no entanglement transition in this model
and a nonzero measurement rate drives the system to
an area law phase. We verify this result numerically in
a random Gaussian circuit subject to measurement and
generalize this result to other non-unitary CV dynamics
(e.g. the CV network system in Ref. 25).

II. ENTANGLEMENT DYNAMICS IN
GAUSSIAN CV SYSTEMS

In this section, we briefly review the quantum infor-
mation aspect of the continuous-variable systems. We
mostly follow the convention of Ref. 26 with the excep-
tion that covariance matrices match % of the counterparts
in Ref. 26.

A continuous-variable system is a quantum system that
has operators with a continuous spectrum. An L-mode
harmonic oscillator system on a lattice is a prototypical
bosonic example. It has position and momentum oper-
ators with a continuous spectrum, which are collectively
denoted as X = [q,p]' (the quadratures). The infinite
dimensional Hilbert space can be constructed in the num-
ber basis, i.e. the simultaneous eigenstates of the number
operators Hf;l a;rai, where the mode creation and anni-
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hilation operators are related to the quadratures through
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in the convention A = 1. These operators have the canon-
ical commutation relations
[Xi, Xj) = idij, [, al] =0y, (2)
where J is a 2L x 2L symplectic matrix(I, is the L x L
identity matrix)
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Below we review elementary properties of the Gaussian
states and Gaussian operations.

A. Gaussian states and Gaussian operations

Gaussian states are defined by a Gaussian character-
istic or Wigner function. For a pure state, the definition
is equivalent to a Gaussian wavefunction in the quadra-
ture (either position or momentum) basis. Its properties
are therefore completely determined by the first two mo-
ments: the displacement vector tr(pX) and the covari-
ance matrix

My = Su(p{(X = (X)), (6 = (60D, (@)

where {,} denotes an anti-commutator. In an L-mode
system, M is a 2L x 2L real symmetric matrix satisfying
the uncertainty principle 2M > iJ'. It can be “diago-
nalized” by a symplectic matrix S € Sp(2L,R) into the
Williamson normal form
M = S diag(vy,--- ,vp, v, ,v) ST, (5)
where {y;li = 1,---,L} are the L (non-negative)
Williamson eigenvalues. The Rényi entanglement en-
tropies of the Gaussian states only depend on the
Williamson eigenvalues and are given by [26]

il + 5" — i = 5]

Sy =
a—1

(6)

A special example is the second Rényi entropy, which is
< 1
Sy = len 2v; = 5 Indet(2M). (7)

Due to its irrelevance to the entanglement, we set the
displacement vectors to be zero afterwards.

1 That is, 2M — iJ is semi-positive definite.
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Table I. Unitary gates on one mode and two modes. 4 is
the unitary operator in terms of the boson creation and an-
nihilation operators. S is the corresponding symplectic ma-
trix, which acts on the quadrature, [ql,pl]T for one mode and
[q1,P1,G2,p2] " for two modes.

Gaussian operations transform a Gaussian state to a
Gaussian state. For instance, given a Gaussian initial
state [1), a unitary evolution e~ *#!s)) with Hamilto-
nian quadratic in the quadrature (or creation and anni-
hilation operators) produces another Gaussian state and
thus a Gaussian operation. Such unitary transformation
preserves the commutation relation of the quadratures
[UTX,U,UTX;U] = [X;,X;]. Infinitesimally, the trans-
formation on the quadrature is linear, which generates a
symplectic transformation for finite time:

U'XU =5X, SeSp2L,R). (8)

Consequently the Gaussian property of the state is pre-
served, and the time evolved correlation matrix is given
by

M(t)=SM(t=0)S". (9)

Examples of one-mode and two-mode evolutions are
listed in Table I. We will use these operations as quantum
unitary gates in the design of the circuit in Sec. III.

Furthermore, certain measurements are Gaussian op-
erations. For example, a homodyne measurement cor-
responds to a measurement that projects to quadra-
ture basis |¢) or |p) (infinitely squeezed states). It can
produce a Gaussian state for the part of the system
that is not measured. Projection to a coherent state
|a) = D(«)|0) (a displaced harmonic oscillator ground
state, D(a) = exp(aa’ — @a) is the displacement op-
erator) is called a heterodyne measurement. For pure
states, since the wavefunctions are Gaussian, their over-
laps with another Gaussian wavefunction are again Gaus-
sian. Hence projection to Gaussian states are Gaussian
operations. A similar argument can be made for a mixed
state, in which we can first purify to a larger Gaussian
state, then take the measurement, and finally trace out
the environment.

Finally, imaginary time evolution as a weak measure-
ment with post-selection is also a Gaussian operation.
This means that the normalized state under an imagi-



nary time evolution of a quadratic Hamiltonian H
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is a Gaussian state if the original state |¢) is (for a

proof see [27]). This is in parallel with several earlier
works[5, 10, 20, 21] on the Gaussian formalism for the
measurement-based transition in fermionic systems.

In Sec. I1I, we will construct an L-mode hybrid quan-
tum circuit model by applying a sequence of the one-
mode and two-mode Gaussian gates introduced in this
section.

B. Entanglement for Two-mode System

Qubit systems have a finite local Hilbert space, and
entanglement of a finite spatial region has a saturation
value upper bounded by the logarithm of the Hilbert
space dimension. This is not the case for a CV sys-
tem. The infinite local Hilbert space gives rise to an
unbounded entanglement growth, even for a two-mode
system.

For example, starting from the vacuum state we re-
peatedly apply a two-mode squeezing gate with squeezing
parameter r to obtain the state,

[(t)) = [exp(r(ab’ — ab))]|00)

- (11)
= Z(tanh rt)" |nn).
coshrt —=

The second Rényi entropy for the subsystem of the first
mode can be calculated from the covariance matrix M =
%SST. We have

So = Incosh 2rt ~ 2rt for large rt. (12)

The entanglement has an unbounded growth with an
asymptotic linear time dependence.
This state has the property

<(Q1 - Q2)2> =

When rt is large, it is a very good practical approxima-
tion of the perfect Einstein-Podolsky-Rosen(EPR) state
with two photons at the same position and having almost
opposite momentum

(1 +p2)?) =€ (13)

5(q1 — q2)6(p1 + p2). (14)

III. HYBRID GAUSSIAN CV CIRCUIT

In a qubit system, it is expected that there is a generic
entanglement phase transition in the hybrid quantum cir-
cuit composed of both unitary evolution and projective
measurements|2, 3, 6-8, 15]. When the measurement rate

is small, there is a stable volume law phase. As we in-
crease the measurement rate, there is a transition to the
disentangled area law phase.

Inspired by the developments in the DV system, in this
section, we construct a similar circuit for a CV system;
see Fig. 1. We use independent random phase shift and
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Figure 1. Structure of the hybrid circuit. Random one-
mode squeezing and phase shift are used to scramble the local
Hilbert space, and a random two-mode beam splitter is used
to entangle nearby modes. Measurements to the vacuum state
are inserted with rate p.

one-mode squeezing to scramble the local Hilbert space
and a random beam splitter to entangle neighboring sites.
The random parameter choices are uniform random 6
and ¢ in [0, 27r] and uniform random squeezing parameter

€ [0,1], see explicit expressions in Tab. I. Then with
probability p, we apply the measurement and post-select
the outcome to be the single mode ground state |0) at
each site. This is a measurement with a forced outcome.
The initial state is chosen as the tensor products of |0).

When p = 0, the circuit is completely unitary; such
a circuit has been studied in Ref. 24. In a DV system
with local interactions, the von Neumann entanglement
entropy grows linearly in time and saturates to a volume
law scaling[28]. The situation is quite different here in
the CV setting. The entanglement entropy has an initial
t2 growth, and then crosses over to a linear unbounded
growth, see Fig. 2(a).

The entanglement can be estimated by computing the
dimension of the effective Hilbert space. In a DV sys-
tem, the maximal local Hilbert space dimension is fixed
to be d. The locally interacting gate expands the domain
of influence linearly. Hence the effective Hilbert space
dimension along either side of the entanglement cut is
roughly dt. Taking the logarithm gives a linear growth
of the entropy. After the saturation time, ¢ ~ L, the
entanglement saturates to a volume law value. In a CV
system, besides the linear spreading in the spatial direc-
tion, the explored local Hilbert space dimension d is also
growing exponentially in time (see the linear growth of
entanglement worked out in Sec. IIB). Taking into ac-
count both effects gives a t? growth at early time (see
Fig. 2(a)). After the domain of influence reaches the
whole system, the effective Hilbert space can continue to
grow as d” ~ etl. Taking the logarithm gives rise to the
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Figure 2. Averaged half system entanglement S> in a hybrid circuit. Entanglement is averaged over random realizations of the
gate. There are two circuit structures: applying gates either on odd bonds in the first step or on even bonds. The results here
are the averages over equal probabilities of these two structures. (a) When the measurement probability p = 0, entanglement
has a quadratic growth followed by a linear growth. (b) When p > 0, the averaged entanglement converges to system size

independent values, with a slightly smaller saturation value when L < %. (c) We replace the Gaussian measurement by the

T

a

imaginary evolution gate e™” 2i9i% We set p =1 and vary the strength parameter S. The entanglement converges to system

size independent values.

late time linear ¢ growth observed in Fig. 2(a).

When we turn on measurements that project to |0)
with finite rate of measurement p, the entanglement
growth is system size independent (see [27] for the nu-
merical algorithm). It has a short time growth and even-
tually saturates to a system size independent value, i.e.
an area law, see Fig. 2(b).

We replace the measurement by an imaginary single-
mode gate. This is a continuous weak measurement with
post-selection. Operationally, we set p = 1 (measuring all
sites after the one-mode squeezing) and replace the mea-
surement from the projection to |0) to a weaker imag-

inary time evolution e—Balai The tuning parameter is
now (3, which indicates the strength of the measurement.
We observe similar area law behavior in Fig. 2(c) when
B is finite.

We believe that the infinite Hilbert space dimension
plays the crucial role in the absence of the entanglement
phase transition. For the sake of argument, assume that
the local Hilbert space dimension for the CV system is
truncated at a finite but very large number K. It takes
O(In K) time to explore the local Hilbert space and cre-
ates entanglement In K, whereas a single Gaussian mea-
surement can destroy this entanglement immediately. As
K — o0, the time scale associated with the measurement
that destroys the entanglement is much smaller than the
time scale to create entanglement, hence pushing the
would-be transition probability p. to 0.

A. DV dynamics example

We can reproduce similar physics in a DV model with
large local Hilbert space dimension. Consider a one di-
mensional qubit system with L sites. At each site, there
is a cluster of N qubits. As shown in Fig. 3, in each time
step, the unitary evolution involves both intra-cluster in-
teraction and inter-cluster interaction. The intra-cluster

interaction is realized by applying N/2 two-qubit gates
which randomly couple N/2 pairs of qubits, while the
inter-cluster interaction between two neighboring sites
only has a single two-qubit gate. The projective mea-
surement gate is applied at each site with probability p
and can disentangle every qubit in one cluster.

The design of the interaction patterns ensure that there
is roughly a In 2 entanglement increase across the inter-
cluster bond, until it reaches the maximum of N In2.
Hence it takes O(N) time for one cluster to get fully
entangled with other clusters under unitary evolution.
However, it takes only O(1) time for one cluster to be-
come disentangled under the projective measurement?.
This is comparable to the In K time scale (note that K
is the local Hilbert space dimension in the CV system)
to entangle and O(1) time to disentangle in the CV case.

At finite N, the two time scales are still comparable,
resulting in a phase transition at finite p.. However, p,
will decrease with IV and eventually vanishes when N —
00.

We numerically verify this idea in a random Clifford
circuit and present the result in Fig. 4. This model
can be efficiently simulated with a large number of
qubits[29, 30]. We use the peak of the mutual infor-
mation to identify the location of p.[9]. As N increases,
pe. moves to the left and approaches zero in the large NV
limit.

Notice that if we modify the unitary dynamics in Fig. 3
and introduce N two-qubit gates connecting neighboring
sites, then the time scale to completely entangle two clus-
ters reduces to O(1) and there is an entanglement phase
transition at finite p. [31], even after sending N — oc.

2 In a Haar random circuit, the absence of the phase transition in
the large N limit can also be understood in terms of the minimal
cut picture[3].
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Figure 3. A cartoon of the qubit system. At each site, there
are N qubits. The unitary dynamics at each time step involves
two parts: (1) intra-site interaction described by the N/2
two-qubit gates (denoted by the green lines), and (2) a single
two-qubit gate connecting neighboring sites (red lines).
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Figure 4. We consider a hybrid Clifford circuit composed of
both unitary dynamics and projective measurement and com-
pute the steady state mutual information Iap = Sa + Sp —
Sap for various N. At each time step, the unitary dynamics is
described by Fig. 3 with each bond denoting a random Clifford
gate, and the projective measurement is applied randomly at
each site with the probability p. After the measurement, all
the qubits at one site are disentangled from the rest of system.
At finite N, there is an entanglement phase transition with p.
characterized by the peak of Iap of the steady state[9]. Here
we consider periodic boundary conditions and A and B are
two antipodal regions with length Ly = Lp = 4.

IV. CONCLUSION

In this Research Letter, we study the entanglement dy-
namics in hybrid CV Gaussian circuits composed of both

unitary and non-unitary gates. For a generic random uni-
tary Gaussian dynamics, the entanglement entropy for
a subsystem is proportional to the subsystem size and
can grow indefinitely in time due to the unbounded local
Hilbert space dimension. We show that this highly en-
tangled phase is unstable when the system is subject to
repeated Gaussian measurements. When the measure-
ment rate is nonzero, the steady state evolves to an area
law phase, indicating the absence of the entanglement
transition.

We argue that the lack of phase transition is due to
disparity of the competing time scales to entangle and
disentangle the degrees of freedom. While it takes an
O(1) time scale to destroy the entanglement in a Gaus-
sian measurement, it takes an infinitely long time for a
single mode to get entangled with the system. We repro-
duce this effect from a similar DV system construction
with finite but large local Hilbert space dimension.

Our result holds for a generic Gaussian unitary cir-
cuit subject to Gaussian measurements and can be ap-
plied to other hybrid Gaussian dynamics, in which the
Gaussian measurement is replaced by an imaginary evo-
lution gate. We expect that our argument for the ab-
sence of the entanglement transition can be generalized
to interacting hybrid CV dynamics. Moreover, it might
be interesting to explore hybrid CV dynamics with extra
constraints, such as global U(1) symmetry, where an en-
tanglement phase transition may exist. We leave this for
future study.
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