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Magnon spin Nernst effect was recently proposed as an intrinsic effect in antiferromagnets, where
spin diffusion and boundary spin transmission have been ignored. However, diffusion processes are
essential to convert a bulk spin current into boundary spin accumulation, which determines the spin
injection rate into detectors through imperfect transmission. We formulate a diffusive theory to
describe the detection of magnon spin Nernst effect with boundary conditions reflecting real device
geometry. Thanks to the spin diffusion effect, the output signals in both electronic and optical
detection grow rapidly with an increasing system size in the transverse dimension, which eventually
saturate. Counterintuitively, the measurable signals are even functions of magnetic field, yielding
optical detection more favorable than electronic detection.

I. INTRODUCTION

With the rapid growth of nano-electronics, it becomes
increasingly demanding to develop energy-efficient means
to process and transmit information. Magnons—the
quanta of spin wave excitations—are promising alterna-
tive to electrons because they are charge neutral and can
transport spin angular momenta in insulating materials
without incurring Joule heating [1]. While ferromagnetic
(FM) magnons exhibit fixed spin polarization determined
solely by the magnetization, antiferromagnetic (AFM)
magnons can carry both spin-up and spin-down polariza-
tions similar to electrons [2–5], forming an internal degree
of freedom capable of encoding binary information. This
unique property, along with the ultrafast spin dynam-
ics, insensitivity to magnetic disturbance, have fertilized
AFM magnonics as an emerging frontier in materials sci-
ences [6].

Concerning pure spin transport, the similarity between
AFM magnons and electrons enables the magnonic ana-
log of the SHE, known as the magnon spin Nernst effect
(SNE) [7–10]. In a thin-film geometry, the magnon SNE
manifests as the generation of a transverse magnon spin
current devoid of thermal Hall current by a longitudinal
temperature gradient, where the spin polarization is per-
pendicular to the plane. To detect the electronic SHE, it
is imperative to consider the spin diffusion process that
converts a spin current into boundary spin accumula-
tions [11]. This is because in real experiments, a bulk
spin current is not directly measurable; only the bound-
ary spin accumulation can produce detectable signals.
In contrast, spin diffusion and boundary effects have not
been considered so far in the magnon SNE [7, 8]. Conse-
quently, we are not even able to ask for boundary spin ac-
cumulations within this intrinsic picture. A non-diffusive
description also fails to capture the imperfect transmis-
sion of spin angular momenta between AFM magnons
and metallic contacts, which is understandably essen-
tial to the electronic detection of magnon SNE. More-
over, unlike the magnon thermal Hall effect [12–14], the
magnon SNE is not accompanied by chiral edge currents,

so boundary spin accumulations solely arise from bulk
spin currents through the diffusion process. Therefore, a
diffusive description of magnons is indispensable to build
a correct understanding of the magnon SNE in AFM ma-
terials, and more importantly, to make meaningful pre-
dictions that can be compared with experiments.

In this paper, we formulate a diffusive theory to de-
scribe how the magnon SNE can be detected in the pres-
ence of spin diffusion and realistic boundary conditions
in a thin-film AFM insulator. We first consider a pro-
totype device geometry illustrated in Fig. 1, where the
transverse boundaries are directly contacted to metallic
leads. Driven by an applied in-plane temperature gradi-
ent, magnons with opposite spins diffuse towards oppo-
site transverse boundaries and inject pure spin currents
into the leads. The injected spins are subsequently con-
verted into a charge voltage by the inverse SHE, pro-
ducing an actual measurable signal. We find that the
voltage output grows appreciably with an increasing sys-
tem width until it eventually saturates. We then consider
an isolated AFM insulator amenable to optical detection
as illustrated in Fig. 3, where magnons accumulate on
dead ends without injecting into leads. For both types of
device geometry, we find that the detectable signals are
even functions of the applied magnetic field along the
Néel order (orthogonal to the plane), where the collinear
ground state is well preserved below the spin-flop thresh-
old. This is in sharp contrast to what one would näıvely
obtain from a non-diffusive description. Consequently, it
becomes fundamentally difficult to separate the inverse
SHE voltage from the ubiquitous thermoelectric signal,
yielding optical detection more favorable over electronic
detection.

II. MAGNON SPIN DIFFUSION

Without loss of generality, let us consider a magnetic
thin-film consisting of layered van der Waals AFM (such
as MnPS3 [15] and FePS3 [16]) with collinear Néel order
perpendicular to the plane. Because the transport in the
thickness dimension is suppressed, the system under con-
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FIG. 1. Illustration of system geometry and spin transmission
processes at boundaries. A temperature gradient ∇T gener-
ates a transverse pure spin current js through the SNE in
the AFM (yellow region). The spin current injects into the
metallic leads (grey region) on both sides through four dif-
ferent spin transmission processes depicted by Feynman dia-
grams (a)–(d). The injected spin currents are converted into
detectable voltages along x through the inverse SHE. The sys-
tem length along x is L; the AFM width and the lead width
are w and d, respectively.

sideration can be viewed as effectively two-dimensional.
Because of strong easy-axis magnetic anisotropy and
large spin magnitude, the long-range collinear ordering
in such a system is well preserved even down to the
monolayer limit [16]. Therefore, we can ignore the quan-
tum fluctuations of the Néel ground state and adopt a
semi-classical picture of magnon excitations, which has
been a widely accepted theoretical framework in study-
ing magnonic transport [6, 17]. With a honeycomb lat-
tice in mind, we attribute the existence of magnon SNE
to the second-nearest neighboring Dzyaloshinskii-Moriya
interaction which plays the role of an effective spin-orbit
coupling for magnons [7, 8, 18]. However, within the lin-
ear spin-wave regime, the special symmetry of the system
does not break the rotational symmetry around the plane
normal in the presence of the considered Dzyaloshinskii-
Moriya interaction, which ensures that the z-component
of the magnon spin is conserved [7, 8], allowing us to sep-
arately define spin-up and spin-down magnons with re-
spect to the plane normal (i.e., the z axis). This property
remains valid even when a magnetic field is applied along
the z direction so long as its strength is below the spin-
flop threshold. With all these arguments being provided,
however, the microscopic detail of the magnon SNE does
not concern us here because our focus is the diffusion
effect that governs the continuum limit of magnon trans-
port.

As illustrated in Fig. 1, a temperature gradient ∇T ap-
plied along the x direction generates a pure spin current
js = −σs∇T in the y direction, where the SNE coeffi-
cient σs is a bulk quantity independent of boundaries.
To solve the magnon spin diffusion in the y direction,
we make the following assumptions: 1) magnons of dif-
ferent spin species relax to the environment (lattice) in-
dividually without spin-flip scattering between magnons;
2) the momentum relaxation ascribing to spin-preserving

processes is orders of magnitude faster than the spin re-
laxation due to spin-non-preserving processes. The first
assumption is guaranteed by the aforementioned conser-
vation of the z-component of spin, and similar assump-
tion is made in Ref. [4, 19]. The second assumption is
generally true in clean and long-range ordered magnetic
systems [20]. As a result, we can decouple the spin diffu-
sion equations for each spin species, equating the magnon
temperature to the environmental temperature locally,
and only keep the ∂xT component which is fixed exter-
nally. In the natural units (~ = kB = e = 1), the current
density of spin-up magnons is

j↑y = −σ↑∂xT −D↑∂yρ↑ (1)

where ρ↑ is the non-equilibrium density of spin-up
magnons, D↑ is the magnon diffusivity, and σ↑ is the
Nernst coefficient for spin-up magnons. Unless other-
wise stated, all densities and currents below refer to the
non-equilibrium contributions as there is no transport
effect at thermal equilibrium. The equation for j↓y is
similar and the total spin current density js = j↑ − j↓
and σs = σ↑ − σ↓. In the absence of magnetic fields,
σ↑ = −σ↓, D↑ = D↓, and ρ↑ = ρ↓ guaranteed by sym-
metry. A magnetic field perpendicular to the plane can
break this symmetry, which will be discussed in the fol-
lowing.

Since we have ignored the spin-flip scattering between
magnons with opposite spins, the spin continuity equa-
tion is respected separately by each spin species

∂ργ
∂t

+∇ · jγ = −ργ
τγ
, (2)

where γ =↑, ↓ and τγ is the effective spin-relaxation time
due to spin-non-conserving scattering with phonons, im-
purities, etc. We treat τγ as a phenomenological param-
eter; τ↑ = τ↓ in the absence of magnetic fields. We will
focus on the linear response regime such that the spatial
inhomogeneity of transport coefficients in Eq. (1) is negli-
gible, which requires |L∂xT/T | � 1 with L the length in
the x direction (see Fig. 1). At steady state, ∂ργ/∂t = 0,
then inserting Eq. (1) into Eq. (2) gives ∇2ργ = ργ/λ

2
γ ,

where λγ =
√
Dγτγ is the effective spin diffusion length

for spin γ. When the system width w far exceeds its
length L, the diffusion process becomes effectively a one
dimensional problem. Therefore,

∂2ργ
∂y2

=
ργ
λ2γ
, (3)

which requires two boundary conditions to solve for each
γ. In the right (left) leads, the spin density of electrons
ρR (ρL) satisfies the same diffusion equation governed by
a different spin diffusion length λe =

√
Deτe where De is

the spin diffusivity and τe is the spin relaxation time of
electrons.

Solving Eq. (3) together with the spin diffusion equa-
tions for ρR/L calls for proper boundary conditions de-
termined by the interfacial spin transmission between
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magnons and electrons. As illustrated in Fig. 1, there
exists four different scattering processes depending on
the spin polarization and flow direction of magnons, each
involving an electron that releases an angular momen-
tum of either ~ or −~ through spin-flip and a magnon
that balances the change of the electron spin. Specifi-
cally, magnons are emitted by electrons in process (a)
and process (c), while they are absorbed by electrons in
(b) and (d). In the absence of magnetic fields, (a) and
(b) form a time-reversal pair, which should take place
with the same rate, so do (c) and (d). These four in-
terfacial processes are characterized by four conductance
parameters that can be calculated by extending the lin-
ear response theory previously formulated in ferromag-
nets [5, 21]. Assuming identical interfacial properties and
detailed balance, however, we can reduce these four pa-
rameters into two such that (a) and (d) [(b) and (c)]
are represented by the same conductance G↑ (G↓) [22],
which is proportional to the interfacial spin-mixing con-
ductance (see Appendix). For example, on the right
interface (y = w/2), the Ohm’s law associated with
(c) and (d) determines two spin current densities cross-

ing the interface: j↑int = G↑[ρ↑(w/2) − ρR(w/2)] and

j↓int = G↓[ρ↓(w/2) − (−ρR(w/2))]. Spin continuity fur-

ther requires that j↑int = j↑y(w/2) and j↓int = j↓y(w/2),

and that j↑int− j
↓
int = −De

∂ρR
∂y

∣∣∣
w/2

. These relations con-

stitute three independent conditions at y = w/2. Sim-
ilarly, there are three boundary conditions associated
with processes (a) and (b) on the opposite interface at
y = −w/2. At the dead ends y = ±(w/2 + d) with d the
lead width, spin currents must vanish identically, which
provides another two independent conditions. Including
everything, we finally obtain a set of eight boundary con-
ditions grouped into four relations as

Gγ

[
ρL ∓ ργ

(
−w

2

)]
= ±jγy

(
−w

2

)
, (4a)

Gγ

[
ρR ∓ ργ

(w
2

)]
= ∓jγy

(w
2

)
, (4b)

−De

∂ρR/L

∂y

∣∣∣∣
±w/2

= j↑y

(
±w

2

)
− j↓y

(
±w

2

)
, (4c)

−De

∂ρR/L

∂y

∣∣∣∣
±(w/2+d)

= 0, (4d)

where γ =↑ (↓) in Eq. 4a and 4b and R (L) in Eq. (4c)
and (4d) are linked to the upper (lower) sign of ± and ∓
appearing in these equations. It should be noted that Gγ
is the same on both boundaries and independent of ργ
and ρR/L, which is true in the linear response regime for
identical leads on both sides. Invoking the above bound-
ary conditions on Eq. (3), we are able to solve the magnon
density ρ↑(y) and ρ↓(y) for −w/2 < y < w/2 and the
electron spin density ρL(y) and ρR(y) for −(w/2 + d) <
y < −w/2 and w/2 < y < w/2 + d, respectively.

III. ELECTRONIC DETECTION

In the leads, the inverse SHE converts the injected
spin angular momenta into an electrical current jL/R =
σc[EL/R− θs/(egF )ẑ×∇ρL/R] [23], where σc is the con-
ductivity of the leads, EL/R is the electric field, and θs
is the spin Hall angle, and gF is the density of states
at the Fermi level. With the open boundary condi-
tion jL/R = 0, the inverse SHE generates a voltage

VL/R = L/d
∫
dyEL/R along the x direction. If the two

leads are made of identical materials and the interfacial
properties are the same on both sides, symmetry guar-
antees that VL = VR = V under the SHE geometry. If
the two leads and the corresponding interfaces are dif-
ferent, VL and VR are likely to be different, which might
be a useful strategy for measurement. In the absence of
magnetic fields, time-reversal symmetry guarantees that
σ = σ↑ = −σ↓, λm = λ↑ = λ↓, Dm = D↑ = D↓, and
G = G↑ = G↓. Retrieving all physical constants from
the natural units, we obtain

V = −∂xT
σθsL

eGd

ηmηe tanh d
2λe

ηm + coth w
2λm

(
1 + 2ηe coth d

λe

) , (5)

where e is the electron charge, ηm = Gλm/Dm and
ηe = Gλe/De are dimensionless parameters, and w, d,
and L describe the device geometry illustrated in Fig. 1.
The estimation of ηm and ηn are discussed in the Ap-
pendix. The spin diffusion effect of magnons is reflected
in the ratio w/λm, while d/λe affecting the electron spin
diffusion in the leads can be varied independently. In the
ballistic limit that w � λm, the cothw/2λm factor in the
denominator of Eq. (5) blows up, thus the actual output
voltage is highly suppressed. To linear order in w/λm, we
have V = −∂xT (wL/2d)(σθs/eDm)ηe tanh(d/2λe)/[1 +
2ηe coth(d/λe)], which is linear in w. On the other hand,
when both magnons and electrons are in the diffusive
limit, i.e. w � λm and d� λe, Eq. 5 becomes

V = −∂xT
σθsL

ed

Gλeλm
DeDm +G(Deλm + 2Dmλe)

, (6)

which is independent of w. Figure 2 plots the output V as
a function of w/λm and d/λe for typical materials param-
eters of MnPS3 (see the Appendix). The essential pattern
of Fig. 2 is preserved even by varying ηm and ηe. While
V increases monotonically towards saturation with an
increasing w/λm, it varies non-monotonically with d/λe,
where the maximum appears for d being comparable to
λe. These features suggest that: 1) The diffusion effect of
magnons can significantly facilitate the electronic detec-
tion of the magnon SNE. The saturation voltage output
for w � λm can be orders of magnitude larger than that
in the ballistic limit. 2) The spin diffusion of electrons in
the leads can either enhance or suppress the output, so
the dimensions and the material properties of the leads
should be optimized.

The fact that the output voltage in both leads are
the same makes it difficult to separate the magnon SNE



4

FIG. 2. Inverse SHE voltage resulting from the spin currents
injected into the leads as a function of w/λm and d/λe for
ηm = ηe = 16, which is estimated by using materials parame-
ters in MnPS3 (see the Appendix). Unit: −∂xT (σθsL/eGλe).

from thermoelectric effects. Therefore, it is natural to
consider applying a magnetic field to imbalance differ-
ent spin species. Here we only consider a field perpen-
dicular to the plane with a strength below the spin-flop
threshold, which breaks the degeneracy of the spin-up
and spin-down magnons but cannot change the collinear
ground state. However, a scrutiny over the spin trans-
mission processes in Fig. 1 suggests a negative conclusion.
Suppose that the Zeeman interaction lowers the gap of
spin-up magnon band, enlarging its population, whereas
spin-down magnons experience the opposite change. In
the linear response regime, the intensity of process (a)
dubbed Ia and that of process (d) dubbed Id will increase
by exactly the same amount ∆I+. Similarly, Ib and Ic
will decrease by the same amount ∆I−. Accordingly, the
total amount of spin injection from the left lead, deter-
mined by Ia + Ib, will change by ∆I+ − ∆I−. This is
exactly the same as the change of spin injection into the
right lead determined by Ic + Id. Moreover, since (a)
and (b) form a time-reversal pair, reversing the magnetic
field direction will lead to a decrease of ∆I− in Ia and
an increase of ∆I+ in Ib, leaving the overall change of
Ia + Ib still ∆I+ − ∆I− [same argument applies to (c)
and (d) as well]. This means V (B) = V (−B), namely,
the voltage output is an even function of B. As a result,
the output voltage V must be quadratic in the magnetic
field to the lowest order. If we only consider the magnon
injection processes (b) and (d) while ignoring their emis-
sion partners (a) and (c), we could arrive at the wrong
conclusion where there is a linear B dependence.

Now we justify the above conclusion by expanding the
inverse SHE voltages VL and VR arising from the two
leads with respect to B. For weak fields, σγ = σ±σ′B+
σ′′B2/2 where σ′ = ∂Bσ(0), σ′′ = ∂2Bσ(0), and the + (−)
sign corresponds to γ =↑ (↓). Similar expansions apply

to all other parameters such as ηm and ηe. The magnetic
field dependencies of λm, Dm and G are included in the
expansion of ηm and ηe. Solving VL and VR from Eq. (3)
under spin-specific boundary conditions (i.e., γ =↑ or ↓
in Eq. (4)), we find that the linear term of B vanishes
identically in both VL and VR while they share the same
B2 term. Therefore, we have VL = VR = V (B) even in
the presence of a magnetic field. Letting ∆V ≡ V (B)−
V (0), we obtain

∆V

V (0)
=

B2

ηmσD

(
a

1 + ηm
+ b+ c

)
, (7)

where D = 1 + ηm + 2ηe, a = −η′2mσ(1 + 2ηe) +
2η′m(ηmη

′
eσ+ηeσ

′), b = η′′mσ/2+ηm(1+ηm)σ′′/2+η′mσ
′,

and c = η′′mηeσ − ηmη′′eσ + ηmηeσ
′′. In the expansions,

we have ignored the very insensitive field dependence of
θs, De and λe. Since a magnetic field cannot make VL
and VR different, electronic detection of the magnon SNE
turns out to be an unreliable approach.

IV. OPTICAL DETECTION

The boundary spin accumulation arising from the dif-
fusive magnon SNE can be detected optically without
metallic leads. Different from electronic detection, an
optical detection reacts to both equilibrium and non-
equilibrium magnons. To the lowest order, the equilib-
rium magnon spin density, ρeqs = ρeq↑ − ρ

eq
↓ , is linear in

a perpendicular magnetic field. But this part is not re-
lated to the magnon SNE because it does not diffuse and
is independent of y as shown in the inset of Fig. 3(a).
So we need to focus on the non-equilibrium contribution.
Accordingly, we use jγ(±w/2) = 0 as the boundary con-
ditions and solve the non-equilibrium magnon density ρ↑
and ρ↓ from Eq. (3), which is plotted in Fig. 3(a). The
net non-equilibrium spin density ρs = ρ↑ − ρ↓ is

ρs(y) = −2∂xT
σλm
Dm

sech
w

2λm
sinh

y

λm
, (8)

which is plotted in Fig. 3(b). Because ρs(y) = −ρs(−y) is
an odd function, the profile can be unambiguously probed
via spin-resolved magnon-photon interactions if the spa-
tial resolution is higher than 1/w. Typical optical mea-
surements are not able to discern ρ↑(y) and ρ↓(y) individ-
ually; only the spin density ρs(y) can be measured. On
the edges, ρs(±w/2) ∼ ± tanh(w/2λm), which increases
with an increasing ratio of w/λm until it eventually sat-
urates. This behavior, shown in the inset of Fig. 3(b), is
similar to the case of electronic detection.

Although thermoelectric effects are no longer a con-
cern in optical detection, it is instructive to examine how
ρs depends on a perpendicular magnetic field. In the
diffusive limit that w � λγ (γ =↑, ↓), we expand the
spin-dependent quantities up to quadratic order in B.
On the right edge, the change of non-equilibrium spin



5

density ∆ρs = ρs(B,w/2)− ρs(0, w/2) is obtained as

∆ρs
ρs(0, w/2)

= B2 (ζσ)′′

2ζσ
(9)

where ζ = λm/Dm, and σ are defined for B = 0;
ζ ′′ = ∂2Bζ(0) and σ′′ = ∂2Bσ(0). Similar to the elec-
tronic detection, the change of non-equilibrium magnon
spin density on each boundary is an even function of
B, so reversing the field direction leads to the same re-
sult. However, we are not able to determine the sign of
(ζσ)′′/ζσ in Eq. (9), so a perpendicular magnetic field
can either enhance or suppresse the boundary spin accu-
mulation depending on materials.

To better visualize the influence of magnetic field, we
exaggerate the changes of ζ and σ induced by B in plot-
ting the profile of ρ↑,↓(y) and ρs(y) in Fig. 3. In fact,
the quadratic B-dependence and the anti-symmetric spa-
tial distribution of the spin density, is not unique to the
magnon SNE in AFM. It was also observed in the elec-
tron SHE under optical detection [24].

V. MATERIALS ESTIMATE

Comparing with the electronic detection where the
output voltage is difficult to be separated from thermo-
electric effects even in the presence of magnetic field, op-
tical detection turns out to be the preferred method to
observe the diffusive magnon SNE thanks to the anti-
symmetric profile of ρs(y). Magneto-optic Kerr effect
microscopy is a well-established optical detection [24–26],
but it does not provide enough spatial resolution to mea-
sure systems on or below the micrometer scale. Recent
development in the nitrogen-vacancy (NV) center magne-
tometer [27–31], on the other hand, exhibits remarkable
sensitivity combined with a high spatial resolution, mak-
ing it quite promising to measure the spatial profile of
ρs(y), hence the magnon SNE.

While the magnon SNE was theoretically predicted
and experimentally explored in MnPS3 [7, 9], recent stud-
ies suggest that its variance (such as CrSiTe3) can exhibit
a much larger SNE coefficient [18]. Therefore, we choose
the largest reported value, σ↑ = σ↓ ≈ 2.5 × 10−2kB/~,
for estimation. In the absence of magnetic fields, we take
τm ≈ 10ns [32], λm ≈ 1µm [20], and w � λm. For a thin
film consisting of about 10 layers [33], a temperature gra-
dient ∂xT on the order of 0.1 ∼ 1K/µm [34–37] will pro-
duce an areal spin density of roughly 1013 ∼ 1014~/m2 on
the edge. Assuming a pixel size of 20nm × 20nm and a
distance of 20nm between the NV center and the material
surface [28], we estimate that the edge spin accumulation
of magnons will generate a static magnetic field acting on
the NV center on the order of 1 ∼ 10nT, which is within
the sensitivity [31].

In summary, we have formulated a diffusive theory
to describe the detection of magnon SNE in antiferro-
magnets with collinear Néel order, providing experimen-
tally measurable predictions missed in previous theoret-

FIG. 3. (a) Non-equilibrium density ρ↑,↓. Inset: Equi-
librium magnon density ρeq↑,↓. (b) Non-equilibrium magnon
spin density ρs as a function of y for open boundaries and
w = 5λm. Insets: Non-equilibrium spin density on the right
edge ρs(w/2) as a function of w/λm (upper-left); illustration
of device geometry (lower-right). Unit: −2∂xT (σλm/Dm).

ical studies. Owing to the magnetoelectric effects which
mixes with the output voltage, optical detection turns
out to be more reliable than electronic detection. The
NV center magnetometer is able to fulfill this function.
We anticipate that our findings can inspire ongoing ex-
periments of the magnon SNE in AFM insulators.
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Appendix: Estimation of ηm and ηe

The dimensionless parameters ηm = Gλm/Dm and
ηe = Gλe/De both depend on the interfacial conduc-
tance G, which converts an interfacial spin density on
one side to an spin current density on the other side of
the interface. Calculating G can be very sophisticated,
but fortunately we only need a rough estimate of its mag-
nitude. Basing on Ref. [4, 5, 38, 39], we evaluate G from
the real part of the interfacial spin-mixing conductance
gr.

The contribution of a particular magnon mode, either
spin up or spin down, with wave vector k to the interfa-
cial spin current density is jγint(k) = grε

γ
kδn

γ
k (γ =↑ or ↓),

where εγk and δnγk is the energy and the non-equilibrium
distribution of magnons, respectively. In the linear re-
sponse regime, δnγk = µγ∂n

γ
k/∂µ, where nγk is the Bose-

Einstein distribution function and µγ is the chemical po-
tential. So, the total contribution from magnons with
spin γ is

jγint = grV
∫

d3k

(2π)3
εγk

∂nγk
∂µ

∣∣∣∣
µ=0

µγ (A.1)

where V is the volume of primitive cell and

∂nγk
∂µ

∣∣∣∣
µ=0

=
1

kBT

eε
γ
k/kBT

(eε
γ
k/kBT − 1)2

. (A.2)

Meanwhile, µγ can be related to the interfacial spin ac-
cumulation ργ as

ργ = ~
∫

d3k

(2π)3
∂nγk
∂µ

∣∣∣∣
µ=0

µγ . (A.3)

Therefore, the effective interfacial conductance G can be
obtained as

G =
jγint
ργ

=
grV
~

∫
d3kεk(∂nγk/∂µ)∫
d3k(∂nγk/∂µ)

∣∣∣∣
µ=0

, (A.4)

whose dimension is m/s in SI unit. In the absence of
magnetic fields, G is the same for both spin-up and spin-
down bands. We ignore the dependence of G on magnetic
fields for weak fields.

Next, we use the material parameters of MnPS3 [15],
assume the second-nearest neighboring Dzyloshinskii-
Moriya interaction to be D2 = 0.2meV[7], and gr =
1018m−2 [5, 38] to calculate G numerically using
Eq. (A.4). By allowing temperature T to vary be-
tween 10K and 40K, we find that G varies from 526m/s
to 1645m/s. Since λm =

√
Dmτm and λe =

√
Deτe,

ηm and ηe can also be expressed as ηm = Gτm/λm
and ηe = Gτe/λe. Because we do not know the exact
value of τm for MnPS3, we take a typical estimate that
τm ≈ 10ns [32]. In addition, we use λm ≈ 1µm [20],
τe ≈ 10ps [40] and λe ≈ 1nm [41]. Combining every-
thing, we finally obtain ηm ≈ ηe ≈ 16 at T = 40K.
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fusive magnonic spin transport in antiferromagnetic in-
sulators, Physical Review B 93, 054412 (2016).

[5] K. Chen, W. Lin, C. Chien, and S. Zhang, Temperature
dependence of angular momentum transport across in-
terfaces, Physical Review B 94, 054413 (2016).

[6] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono,
and Y. Tserkovnyak, Antiferromagnetic spintronics, Re-
views of Modern Physics 90, 015005 (2018).

[7] R. Cheng, S. Okamoto, and D. Xiao, Spin nernst effect
of magnons in collinear antiferromagnets, Physical review
letters 117, 217202 (2016).

[8] V. A. Zyuzin and A. A. Kovalev, Magnon spin nernst
effect in antiferromagnets, Physical review letters 117,
217203 (2016); A. A. Kovalev and V. Zyuzin, Spin torque
and nernst effects in dzyaloshinskii-moriya ferromagnets,

Physical Review B 93, 161106 (2016).
[9] Y. Shiomi, R. Takashima, and E. Saitoh, Experimental

evidence consistent with a magnon nernst effect in the an-
tiferromagnetic insulator mnps3, Physical Review B 96,
134425 (2017).

[10] Y. Zhang, S. Okamoto, and D. Xiao, Spin-nernst effect
in the paramagnetic regime of an antiferromagnetic in-
sulator, Physical Review B 98, 035424 (2018).

[11] S. Zhang, Spin hall effect in the presence of spin diffusion,
Physical review letters 85, 393 (2000).

[12] R. Matsumoto, R. Shindou, and S. Murakami, Thermal
hall effect of magnons in magnets with dipolar interac-
tion, Physical Review B 89, 054420 (2014).

[13] S. K. Kim, H. Ochoa, R. Zarzuela, and Y. Tserkovnyak,
Realization of the haldane-kane-mele model in a system
of localized spins, Physical review letters 117, 227201
(2016).

[14] A. Rückriegel, A. Brataas, and R. A. Duine, Bulk and
edge spin transport in topological magnon insulators,
Physical Review B 97, 081106 (2018).

[15] A. Wildes, B. Roessli, B. Lebech, and K. Godfrey, Spin
waves and the critical behaviour of the magnetization in
mnps3, Journal of Physics: Condensed Matter 10, 6417



7

(1998).
[16] J.-U. Lee, S. Lee, J. H. Ryoo, S. Kang, T. Y. Kim,

P. Kim, C.-H. Park, J.-G. Park, and H. Cheong, Ising-
type magnetic ordering in atomically thin feps3, Nano
letters 16, 7433 (2016).

[17] S. M. Rezende, A. Azevedo, and R. L. Rodŕıguez-Suárez,
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